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The cosmological constant problem

One motivation: the cosmological constant problem:

1 1
R,uz/ — §Rg,u1/ + Ag,ul/ — T,uz/ A ~ 1071

VE Ve
P P
\ Really small

Two aspects to the problem:

e existence of the small number (naturalness)

e stability under quantum corrections (technical naturalness)

Two roads to take:

o Take GR, the CC and known rules of QFT seriously (— anthropics, landscape)
e Modity things



Modifying gravity

o Lorentz-Invariance — degrees of freedom are classified by mass and spin/
helicity

o Should be an infrared modification, to say something about the cosmological
constant without messing up solar system tests of gravity

e GR is the unique theory of an interacting massless helicity-2 at low energies —
to modify gravity is to change the degrees of freedom

First thought: make the graviton massive
IR modification scale

Extra DOF: 5 massive spin states as opposed to 2 helicity states



Other motivations

1) It is an interesting field theoretic question: is it possible to have a

consistent theory of an interacting massive spin-2 particle?

2) It gives general lessons about GR:

- Nicely illustrates the generic obstacles encountered when attempting to
modifying gravity in the IR.

- Appreciation for why GR is special

3) It shows us new mechanisms: massive gravity is a deformation of GR
— pathologies should go away as mass term goes to zero — new

mechanisms for curing pathologies



Linear theory

Massive spin 2 particle: 5 degrees of freedom (as opposed to 2 for massless
helicity 2)

Fierz-Pauli action: Fierz, Pauli (1939)
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Einstein-Hilbert (massless) part. Mass term breaks gauge symmetry.
Gauge symmetry: dh,, = 0,5 + 0., Fierz-Pauli tuning ensures 5 D.O.F.

Equations of motion: (0 — m2)h,w =0, 0"h,, =0, h=0

Hamiltonian Formulation:
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Auxiliary variables Lagrange Multiplier



[Linear solutions around sources

Amplitude for interaction of two conserved sources:
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™ For GR this would be 1/2

Newtonian Potential: ¢y = —— e
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Massless gravity vs. massless limit of massive gravity: the vDVZ discontinuity van DamVeltman,and
i Zakharov (1970)
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Non-linearities

Take interactions to be those of GR: hyuy = guw — Npuw
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vDV7Z discontinuity could possibly be cured by non-linearities



The Boulware-Deser ghost  suepeeraom

ADM variables: 9o = —N?+g”N;N;,
goi = NN
9i; — Gij-
Hamiltonian:

M? :
S = P /d4$pabgab — NC — N,LC%

In GR, lapse and shift are lagrange multipliers enforcing gauge constraints /

In massive GR, they are auxiliary variables

Phase space DOF = 6 spatial metric + 6 canonical momentum - 0 constraints = 12 — 6
real space DOF

Extra non-linear D.O.F. is the Boulware-Deser ghost

Hamiltonian is unbounded.



Stukelberg analysis, linear theory
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Two problems:
1) Massless limit is not smooth (DOF are lost)
2) Propagator looks bad at high energy
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Familiar power-counting doesn’t work



Stukelberg analysis, linear theory
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Restore the gauge invariance broken by the mass term by introducing a Stiikelberg field

huw — by + 0, A, + 0,4,
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There is now a gauge symmetry

Ohyw = Ouy + 0u€p, 0A, = —E,

Unitary gauge A, = 0 recovers the original lagrangian

A,  m=0 limit is still not smooth
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Stukelberg analysis, linear theory

Introduce a further Stiikelberg field A, — A, + 0,,¢
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There is now a further gauge symmetry 64, = J,A, d¢p=—A
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Canonically normalize A, ~ EA“’ ¢ ~ ng massless limit
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Diagonalize kinetic terms h,, = h;u/ + 0N scalar fifth force
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In massless limit, Stiukelberg fields are helicity 1 and 0 parts of the massive graviton

Propagators are now well behaved ~ 1/ p’



D e = graVitati On Arkani-Hamed, Dimopoulos, Dvali, Gabadadze (2002)

