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The cosmological constant problem

Really small
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One motivation: the cosmological constant problem:
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1
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P

Tµ⌫

Two aspects to the problem:  

• existence of the small number (naturalness)
• stability under quantum corrections (technical naturalness)

Two roads to take: 

• Take GR, the CC and known rules of QFT seriously (→ anthropics, landscape)
• Modify things



Modifying gravity

• Lorentz-Invariance → degrees of freedom are classi!ed by mass and spin/
helicity 

• Should be an infrared modi!cation, to say something about the cosmological 
constant without messing up solar system tests of gravity

• GR is the unique theory of an interacting massless helicity-2 at low energies → 
to modify gravity is to change the degrees of freedom 

First thought: make the graviton massive

V (r) ⇠ M

M2
P

1
r
e�mr, m ⇠ H

Extra DOF:  5 massive spin states as opposed to 2 helicity states

IR modification scale



Other motivations

1)  It is an interesting "eld theoretic question:  is it possible to have a 
consistent theory of an interacting massive spin-2 particle?

2)  It gives general lessons about GR:  
-  Nicely illustrates the generic obstacles encountered when attempting to     
modifying gravity in the IR.
-  Appreciation for why GR is special

3)  It shows us new mechanisms: massive gravity is a deformation of GR 
→ pathologies should go away as mass term goes to zero → new 
mechanisms for curing pathologies



Linear theory
Massive spin 2 particle:  5 degrees of freedom (as opposed to 2 for massless 
helicity 2)

Fierz-Pauli action:

L = �1
2
@�hµ⌫@�hµ⌫ + @µh⌫�@⌫hµ� � @µhµ⌫@⌫h +
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hµ⌫Tµ⌫

Einstein-Hilbert (massless) part.  
Gauge symmetry: �hµ⌫ = @µ⇠⌫ + @⌫⇠µ

Mass term breaks gauge symmetry.
Fierz-Pauli tuning ensures 5 D.O.F.

(⇤�m2)hµ⌫ = 0, @µhµ⌫ = 0, h = 0Equations of motion:

Hamiltonian Formulation:
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x ⇡ij ḣij �H(hij , ⇡ij) + 2h0i (@j⇡ij) + m

2
h

2
0i + h00

⇣
~r2

hii � @i@jhij �m

2
hii

⌘

Auxiliary variables Lagrange Multiplier

Fierz, Pauli (1939)



Linear solutions around sources
Amplitude for interaction of two conserved sources:

For GR this would be 1/2
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Massless gravity vs. massless limit of massive gravity:  the vDVZ discontinuity
m! 0 m = 0

Newtonian potential
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van Dam, Veltman, and 
Zakharov (1970)



Non-linearities
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hµ⌫ = gµ⌫ � ⌘µ⌫Take interactions to be those of GR:

Non-linearity expansion of the potential: �(r) = �0(r) + ✏�1(r) + ✏2�2(r) + · · ·
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vDVZ discontinuity could possibly be cured by non-linearities
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Non-linearity become important at the Vainshtein radius:
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Vainshtein (1972)



The Boulware-Deser ghost

ADM variables:

extensive numerical studies of the full non-linear solutions in [86], in the decoupling limit

in [87], and more extensively in the full theory in [88, 89, 90], with the final result being

that the non-linearities can in fact work to restore continuity with GR. We will see later the

mechanism by which this occurs. Some analytic solutions in various cases are claimed in

[91, 92, 93, 94, 95].

6.4 Non-linear hamiltonian and the Boulware-Deser mode

We now go on to study the hamiltonian of the non-linear massive gravity action (6.32) with

flat absolute metric �µ⇤ ,

S =
1

2⇥2

⇧
dDx

⇤
(
⇥
�gR)� 1

4
m2�µ��⇤⇥ (hµ⇤h�⇥ � hµ�h⇤⇥)

⌅
. (6.67)

We saw in Section 2.1 that the free theory carries five degrees of freedom in D = 4, due

to the fact that the time components h00 appeared as a Lagrange multiplier in the action.

We will see that this no longer remains true once the non-linearities of (6.67) are taken into

account, so there is now an extra degree of freedom.

A particularly nice way to study gravity hamiltonians is through the ADM formalism

[96, 97]. A spacelike slicing of spacetime by hypersurfaces �t is chosen, and we change

variables from components of the metric gµ⇤ to the spatial metric gij, the lapse Ni and the

shift N , according to

g00 = �N2 + gijNiNj, (6.68)

g0i = Ni, (6.69)

gij = gij. (6.70)

Here i, j, . . . are spatial indices, and gij is the inverse of the spatial metric gij (not the ij

components of inverse metric gµ⇤).

The Einstein-Hilbert part of the action in these variables reads (see [98, 99] for detailed

derivations and formulae)

1

2⇥2

⇧
dDx

⇥
gN
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(d)R�K2 + KijKij

⇥
, (6.71)
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ġab �NC �NiCi � m

2

4
⇥
�

ik
�

jl (hijhkl � hikhjl) + 2�

ij
hij � 2N

2
�

ij
hij + 2Ni

�
g

ij � �

ij
�
Ni

⇤
Hamiltonian:

In GR, lapse and shift are lagrange multipliers enforcing gauge constraints

Phase space DOF = 6 spatial metric + 6 canonical momentum - 0 constraints = 12 → 6 
real space DOF

Extra non-linear D.O.F. is the Boulware-Deser ghost

Hamiltonian is unbounded.

Boulware, Deser (1972)

In massive GR, they are auxiliary variables



Stükelberg analysis, linear theory
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1)  Massless limit is not smooth (DOF are lost)

2)  Propagator looks bad at high energy
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Familiar power-counting doesn’t work
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Two problems:



Stükelberg analysis, linear theory
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Restore the gauge invariance broken by the mass term by introducing a Stükelberg "eld

hµ⌫ ! hµ⌫ + @µA⌫ + @⌫Aµ

Lm=0 �
1
2
m2(hµ⌫hµ⌫ � h2)� 1

2
m2Fµ⌫Fµ⌫ � 2m2 (hµ⌫@µA⌫ � h@µAµ) +

1
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hµ⌫Tµ⌫

There is now a gauge symmetry

�hµ⌫ = @µ⇠⌫ + @⌫⇠µ, �Aµ = �⇠µ

Unitary gauge            recovers the original lagrangianAµ = 0

m=0 limit is still not smoothAµ ⇠
1
m

ÂµCanonically normalize,



Stükelberg analysis, linear theory
Introduce a further Stükelberg "eld Aµ ! Aµ + @µ�

