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The early universe

• Data tells us the 
perturbations 
imprinted at last 
scattering are 
described by nearly 
scale invariant and 
gaussian statistics. 

• Data tells us the 
early universe was 
very smooth and 
homogeneous, and 
nearly spatially flat. 
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Inflation

Inflation is the leading paradigm for 
explaining the early universe:

• Solves the horizon problem

• Solves the flatness problem, 
monopole problem (empties out the 
universe)

• Explains the scale-invariant gaussian 
perturbations as quantum fluctuations 
of a primordial field 

Inflation is rooted in symmetries
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Inflation

Smoothness, flatness, monopole problems: 
Other possible components with w > -1 are emptied out

3M2
PH

2 = ⇢V � 3M2
P k

a2
+

⇢m,0

a3
+

⇢r,0
a4

+
⇢A,0

a6

curvature matter
radiation anisotropies

! 0
constant

Inflation ≈ exponential expansion ≈ de Sitter space
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Inflation is rooted in symmetries
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de Sitter space is maximally symmetric:
There are 10 Killing vectors: 

• 3 spatial translations and 3 spatial rotations, forming 
iso(3)
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• Plus a dilation and 3 special generators:

Forms the de Sitter algebra:    so(4,1)



Scalar field on de Sitter
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de Sitter symmetries act linearly on the field: �D� = D�, �Ki� = Ki�

We are interested in the fields at late times ⌧ ! 0
when all modes are outside the horizon
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The isometries act as generators of conformal symmetries of 
the euclidean boundary at τ = 0, same algebra so(4,1)
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Conformal symmetry of dS inflation
Constraints of conformal symmetry on correlation functions h�1(x1) · · ·�N (xN )i
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Dilation invariance determines the form of the power spectrum Z
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Weight zero fields (m = 0) get a scale invariant spectrum:
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Similar constraints on higher point functions (non-gaussianity).  No constraints 
relating higher point functions to lower point functions.

Symmetry algebra is unbroken:  so(4,1)



Slow-roll inflation

Satisfying slow-roll conditions: �̇2 ⌧ M2
PH
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Not exact de Sitter: deviation measured by slow roll parameters.

Fluctuations around the background are responsible for CMB spectrum.
Scalar fluctuations in co-moving gauge:

� = �̄, gij = a2e2⇣�ij

Driven by a scalar field:
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Quadratic action for fluctuations leads to power spectrum:
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The Mukhanov equation for the mode functions is
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When we are interested in late times, for the mode functions we can use the values
for a massless scalar in de Sitter |fk|2 = 1
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Defining the spectral index through P (k) ⇠ k�3+(nS�1), that is,
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where the slow roll parameters are ✏ = � ˙H
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nS < 1 red spectrum,
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6 Tensor power spectrum

The tensor mode quadratic action is
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symmetries of slow-roll inflation

� = �̄, gij = a2e2⇣�ij

Co-moving gauge choice leaves some redundancy:
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Any transformation on zeta which looks like a coordinate 
transformation of the spatial metric will be a symmetry:
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We can do a conformal transformation of the coordinates, 
compensated by a shift in zeta:

• These are global symmetries of the (gauge fixed) action for 
scalar modes.
• Present for any FRW background and any theory with a 
single scalar (slow roll condition not required)

KH, Lam Hui & Justin Khoury, 1203.6351 

http://arxiv.org/abs/arXiv:1203.6351
http://arxiv.org/abs/arXiv:1203.6351


symmetries of slow-roll inflation

�⇣ = 1 + ~x · ~r⇣
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Ordinary spatial translations and rotations are linearly realized.  
These new symmetries are non-linearly realized.  

They close to form the de Sitter algebra so(4,1)

Symmetry breaking pattern for slow roll inflation is:  so(4,1) → iso(3)

Ordinary spatial translations and rotations are linearly realized.  

�i⇣ = �@i⇣, �ij⇣ = (xi@j � xj@i)⇣



symmetries of slow-roll inflation

Broken symmetries lead to Ward identities relating n point 
functions and n-1 point functions: consistency relations
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Consistency relations for higher-point functions: KH, Lam Hui & Justin Khoury (to appear)
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Inflation is so compelling, why search for alternatives?

Alternatives to inflation?

• It is good science: science thrives on competition

• The existence of a compelling alternative can provide 
further non-trivial tests for inflation

• The observed predictions of inflation are pretty generic

• Alternatives may look ugly at first: all problems can’t be 
solved at once.  (Inflation has been around and has been 
developed since the ‘80s.)

• Alternatives should have a compelling starting point: rooted 
in symmetries.