Dvali, Hofmann, Khoury (2007)

1 1 1
Integrate out the vector field
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Equations of the motion now look like gravity seen through a high-pass filter
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A massive graviton is supposed to be able to screen a large CC



Stilkelberg analysis: interacting theory

Arkani-Hamed, Georgi and Schwartz (2003)
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Must restore full non-linear diffs

There is now a diffeomorphism symmetry
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Expand around unitary gauge
Yx) = 2% + A%(x)
Introduce scalar Stiikelberg
A, — A, + 0,0
Replacement becomes

hyw — Hy = hyy +0,A, +0,A, +20,0,0 + 0,A"0, Ay + 0, A%0,0,¢ + 0,070, Ao, + 0,090,000 + - - -



The eftective field theory

hNMPh, flmepA, qumQMpgb

There are now interaction terms:
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Various strong coupling scales: Ay = (Mpm*™')"", A= Ng +2n4 + Ny
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The larger A, the smaller the scale

The smallest scale is carried by a cubic scalar interaction:
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This is the (UV) strong coupling scale of the theory



Cubic lagrangian and the decoupling limit

Creminelli, Nicolis, Papucci, Trincherini (2005)

Decoupling limit: Massless limit where we focus in on the strong coupling scale

m— 0, Mp — oo, A5 fixed

All that survives is the leading cubic scalar interaction
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The scalar non-linearities are responsible for the Vainshtein radius
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Boulware Deser ghost (again)
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Higher derivative lagrangian, fourth order equations of motion — two degrees of
freedom — manifestation of the Boulware-Deser ghost

Expand around the spherical background: ¢ = ®(r) + ¢
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The Vainshtein mechanism

Scalar field profile for a spherical solution around a source of mass M

ngMpF’ r>ry,

1/2
qb N (MP) A§/2T3/27 rTry.

5-th force on a test particle is suppressed inside the Vainshtein radius:
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Can re-write the 4th order scalar lagrangian as two second order scalars QAﬁ = QB —

Deffayet, Rombouts (2005)

__(Aax 5/2 ,3/2 | + L
(09)° + (8v)° + A "o +MP¢T+MP¢T

The Vainshtein mechanism: The ghost cancels the force of the longitudinal

mode, restoring continuity with GR.



Quantum corrections

A small graviton mass is technically natural: gauge symmetry is restored when

m=0. Quantum corrections to the mass are proportional to m.

In the decoupling limit, we should generate all operators with the symmetry ngS — g& +c+cp
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This includes a small mass correction
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And a detuning of the Fierz-Pauli mass term, with ghost at mg ~ Aj

Radius at which quantum operators become important:
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“Bad” massive gravity

Quantum (Classical
Non-linear (classically) Linear (classically)
Ghost
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Other non-linear interactions

M / I [(@m—@immg,m ,

Vi(g,h) = Valg, h) + Va(g, h) + Va(g, h) + Vs(g,h) + -+,

Valg, ) = (h*) — (h)?,

Va(g,h) = Aci(h’) + co(h®)(h) 4 c3(h)”,

Vilg,h) = +di(h*) + do(h*Y(h) + d3(h?)? + dy(h*)(h)* + d5(h)*,

Vs(g,h) = +f1(h°) + fo(hh)(h) + fa(R®) (h)? + fa(h®)(h?) + fs(h?)*(h)
+f6(h?) (h)° + fr(h)®,

After Stiikelberg-ing, h,, — h,, +20,0,¢ — 0,,0,¢ 0,0 ¢

the bad terms, those with cutoffs < Az = (m2Mp)'/3 are the scalar self-interactions
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Raising the cutoff

At each order in phi, there is a total derivative combination

(the characteristic polynomial)
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Can choose the interactions, order by order in h, so that the scalar self-

interactions appear in these combinations. Arkani-Hamed, Georgiand Schwartz (2003)

There is a three-parameter family of ways to do this (graviton mass m plus 2

other parameters)

Once this is done, the cutoff of the theory will be A3 = (m2]\4p)l/3



The A3 theory

(92 1\n
The operators carrying the scale Az are M];gﬁnf;nw
The decoupling limit is now m — 0, Mp — oo, Aj fixed de Rham, Gabadadze (2010)
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They have the following properties, which ensures that the decoupling limit is ghost free

o+ X (n) = XZ-(;L) has at most two time derivatives,
Xé?) has at most one time derivative,

X% has no time derivatives.