Lm=0 � 1
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There is now a further gauge symmetry �Aµ = @µ⇤, �� = �⇤

massless limitAµ ⇠
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Diagonalize kinetic terms hµ⌫ = h0
µ⌫ + �̂ ⌘µ⌫

Lm=0(h0)� 1
2
F̂µ⌫ F̂µ⌫ � 3 @µ�̂ @µ�̂ +

1
MP

h0
µ⌫Tµ⌫ +

1
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�̂T

This is the vDVZ discontinuity:
scalar fifth force

In massless limit, Stükelberg "elds are helicity 1 and 0 parts of the massive graviton
Propagators are now well behaved ⇠ 1/p2



De-gravitation
Lm=0 �
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2
m2(hµ⌫hµ⌫ � h2)� 1

2
m2Fµ⌫Fµ⌫ � 2m2 (hµ⌫@µA⌫ � h@µAµ) +
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Integrate out the vector "eld

1
2
hµ⌫

✓
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◆
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Equations of the motion now look like gravity seen through a high-pass "lter

Eµ⌫,↵�h↵� = � 1
MP

✓
1� m2

⇤

◆�1

Tµ⌫

⇠ 1 for @ � m
⌧ 1 for @ ⌧ m

A massive graviton is supposed to be able to screen a large CC

Dvali, Hofmann, Khoury (2007)
Arkani-Hamed, Dimopoulos, Dvali, Gabadadze (2002)



Stükelberg analysis: interacting theory
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Must restore full non-linear di#s

gµ⌫(x)! Gµ⌫ =
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Y
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Expand around unitary gauge

Aµ ! Aµ + @µ�

Introduce scalar Stükelberg

Replacement becomes
hµ⌫ ! Hµ⌫ = hµ⌫ + @µA⌫ + @⌫Aµ + 2@µ@⌫� + @µA↵@⌫A↵ + @µA↵@⌫@↵� + @µ@↵�@⌫A↵ + @µ@↵�@⌫@↵� + · · ·

Arkani-Hamed, Georgi and Schwartz (2003)



The effective field theory 

There are now interaction terms:

ĥ ⇠MP h, Â ⇠ mMP A, �̂ ⇠ m2MP �

m2M2
P hnh(@A)nA(@2�)n� ⇠ ⇤4�nh�2nA�3n�

� ĥnh(@Â)nA(@2�̂)n�

⇤� =
�
MP m��1

�1/�
, � =

3n� + 2nA + nh � 4
n� + nA + nh � 2

Various strong coupling scales:
The larger λ, the smaller the scale

⇠ (@2�̂)3

⇤5
5

, ⇤5 = (MP m4)1/5

The smallest scale is carried by a cubic scalar interaction:

This is the (UV) strong coupling scale of the theory



Cubic lagrangian and the decoupling limit
Decoupling limit: Massless limit where we focus in on the strong coupling scale

m! 0, MP !1, ⇤5 fixed

�3(@�̂)2 +
2
⇤5

5

h
(⇤�̂)3 � (⇤�̂)(@µ@⌫ �̂)2

i
+

1
MP

�̂T

All that survives is the leading cubic scalar interaction

The scalar non-linearities are responsible for the Vainshtein radius

Source

r ⇠ 1/m
r ⇠ rV

r

rS
r ⇠ 1/⇤5

0 !1

Creminelli, Nicolis, Papucci, Trincherini (2005)



Boulware Deser ghost (again)

Higher derivative lagrangian, fourth order equations of motion → two degrees of 
freedom → manifestation of the Boulware-Deser ghost

�3(@�̂)2 +
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The Vainshtein mechanism

Scalar !eld pro!le for a spherical solution around a source of mass M
8
<

:
�̂ ⇠ M

MP

1
r , r � rV ,

�̂ ⇠
⇣

M
MP

⌘1/2
⇤5/2

5 r3/2, r ⌧ rV .

5-th force on a test particle is suppressed inside the Vainshtein radius:
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=
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Can re-write the 4th order scalar lagrangian as two second order scalars

L = �(@�̃)2 + (@ )2 + ⇤5/2
5  3/2 +

1
MP

�̃T +
1

MP
 T

�̂ = �̃�  

The Vainshtein mechanism: The ghost cancels the force of the longitudinal 
mode, restoring continuity with GR.

Deffayet, Rombouts (2005)



Quantum corrections
A small graviton mass is technically natural: gauge symmetry is restored when 
m=0.  Quantum corrections to the mass are proportional to m.

cp,q@
qhp ⇠ @q(@2�̂)p

⇤3p+q�4
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. cp,q ⇠ ⇤�3p�q+4
5 Mp
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In the decoupling limit, we should generate all operators with the symmetry 
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This includes a small mass correction

And a detuning of the Fierz-Pauli mass term, with ghost at mg ⇠ ⇤5
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Radius at which quantum operators become important:



“Bad” massive gravityradii associated to all scales larger than �5) are sent to zero, while the scale r � 1
m where

Yukawa suppression takes hold is sent to infinity.

r �

Quantum

rQ � 1024 kmrV � 1019 km

rQ �
�

M

MP

⇥1/3 1
�5

rV �
�

M

MP

⇥1/5 1
�5

Classical

Ghost

Non-linear (classically) Linear (classically)

Figure 3: Regimes for massive gravity with cuto⇥ �5 = (MP m4)1/5, and some values within the

solar system, for which ��1
5 � 1011 km. Note that rQ is a bit larger than the observable universe,

i.e. this theory makes no observable predictions within its range of validity.

9 The ⇤3 theory

We have seen that the theory (6.32) containing only the linear graviton mass term has some

undesirable features, including a ghost instability and quantum corrections that become

important before classical non-linearities can restore continuity with GR. In this section,

we consider the higher order potential terms in (6.34) and ask whether they can alleviate

these problems. It turns out that there is a special choice of potential that cures all these

problems, at least in the decoupling limit.

This choice also has the advantage of raising the cuto⇥. With only the Fierz-Pauli

mass term, the strong coupling cuto⇥ was set by the cubic scalar self coupling � (⇥2�̂)3

�5
5

. The

cuto⇥ �5 = (MP m4)1/5 is very low, and as we will see, generically any interaction term will

have this cuto⇥. But by choosing this special tuning of the higher order interactions, we end

up raising the cuto⇥ to the higher scale �3 = (MP m2)1/3.

It was recognized already in [33], that if the scalar self-interactions could be eliminated,

the cuto⇥ would be raised to �3. This was studied more fully in [100], where the cancelation

84



Other non-linear interactions

where the interaction potential U is the most general one that reduces to Fierz-Pauli at

linear order,

U(g(0), h) = U2(g
(0), h) + U3(g

(0), h) + U4(g
(0), h) + U5(g

(0), h) + · · · , (6.35)

U2(g
(0), h) =

�
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⇥
� [h]2 , (6.36)

U3(g
(0), h) = +C1

�
h3

⇥
+ C2

�
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⇥
[h] + C3 [h]3 , (6.37)

U4(g
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�
h4

⇥
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�
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⇥
[h] + D3

�
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⇥
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�
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⇥
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�
h4

⇥
[h] + F3

�
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⇥
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�
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⇥
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�
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⇥2
[h]

+F6

�
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⇥
[h]3 + F7 [h]5 , (6.39)

...

The square bracket indicates a trace, with indices raised with g(0),µ⇤ , i.e. [h] = g(0)µ⇤hµ⇤ ,

[h2] = g(0)µ�h�⇥g(0)⇥⇤h⇤µ, etc. The coe�cients C1, C2, etc. are generic coe�cients. Note that

the coe�cients in Un(g(0), h) for n > D are redundant by one, because there is a combination

of the various contractions, the characteristic polynomial LTD
n (h) (see Appendix A), which

vanishes identically. Thus one of the coe�cients in Un(g(0), h) for n > D (or any one linear

combination) can be set to zero.

If we like, we can re-organize the terms in the potential by raising and lowering with

the full metric gµ⇤ rather than the absolute metric g(0)µ⇤ ,

S =
1

2�2

⇧
dDx

⇤
(
⌅
�gR)�

⌅
�g

1

4
m2V (g, h)

⌅
, (6.40)

where

V (g, h) = V2(g, h) + V3(g, h) + V4(g, h) + V5(g, h) + · · · , (6.41)

V2(g, h) = ⇥h2⇤ � ⇥h⇤2, (6.42)

V3(g, h) = +c1⇥h3⇤+ c2⇥h2⇤⇥h⇤+ c3⇥h⇤3, (6.43)

V4(g, h) = +d1⇥h4⇤+ d2⇥h3⇤⇥h⇤+ d3⇥h2⇤2 + d4⇥h2⇤⇥h⇤2 + d5⇥h⇤4, (6.44)

V5(g, h) = +f1⇥h5⇤+ f2⇥h4⇤⇥h⇤+ f3⇥h3⇤⇥h⇤2 + f4⇥h3⇤⇥h2⇤+ f5⇥h2⇤2⇥h⇤

+f6⇥h2⇤⇥h⇤3 + f7⇥h⇤5, (6.45)
...
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hµ⌫ ! hµ⌫ + 2 @µ@⌫�� @µ@↵� @⌫@↵�After Stükelberg-ing,
the bad terms, those with cuto#s < ⇤3 ⌘ (m2MP )1/3 are the scalar self-interactions



Raising the cutoff
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A Total derivative combinations

Define the matrix of second derivatives

�µ� = ⌅µ⌅�⇤. (A.1)

At every order in ⇤, there is a unique (up to overall constant) contraction of �’s that reduces

to a total derivative25,

LTD
1 (�) = [�], (A.2)

LTD
2 (�) = [�]2 � [�2], (A.3)

LTD
3 (�) = [�]3 � 3[�][�2] + 2[�3], (A.4)

LTD
4 (�) = [�]4 � 6[�2][�]2 + 8[�3][�] + 3[�2]2 � 6[�4], (A.5)

...

where the brackets are traces. LTD
2 (h) is just the Fierz-Pauli term, and the others can be

thought of as higher order generalizations of it. They are characteristic polynomials, terms

in the expansion of the determinant in powers of H,

det(1 + �) = 1 + LTD
1 (�) +

1

2
LTD

2 (�) +
1

3!
LTD

3 (�) +
1

4!
LTD

4 (�) + · · · (A.6)

The term LTD
n (�) vanishes identically when n > D, with D the spacetime dimension, so

there are only D non-trivial such combinations, those with n = 1, · · · , D.

They can be written explicitly as

LTD
n (�) =

�

p

(�1)p �µ1p(�1)�µ2p(�2) · · · �µnp(�n) (�µ1�1�µ2�2 · · ·�µn�n) . (A.7)

The sum is over all permutations of the ⇥ indices, with (�1)p the sign of the permutation.

25The proof of this fact is the same as the proof showing the uniqueness of the galileons in [135]. See also
[100].
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At each order in phi, there is a total derivative combination 
(the characteristic polynomial)

⇧µ⌫ ⌘ @µ@⌫�

det(1 + ⇧) = 1 + LTD
1 (⇧) +

1
2
LTD

2 (⇧) +
1
3!
LTD

3 (⇧) +
1
4!
LTD

4 (⇧) + · · ·

Can choose the interactions, order by order in h, so that the scalar self-
interactions appear in these combinations.

There is a three-parameter family of ways to do this (graviton mass m plus 2 
other parameters)

Arkani-Hamed, Georgi and Schwartz (2003)

Once this is done, the cuto# of the theory will be ⇤3 = (m2MP )1/3



The decoupling limit is now m! 0, MP !1, ⇤3 fixed

1
2
ĥµ⌫Eµ⌫,↵�ĥ↵� �

1
2
ĥµ⌫


�4X(1)

µ⌫ (�̂) +
4(6c3 � 1)

⇤3
3

X(2)
µ⌫ (�̂) +

16(8d5 + c3)
⇤6

3

X(3)
µ⌫ (�̂)

�
+

1
MP

ĥµ⌫Tµ⌫

X(n)
µ⌫ =

1
n + 1

�

�⇧µ⌫
LTD

n+1(⇧)

They satisfy a recursion relation,

LTD
n (�) = �

n⇧

m=1

(�1)m (n� 1)!

(n�m)!
[�m]LTD

n�m(�), (A.8)

with LTD
0 (�) = 1.