Galileons

Diagonalize: hy, — hy, + dhy, + 5 0u00,0
g
~s(0ay + 208 =W agyemg o Com B E ) g0 (g2 i)
3 3
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Longitudinal mode is described by Galileon interactions:
Lo = —%((%)2 ,
£y = —5(00)(11]
L4 = —5(00)* (I — TP
L5 = —(0)? (I — B{[IT?] + 2(1T%)
« Equations of motion are second order (no ghost)

o Symmetry under shifts of the field and its derivative ¢(x) — ¢(x) + ¢+ c 2"

e Not renormalized at any loop (no quantum corrections in the decoupling limit)



Vainshtein Mechanism in A3 theory
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Kinetic terms are enhanced, which means that, after canonical normalization, the

coupling to OT is suppressed. The non-linear coupling scale is also raised.

This is known as a Screening mechanism




Quantum corrections and the effective field theory

Non-renormalizable effective theory with a cutoff A. Must include all terms

compatible with galilean symmery, suppressed by powers of the cutoft
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“Good” massive gravity

Quantum Classical
| ||
Non-linear Linear
| !
r —
1 M 1/3 1
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o Higher cutoft
o Free of the Boulware-Deser ghost, to all orders beyond the decoupling limit Hassan, Rosen (2011)

o Possesses a screening mechanism in the non-linear regime, which is under control
quantum mechanically, and restores continuity with GR as m approaches 0.



The A3 theory (ARGT theory)

de Rham, Gabadadze, Tolley (201 1)
The theory with this choice can be re-summed
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Vielbein formulation of ghost-free massive gravity

KH, Rachel Rosen (arXiv:1203.5783)
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Ghost-free mass terms are simply all possible ways of wedging a vierbein and

background vierbein:
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Vielbein formulation of massive gravity

KH, Rachel Rosen (arXiv:1203.5783)

Vielbein formulation makes it easy to see that the theory is ghost free:

Parametrize vierbeins as an upper triangular vierbein times a boost
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Due to structure of epsilons in the wedge product, mass terms are manifestly linear
in lapse and shift:

NC™(e,p) + N'C™(e,p) + H(e, p)
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Ghost free bi-gravity

Hassan, Rosen (2011)

Two-site model: bi-gravity 9 g
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o Linear theory: massless graviton + massive graviton of mass m (= 7 DOF).
e One diff. invariance — generically 12 - 4 = 8 DOF non-linearly

e Special constraint from absence of DB ghost — 7 DOF non-linearly

Vierbein formulation: KH, Rachel Rosen (arXiv:1203.5783)
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Ghost free multi-gravity

Multi-metric theory graph: one massless graviton per KH, Rachel Rosen (arXiv:1203.5783)

connected component 4+ tower of massive gravitons
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Ghost-free deconstructed gravitational dimensions Arkani-Hamed, Georgi and Schwartz (2003)
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Gho St free mUIti_graVity KH, Rachel Rosen (arXiv:1203.5783)

Most general ghost-free potential interaction of multiple gravitons
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New ghost-free multi-metric interactions in 4-dimensions:
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Interaction of longitudinal modes — multi-galileon interactions
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Summary and open 1Ssues

A3 massive gravity is the best behaved IR modification of gravity proposed so far
~ 40 year old problem of the Boulware-Deser ghost has been solved

Makes use of galileons, scalar theories with interesting and promising properties
New signals for cosmology /potential for model building

Still some underlying topological structure yet to be articulated

Still the issue of UV completion