In addition, there are tensors X(n)
µ⇤ that we construct out of �µ⇤ as follows26,

X(n)
µ⇤ =

1

n + 1

�

��µ⇤
LTD

n+1(�). (A.9)

The first few are

X(0)
µ⇤ = ⇥µ⇤ (A.10)

X(1)
µ⇤ = [�] ⇥µ⇤ � �µ⇤ (A.11)

X(2)
µ⇤ =

�
[�]2 �

⇤
�2

⌅⇥
⇥µ⇤ � 2 [�] �µ⇤ + 2�2

µ⇤ (A.12)

X(3)
µ⇤ =

�
[�]3 � 3 [�]

⇤
�2

⌅
+ 2

⇤
�3

⌅⇥
⇥µ⇤ � 3

�
[�]2 �

⇤
�2

⌅⇥
�µ⇤ + 6 [�] �2

µ⇤ � 6�3
µ⇤

... (A.13)

The following is an explicit expression,

X(n)
µ⇤ =

n⇧

m=0

(�1)m n!

(n�m)!
�m

µ⇤LTD
n�m(�). (A.14)

They satisfy the recursion relation

X(n)
µ⇤ = �n� �

µ X(n�1)
�⇤ + ��⇥X(n�1)

�⇥ ⇥µ⇤ . (A.15)

Since LTD
n (�) vanishes for n > D, X(n)

µ⇤ vanishes for n ⇥ D.

The X(n)
µ⇤ satisfy the following important properties:

• They are symmetric and identically conserved, and are the only combinations of �µ⇤

at each order with these properties:

⇤µX(n)
µ⇤ = 0, (A.16)

26Note that our definition of the X(n)
µ� used here di�ers by a factor of 2 from that of [101].
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X tensors:

⇧µ⌫ ⌘ @µ@⌫�

de Rham, Gabadadze (2010)

The Λ3 theory
The operators carrying the scale Λ3 are ⇠ ĥ(@2�̂)n

Mn+1
P m2n+2

@µX(n)
µ⌫ = 0

• For spatial indices i, j and time index 0,

X(n)
ij has at most two time derivatives,

X(n)
0i has at most one time derivative,

X(n)
00 has no time derivatives. (A.17)

Finally, we have the following relations involving the massless kinetic operator (2.46),

E �⇥
µ⇤ (⇥��⇥) = �(D � 2)X(1)

µ⇤ ,

E �⇥
µ⇤ (⇤�⇥⇤⇥⇥) = X(2)

µ⇤ . (A.18)
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They have the following properties, which ensures that the decoupling limit is ghost free



Galileons
Diagonalize: ĥµ⌫ ! ĥµ⌫ + �̂ĥµ⌫ +

2(6c3 � 1)
⇤3

3

@µ�̂@⌫ �̂

where we have used the definitions ⇥ ⇥ ⇧µ⇧⇤⌅, as well as ⇥0
µ⇤ ⇥ ⇥µ⇤ and ⇥�1

µ⇤ ⇥ 0, and the

X(n)
µ⇤ are the identically conserved combinations of ⇧µ⇧⇤⌅̂ described in Appendix A. Thus we

have

X̄µ⇤ =
1

2

⌥

n⇥2

�n

�
X(n)

µ⇤ + nX(n�1)
µ⇤

⇥
. (9.25)

For D = 4 this agrees with (9.10), showing that (9.10) contains all the scalar and tensor

terms of the decoupling limit. Some other re-summations are discussed in [143, 93].

9.3 The appearance of galileons and the absence of ghosts

We can partially diagonalize the interaction terms in (9.10) by using the properties (A.18).

First, we perform the conformal transformation needed to diagonalize the linear terms, ĥµ⇤ ⇤
ĥµ⇤ + ⌅̂⇥µ⇤ , after which the lagrangian takes the form

S =

�
d4x

1

2
ĥµ⇤Eµ⇤,�⇥ĥ�⇥ �

1

2
ĥµ⇤

⇧
4(6c3 � 1)

�3
3

X̂(2)
µ⇤ +

16(8d5 + c3)

�6
3

X̂(3)
µ⇤

⌃
+

1

MP
ĥµ⇤T

µ⇤

�3(⇧⌅̂)2 +
6(6c3 � 1)

�3
3

(⇧⌅̂)2�⌅̂ +
16(8d5 + c3)

�6
3

(⇧⌅̂)2
⇤
[⇥̂]2 � [⇥̂2]

⌅
+

1

MP
⌅̂T.

(9.26)

Here the brackets are traces of ⇥̂µ⇤ ⇥ ⇧µ⇧⇤ ⇤̂ and its powers (the notation is explained at the

end of the Introduction).

The cubic h⌅⌅ couplings can be eliminated with a field redefinition ĥµ⇤ ⇤ ĥµ⇤ +
2(6c3�1)

�3
3

⇧µ⌅̂⇧⇤⌅̂, after which the lagrangian reads,

S =

�
d4x

1

2
ĥµ⇤Eµ⇤,�⇥ĥ�⇥ �

8(8d5 + c3)

�6
3

ĥµ⇤X̂(3)
µ⇤ +

1

MP
ĥµ⇤T

µ⇤

�3(⇧⌅̂)2 +
6(6c3 � 1)

�3
3

(⇧⌅̂)2�⌅̂� 4
(6c3 � 1)2 � 4(8d5 + c3)

�6
3

(⇧⌅̂)2
⇤
[⇥̂]2 � [⇥̂2]

⌅

�40(6c3 � 1)(8d5 + c3)

�9
3

(⇧⌅̂)2
⇤
[⇥̂]3 � 3[⇥̂2][⇥̂] + 2[⇥̂3]

⌅

+
1

MP
⌅̂T +

2(6c3 � 1)

�3
3MP

⇧µ⌅̂⇧⇤⌅̂T µ⇤ .

(9.27)

There is no local field redefinition that can eliminate the h⌅⌅⌅ quartic mixing (there is a

non-local redefinition that can do it), so this is as unmixed as the lagrangian can get while

staying local.
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• Equations of motion are second order (no ghost)

• Symmetry under shifts of the "eld and its derivative

• Not renormalized at any loop (no quantum corrections in the decoupling limit)

�(x)! �(x) + c + cµx

µ

Longitudinal mode is described by Galileon interactions:The scalar self-interactions in (9.27) are given by the following four lagrangians,

L2 = �1

2
(⇥�)2 ,

L3 = �1

2
(⇥�)2[�] ,

L4 = �1

2
(⇥�)2

�
[�]2 � [�2]

⇥
,

L5 = �1

2
(⇥�)2

�
[�]3 � 3[�][�2] + 2[�3]

⇥
. (9.28)

These are known as the galileon terms [135] (see also Section II of [136] for a summary of the

galileons). They share two special properties: their equations of motion are purely second

order (despite the appearance of higher derivative terms in the lagrangians), and they are

invariant up to a total derivative under the galilean symmetry (8.8), �(x)⇥ �(x)+ c+ bµxµ.

As shown in [135], the terms (9.28) are the only polynomial terms in four dimensions with

these properties.

The galileon was first discovered in studies of the DGP brane world model [35] (which

we will explore in more detail in Section 10.2), for which the cubic galileon, L3, was found

to describe the leading interactions of the brane bending mode [144, 145]. The rest of the

galileons were then discovered in [135], by abstracting the properties of the cubic term away

from DGP. They have some other very interesting properties, such as a non-renormalization

theorem (see e.g. Section VI of [136]), and a connection to the Lovelock invariants through

brane embedding [146]. Due to these unexpected and interesting properties, they have since

taken on a life of their own. They have been generalized in many directions [147, 148, 149,

150, 151, 152, 153], and are the subject of much recent activity (see for instance the > 100

papers citing [135]).

The fact that the equations are second order ensures that, unlike (8.10), no extra

degrees of freedom propagate. In fact, as pointed out in [34], the properties (A.17) of the

tensors Xµ� guarantee that there are no ghosts in the lagrangian (9.10) of the decoupling

limit theory.20 By going through a hamiltonian analysis similar to that of Section 2.1, we

can see that h00 and h0i remain Lagrange multipliers enforcing first class constraints (as they

should since the lagrangian (9.10) is gauge invariant. In addition, the equations of motion

20 This is contrary to [100], which claims that a ghost is still present at quartic order. As remarked however
in [34], they arrive at the incorrect decoupling limit lagrangian, which can be traced to a minus sign mistake
in their Equation 5, which should be as in (9.4).
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Vainshtein Mechanism in Λ3 theory
L = �3(@�̂)2 � 1

⇤3
3

(@�̂)2⇤�̂ +
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Solution around point source of mass M:

Vainshtein radius:

5-th force on a test particle, relative to gravity:
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Kinetic terms are enhanced, which means that, after canonical normalization, the 
coupling to δT is suppressed.   The non-linear coupling scale is also raised.
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This is known as a Screening mechanism



Quantum corrections and the effective field theory
Non-renormalizable e#ective theory with a cuto# Λ.  Must include all terms 
compatible with galilean symmery, suppressed by powers of the cuto#
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r �

Quantum Classical

Non-linear Linear

rQ �
1
�3

rV �
�

M

MP

⇥1/3 1
�3

rQ � 103 km rV � 1016 km

Figure 4: Regimes for massive gravity with cuto⇥ �3 = (MP m2)1/3, and some values within the

solar system. The values are much more reasonable than those of the �5 theory.

As in the �5 theory, quantum corrections are generically expected to ruin the various

classical tunings for the coe⇤cients, but the tunings are still technically natural because the

corrections are parametrically small. For example, cutting o⇥ loops by �3, we generate the

operator � 1
�2

3
(�⇥̂)2, which corrects the mass term. The canonically normalized ⇥̂ is related

to the original dimensionless metric by h � 1
�3

3
⇤⇤⇥̂, so the generated term corresponds in

unitary gauge to �4
3h

2 = M2
p m2

�
�3
Mp

⇥
h2, representing a mass correction �m2 � m2

�
�3
Mp

⇥
.

This mass correction is parametrically smaller than the mass itself and so the hierarchy

m ⇥ �3 is technically natural. This correction also ruins the Fierz-Pauli tuning, but the

pathology associated with the de-tuning of Fierz-Pauli, the ghost mass, is m2
g � m2

�m2/m2 � �2
3,

safely at the cuto⇥.

We should mention another potential issue with the �3 theory. It was found in [135] that

lagrangians of the galileon type inevitably have superluminal propagation around spherical

background solutions. No matter what the choice of parameters in the lagrangian, if the

solution is stable, then superluminality is always present at distances far enough from the

source (see also [156]). It has been argued that such superluminality is a sign that the

theory cannot be UV completed by a standard local Lorentz invariant theory [157], though

others have argued that this is not a problem [158]. In addition, the analysis of [135] was

for pure galileons only, and the scalar-tensor couplings of the massive gravity lagrangian can

potentially change the story. These issues have been studied within massive gravity in [159].
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“Good” massive gravity

• Higher cuto#

• Free of the Boulware-Deser ghost, to all orders beyond the decoupling limit

• Possesses a screening mechanism in the non-linear regime, which is under control       
quantum mechanically, and restores continuity with GR as m approaches 0.

Hassan, Rosen (2011)



The Λ3 theory (dRGT theory)
The theory with this choice can be re-summed

de Rham, Gabadadze, Tolley (2011)

Characteristic Polynomials

In D spacetime dimensions the action for ghost-free dRGT massive gravity is

S =
MD�2

P

2

⌅
dDx

⌅
�g

�
R� m2

4

D⇤

n=0

�nSn(
⇧
g�1⇥)

⇥
. (4.1)

The massive gravity theory depends on the dynamical metric gµ⌅ and the fixed background

metric ⇥µ⌅ . The Einstein-Hilbert part of the action (4.1) is invariant under di�eomorphisms

fµ(x),

gµ⌅(x) ⇥
⇧f�

⇧xµ

⇧f⇥

⇧x⌅
g�⇥ (f(x)) , (4.2)

but the mass term breaks this symmetry, due to the appearance of the background metric

⇥µ⌅ .

As in the bi-metric case, there are D + 1 di�erent symmetric polynomials, and hence

D + 1 di�erent parameters in the mass term. For massive gravity, the D-th symmetric

polynomial is just
⌅
� det ⇥ = 1, so it doesn’t contribute to the equations of motion. Thus

there are only D free parameters. We can ensure that flat space is a valid solution by

demanding

D!
D⇤

k=0

�k

k!(D � k)!
= (D � 1)!

D⇤

k=1

�k

(k � 1)!(D � k)!
. (4.3)

For D = 4, this gives

�0 = � (3�1 + 3�2 + �3) . (4.4)

Then, expanding to quadratic order gives the Fierz-Pauli term [24] for the fluctuation hµ⌅ =

gµ⌅ � ⇥µ⌅ . Thus this theory propagates precisely one massive spin-2 field around flat space.

We again absorb one further coe⌅cient by taking m to be the mass of the massive spin-2

and setting

�D!
D⇤

k=0

�k

k!(D � k)!
+ (D � 2)!

D⇤

k=2

�k

(k � 2)!(D � k)!
= �8 . (4.5)

For D = 4, this gives

�1 + 2�2 + �3 = 8 . (4.6)

In D dimensions, the theory has D � 2 free parameters in addition to the mass.

23

�3 ⌅ (MPm2)1/3 [21]. It is possible that within these interacting multi-metric theories, there

are examples with higher cuto⇥s.

Finally, we comment on the possible coupling of multiple metrics to matter. If matter

is minimally coupled to only a single metric, then clocks and rulers will measure distances as

determined by that single metric. This kind of coupling will not re-introduce the Boulware-

Deser ghost, as it maintains the same symmetries of the Einstein-Hilbert term. However,

more general ghost-free couplings might exist that involve more than one metric and maintain

an overall di⇥eomorphism invariance (we might call this multi-minimal coupling), though this

can naively be expected to violate the equivalence principle.
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A Symmetric polynomials

In this appendix, we define the various matrix polynomials used throughout the paper, and

describe some of their properties.

A.1 Elementary symmetric polynomials

Given a D⇤D matrix MA
B, we define the elementary symmetric polynomials, for 0 ⇧ n ⇧ D,

Sn(M) =
1

n!(D � n)!
⇥̃A1A2···AD ⇥̃B1B2···BD MA1

B1
· · ·MAn

Bn
�An+1

Bn+1
· · · �AD

BD
, (A.1)

or equivalently

MA1
B1

· · ·MAn
Bn

�An+1

Bn+1
· · · �AD

BD
⇥̃A1A2···AD =

n!(D � n)!

D!
Sn(M)⇥̃B1B2···BD . (A.2)
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0.1 Elementary symmetric polynomials

Given a D ⇤ D matrix MA
B, we define the elementary symmetric polynomials, for

0 ⌅ n ⌅ D,

Sn(M) =
1

n!(D � n)!
⇥̃A1A2···AD ⇥̃B1B2···BD MA1

B1
· · · MAn

Bn
�An+1

Bn+1
· · · �AD

BD
= M [A1

A1
· · · MAn]

An
,

(0.1)
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MA1
B1

· · · MAn
Bn

�An+1

Bn+1
· · · �AD

BD
⇥̃A1A2···AD =

n!(D � n)!

D!
Sn(M)⇥̃B1B2···BD . (0.2)

In terms of traces of products of M , the first few are

S0(M) = 1 ,

S1(M) = [M ] ,

S2(M) =
1

2!

�
[M ]2 � [M2]

⇥
,

S3(M) =
1

3!

�
[M ]3 � 3[M ][M2] + 2[M3]

⇥
,

S4(M) =
1

4!

�
[M ]4 � 6[M ]2[M2] + 8[M ][M3] + 3[M2]2 � 6[M4]

⇥
,

... (0.3)

The D-th symmetric polynomial is the determinant,

SD(M) = det M , (0.4)

and the higher symmetric polynomials are defined to vanish identically,

Sn(M) = 0 for n > D . (0.5)

If M is diagonalizable, the symmetric polynomials are the symmetric polyno-
mials in the eigenvalues. If we label the eigenvalues (including degeneracy) ⇤A,

1

Symmetric Polynomials

Kurt Hinterbichler

August 25, 2012

0.1 Elementary symmetric polynomials

Given a D ⇤ D matrix MA
B, we define the elementary symmetric polynomials, for

0 ⌅ n ⌅ D,

Sn(M) =
1

n!(D � n)!
⇥̃A1A2···AD ⇥̃B1B2···BD MA1

B1
· · · MAn

Bn
�An+1

Bn+1
· · · �AD

BD
= M [A1

A1
· · · MAn]

An
,

(0.1)
or equivalently

MA1
B1

· · · MAn
Bn

�An+1

Bn+1
· · · �AD

BD
⇥̃A1A2···AD =

n!(D � n)!

D!
Sn(M)⇥̃B1B2···BD . (0.2)

In terms of traces of products of M , the first few are

S0(M) = 1 ,

S1(M) = [M ] ,

S2(M) =
1

2!

�
[M ]2 � [M2]

⇥
,

S3(M) =
1

3!

�
[M ]3 � 3[M ][M2] + 2[M3]

⇥
,

S4(M) =
1

4!

�
[M ]4 � 6[M ]2[M2] + 8[M ][M3] + 3[M2]2 � 6[M4]

⇥
,

... (0.3)

The D-th symmetric polynomial is the determinant,

SD(M) = det M , (0.4)

and the higher symmetric polynomials are defined to vanish identically,

Sn(M) = 0 for n > D . (0.5)

If M is diagonalizable, the symmetric polynomials are the symmetric polyno-
mials in the eigenvalues. If we label the eigenvalues (including degeneracy) ⇤A,

1

Symmetric Polynomials

Kurt Hinterbichler

August 25, 2012

0.1 Elementary symmetric polynomials

Given a D ⇤ D matrix MA
B, we define the elementary symmetric polynomials, for

0 ⌅ n ⌅ D,

Sn(M) =
1

n!(D � n)!
⇥̃A1A2···AD ⇥̃B1B2···BD MA1

B1
· · · MAn

Bn
�An+1

Bn+1
· · · �AD

BD
= M [A1

A1
· · · MAn]

An
,

(0.1)
or equivalently

MA1
B1

· · · MAn
Bn

�An+1

Bn+1
· · · �AD

BD
⇥̃A1A2···AD =

n!(D � n)!

D!
Sn(M)⇥̃B1B2···BD . (0.2)

In terms of traces of products of M , the first few are

S0(M) = 1 ,

S1(M) = [M ] ,

S2(M) =
1

2!

�
[M ]2 � [M2]

⇥
,

S3(M) =
1

3!

�
[M ]3 � 3[M ][M2] + 2[M3]

⇥
,

S4(M) =
1

4!

�
[M ]4 � 6[M ]2[M2] + 8[M ][M3] + 3[M2]2 � 6[M4]

⇥
,

... (0.3)

The D-th symmetric polynomial is the determinant,

SD(M) = det M , (0.4)

and the higher symmetric polynomials are defined to vanish identically,

Sn(M) = 0 for n > D . (0.5)

If M is diagonalizable, the symmetric polynomials are the symmetric polyno-
mials in the eigenvalues. If we label the eigenvalues (including degeneracy) ⇤A,
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Vielbein formulation of ghost-free massive gravity

Or in terms of vierbeins

M

D�2
P

2

Z
d

D
x |e|R[e]�m

2
X

n

an

Z
✏A1···ADe

A1 ^ · · · ^ e

An ^ 1An+1 ^ · · · ^ 1An

gµ⌫ = e A
µ e B

⌫ ⌘AB

✏A1A2A3A4e
A1 ^ eA2 ^ eA3 ^ eA4

✏A1A2A3A4e
A1 ^ eA2 ^ eA3 ^ 1A4

✏A1A2A3A4e
A1 ^ eA2 ^ 1A3 ^ 1A4

✏A1A2A3A4e
A1 ^ 1A2 ^ 1A3 ^ 1A4

✏A1A2A3A41
A1 ^ 1A2 ^ 1A3 ^ 1A4

Ghost-free mass terms are simply all possible ways of wedging a vierbein and 
background vierbein:

KH, Rachel Rosen (arXiv:1203.5783)
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Vielbein formulation of massive gravity

Vielbein formulation makes it easy to see that the theory is ghost free:

The upper triangular form does not completely fix the local Lorentz invariance. It

leaves a residual local spatial rotation. There are D components in the N , N i and (D� 1)2

in the spatial vielbein. The remaining D � 1 components of the general vielbein have been

fixed by using the upper triangular gauge choice.

We can formulate an arbitrary vielbein as the action of some standard boost on an

upper triangular vielbein2. For every given d-vector pa, we define a standard Lorentz boost

�(p)A
B =

�
� pa

pb ⇥a
b + 1

�+1p
apb

⇥
, (2.19)

where indices on pa are raised and lowered with ⇥ab and

� ⇥
⇤

1 + papa. (2.20)

This standard boost takes the standard time-like D-vector (1, 0, 0, . . .) into the unit normal-

ized D-vector with spatial components given by pa,

�(p)A
B

�
1

⌦0

⇥B

=

�
�

pa

⇥A

. (2.21)

A general vielbein can now be written as the standard boost of an upper triangular vielbein

E A
µ = �(p)A

BÊ B
µ =

�
N� + N ie a

i pa Npa + N ie b
i (⇥ a

b + 1
�+1pbpa)

e a
i pa e b

i (⇥ a
b + 1

�+1pbpa)

⇥
. (2.22)

This is simply a reparametrization of a general vielbein, one which will be particularly

convenient for the Hamiltonian analysis. There need not be any gauge or Lorentz invariance

to do this. The D2 components of the general vielbein are now parametrized by the D

components of N and N i, the (D�1)2 components of the spatial vielbein e a
i , and the D�1

components pa.

We now express the Einstein-Hilbert term in terms of this decomposition. The Einstein-

Hilbert term is invariant under local Lorentz transformations. Therefore, when we plug in

the vielbein as parametrized in (2.22), all the pa dependence drops out. Thus we can evaluate

the Einstein-Hilbert action using the upper triangular ansatz (2.17).

2This is analogous to the standard boost used to define single particle states in Lorentz invariant quantum
theory. See for instance chapter 2 of [32].
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As an example, consider the interaction terms in D = 4. Define the matrices

X = E(1)
�1E(2) , Y = E(1)

�1E(3) , Z = E(1)
�1E(4) . (2.15)

The ghost-free potentials take the form

⇥̃A1A2A3A4 E(1)
A1 ⇥ E(1)

A2 ⇥ E(1)
A3 ⇥ E(2)

A4 = 6
�
det E(I1)dDx

⇥
[X] ,

⇥̃A1A2A3A4 E(1)
A1 ⇥ E(1)

A2 ⇥ E(2)
A3 ⇥ E(2)

A4 = 2
�
det E(I1)dDx

⇥ ⇤
[X]2 � [X2]

⌅
,

⇥̃A1A2A3A4 E(1)
A1 ⇥ E(1)

A2 ⇥ E(2)
A3 ⇥ E(3)

A4 = 2
�
det E(I1)dDx

⇥ ⇤
[X][Y ]� [XY ]

⌅
,

⇥̃A1A2A3A4 E(1)
A1 ⇥ E(2)

A2 ⇥ E(2)
A3 ⇥ E(2)

A4 =
�
det E(I1)dDx

⇥ ⇤
[X]3 � 3[X][X2] + 2[X3]

⌅
,

⇥̃A1A2A3A4 E(1)
A1 ⇥ E(2)

A2 ⇥ E(3)
A3 ⇥ E(4)

A4 =
�
det E(I1)dDx

⇥ ⇤
[X][Y ][Z]� [X][Y Z]

�[Y ][XZ]� [Z][XY ] + [XY Z] + [XZY ]
⌅

,

(2.16)

as well as every non-redundant permutation of e(1), e(2), e(3) and e(4). Along with the four

cosmological constants, these give the 35 interaction terms described in the previous section.

2.2 Hamiltonian formulation

In this section we perform a Hamiltonian analysis of the multi-vielbein theory with a general

interaction term (2.6). To this end, we perform a d + 1 decomposition of the vielbein into

canonically conjugate ADM variables.

A general vielbein can always, by a local Lorentz transformation, be put into upper

triangular form (upper triangular vielbeins will be written with a hat),

Ê A
µ =

⇧
N N ie a

i

0 e a
i

⌃
, Êµ

A =

⇧
1
N 0

�N i

N ei
a

⌃
. (2.17)

Here the N and N i are the D time-like components. The spatial vielbeins e a
i contain (D�1)2

components and are related to the spatial part of the metric by gij = e a
i e b

j �ab. By writing

out the metric of this vielbein, we see that N and N i are the usual lapse and shift of the

metric ADM decomposition [16],

gµ⇥ = Ê A
µ Ê B

⇥ ⇤AB =

⇧
�N2 + N iNi Ni

Nj gij

⌃
. (2.18)
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The upper triangular form does not completely fix the local Lorentz invariance. It

leaves a residual local spatial rotation. There are D components in the N , N i and (D� 1)2

in the spatial vielbein. The remaining D � 1 components of the general vielbein have been

fixed by using the upper triangular gauge choice.

We can formulate an arbitrary vielbein as the action of some standard boost on an

upper triangular vielbein2. For every given d-vector pa, we define a standard Lorentz boost

�(p)A
B =

�
� pa

pb ⇥a
b + 1

�+1p
apb

⇥
, (2.19)

where indices on pa are raised and lowered with ⇥ab and

� ⇥
⇤

1 + papa. (2.20)

This standard boost takes the standard time-like D-vector (1, 0, 0, . . .) into the unit normal-

ized D-vector with spatial components given by pa,

�(p)A
B

�
1

⌦0

⇥B

=

�
�

pa

⇥A

. (2.21)

A general vielbein can now be written as the standard boost of an upper triangular vielbein

E A
µ = �(p)A

BÊ B
µ =

�
N� + N ie a

i pa Npa + N ie b
i (⇥ a

b + 1
�+1pbpa)

e a
i pa e b

i (⇥ a
b + 1

�+1pbpa)

⇥
. (2.22)

This is simply a reparametrization of a general vielbein, one which will be particularly

convenient for the Hamiltonian analysis. There need not be any gauge or Lorentz invariance

to do this. The D2 components of the general vielbein are now parametrized by the D

components of N and N i, the (D�1)2 components of the spatial vielbein e a
i , and the D�1

components pa.

We now express the Einstein-Hilbert term in terms of this decomposition. The Einstein-

Hilbert term is invariant under local Lorentz transformations. Therefore, when we plug in

the vielbein as parametrized in (2.22), all the pa dependence drops out. Thus we can evaluate

the Einstein-Hilbert action using the upper triangular ansatz (2.17).

2This is analogous to the standard boost used to define single particle states in Lorentz invariant quantum
theory. See for instance chapter 2 of [32].
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Parametrize vierbeins as an upper triangular vierbein times a boost

Due to structure of epsilons in the wedge product, mass terms are manifestly linear 
in lapse and shift:

Thus we can write, using the property (A.8) of the symmetric polynomials,

(det Ē) Sn(Ē�1) =
⇤
� det g Sn(

⇤
g�1⇤) . (4.18)

We see that the vielbein massive gravity is equivalent to dRGT massive gravity.

4.2 Ghost-freedom

We’ve seen that we can write the action for dRGT massive gravity using the D2 components

of an unconstrained vielbein as variables. Now, by choosing a di�erent parametrization for

the vielbein, we will see that it is almost trivial to identify the primary constraint which

eliminates the Boulware-Deser ghost.

We again perform a d + 1 decomposition of the general vielbein as in (2.22), an upper

triangular vielbein rotated by a standard Lorentz boost parametrized by pa,

E A
µ =

�
N� + N ie a

i pa Npa + N ie b
i (⇥ a

b + 1
�+1pbpa)

e a
i pa e b

i (⇥ a
b + 1

�+1pbpa)

⇥
. (4.19)

The pa do not enter the Einstein-Hilbert term, since it is Lorentz invariant.

The mass term (4.9) is not invariant under local Lorentz transformations, so there will

be explicit dependence on the pa’s. Note, however, that the lapse and shift, N and N i, only

appear in the components E 0
0 and E b

0 , and that they both appear linearly. Due to the

epsilon tensor in the mass term, there will never be more than one component E 0
0 or E b

0 in

any term, and so the entire interaction term is manifestly linear in both the lapse and the

shift N and N i. Thus we can write the mass term in the form

U = NCm(e, p) + N iCm
i (e, p) +H(e, p) . (4.20)

As the Einstein-Hilbert Hamiltonian is also linear in the lapse and shift, these remain La-

grange multipliers in the full massive theory, enforcing the constraints

C(e, ⌅) + Cm(e, p) = 0, Ci(e, ⌅) + Cm
i (e, p) = 0 . (4.21)

Note that in the metric formulation, the lapse and shift do not automatically appear in this

way.

26

KH, Rachel Rosen (arXiv:1203.5783)

http://arxiv.org/abs/1203.5783
http://arxiv.org/abs/1203.5783


Ghost free bi-gravity

M2
g

2
p
�gR[g] +

M2
ḡ

2
p
�ḡR[ḡ]�

p
�g

1
4
m2M2

e↵

X

n

LTD
n (

p
g�1ḡ)

M2
e↵ ⌘

✓
1

M2
g

+
1

M2
ḡ

◆�1

• Linear theory: massless graviton + massive graviton of mass m (= 7 DOF).

• One di#. invariance → generically 12 - 4 = 8 DOF non-linearly 

• Special constraint from absence of DB ghost → 7 DOF non-linearly

Two-site model: bi-gravity g ḡ

Lint

Hassan, Rosen (2011)

Vierbein formulation:

⇠
X

n

an✏A1···ADeA1
(1) ^ · · · ^ eAn

(1) ^ eAn+1
(2) ^ · · · ^ eAD

(2)

KH, Rachel Rosen (arXiv:1203.5783)
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Ghost free multi-gravity
Multi-metric theory graph: one massless graviton per 
connected component + tower of massive gravitons 

Ghost-free deconstructed gravitational dimensions Arkani-Hamed, Georgi and Schwartz (2003)

KH, Rachel Rosen (arXiv:1203.5783)
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New ghost-free multi-metric interactions in 4-dimensions:

✏A1A2···ADeA1
(1) ^ eA2

(1) ^ eA3
(2) ^ e4

(3)

✏A1A2···ADeA1
(1) ^ eA2

(2) ^ eA3
(2) ^ e4

(3)

✏A1A2···ADeA1
(1) ^ eA2

(2) ^ eA3
(3) ^ e4

(3)

Ghost free multi-gravity
Most general ghost-free potential interaction of multiple gravitons

⇠ T I1I2···ID✏A1A2···ADeA1
(I1)

^A2
(I2)

^ · · · ^ eAD

(ID)

✏A1A2···ADeA1
(1) ^ eA2

(2) ^ eA3
(3) ^ e4

(4)

Interaction of longitudinal modes → multi-galileon interactions

KH, Rachel Rosen (arXiv:1203.5783)
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Summary and open issues

• Λ3 massive gravity is the best behaved IR modi"cation of gravity proposed so far  

• ~ 40 year old problem of the Boulware-Deser ghost has been solved

• Makes use of galileons, scalar theories with interesting and promising properties 

• New signals for cosmology/potential for model building

• Still some underlying topological structure yet to be articulated

• Still the issue of UV completion