Pseudo-conformal scenario
Pseudo-Conformal Framework

•  Non-inflationary scenario

•  Gravity is relatively unimportant: spacetime is approximately flat 

•  More symmetric than inflation: so(4,2)

•  Spontaneously broken: so(4,2) → so(4,1)

•  Essential physics is fixed by the symmetry breaking pattern, independently of  the specific 

realization or microphysics

•  Many possible realizations:

⇡

Rubakov’s U(1) model

Galilean Genesis Creminelli, Nicolis & Trincherini, 1007.0027

V. Rubakov, 0906.3693; 1007.3417; 1007.4949; 1105.6230

...

{ model�4 KH, Justin Khoury arXiv:1106.1428 
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Simplest example: negative quartic

where M is the single component of the mass matrix. From analogous computations in inflation

it is well-known that the spectrum will be scale invariant provided that M ⌧ 1. Indeed, in this

regime, the solution for the mode functions, assuming the standard adiabatic vacuum, is given by

�̂k ⇠ e�ikt

p
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where once again the mode normalization is not fixed. The long-wavelength spectrum for � is

therefore scale invariant,

k3/2|�k| ' constant . (36)

Hence, under very general assumptions, a conformal weight 0 field acquires a Harrison-Zeldovich

spectrum in our background (6).

An immediate corollary of the above derivation is that the growing mode solution for � is

a constant. Thus perturbations in this field are amplified, but only to a particular finite value.

This is a key di↵erence from other non-inflationary multi-field mechanisms. In the New Ekpyrotic

scenario [30, 32, 33], for instance, the amplification of scale invariant perturbations in a second field

relies on a tachyonic instability [34]. The background solution is therefore unstable to unbounded

growth along this field direction, though it was shown in [32] that an earlier phase of evolution

can bring the field arbitrarily close to the desired trajectory. Similarly, the general two-field

non-inflationary mechanisms of [72] are also tachyonically unstable.

3 An Example: Negative Quartic Potential

The simplest realization of our mechanism relies on a canonical scalar field � of conformal weight 1

rolling down a negative �4 potential [51]. The � part of the action reads
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2
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4
�4 + . . . (37)

This transforms to a total derivative under (3), hence the theory is conformally invariant. Of

course this is only true at the classical level, and we will discuss radiative corrections shortly.

With � > 0, corresponding to negative potential energy, it is easy to see from the beta function

that this theory is in fact asymptotically free.

Although the potential is unbounded from below as it stands, we envision that higher-

dimensional operators — denoted by the ellipses — regularize the potential at large values of �.
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Solution         is so(4,2) invariant.� = 0

KH, Justin Khoury arXiv:1106.1428 

Classically, this is a conformal field theory, with a field of weight

Symmetry algebra so(4,2) realized linearly on the field. 

We will see in this Section that the essential features of the mechanism, such as stability

of the background solution and scale invariance of perturbations, are completely determined by

this symmetry breaking pattern, irrespective of the details of the underlying dynamics. For this

purpose, we can ignore gravity and work in flat, Minkowski space. We will see later that this is a

consistent approximation at su�ciently early times.

We imagine that the early universe is described by a general conformal field theory involving

some collection of conformal scalars �I , indexed by I = 1, . . . , N . Each scalar may have a di↵erent

conformal weight dI . The 15 (linear) generators of the conformal transformations act on �I as

�Pµ� = �@µ� , �Jµ⌫� = (xµ@⌫ � x⌫@µ)� ,

�D� = �(�+ xµ@µ)� , �Kµ�I =
��2xµ�� 2xµx

⌫@⌫ + x2@µ
�
� . (3)

The Pµ and Jµ⌫ generate space-time translations and rotations, respectively, D generates dilata-

tions, and the Kµ generate special conformal transformations. These satisfy the commutation

relations

⇥
�D, �Pµ

⇤
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⇤
= ⌘µ��J⌫⇢ � ⌘⌫��Jµ⇢ + ⌘⌫⇢�Jµ� � ⌘µ⇢�J⌫� , (4)

with all other commutators being zero. By defining �J�2,�1 = �D, �J�2,µ = (�Pµ � �Kµ)/2 and

�J�1,µ = (�Pµ + �Kµ)/2, we can assemble all the conformal generators into an anti-symmetric

matrix �JAB , with A,B taking the six values (�2,�1, µ). The commutation relations (4) then

take the form

[�JAB , �JCD ] = ⌘AC�JBD � ⌘BC�JAD + ⌘BD�JAC � ⌘AD�JBC , (5)

where ⌘AB = diag(�1, 1, ⌘µ⌫) is a 6d Minkowski metric with two time directions. These are the

commutation relations of so(4, 2).

The lagrangian should be invariant under all these symmetries. Constructing the lagrangian

out of Poincaré invariant terms which all have dimension 4 (so that there are no dimensionful

couplings) will guarantee invariance under the Poincaré generators as well as under the dilatation

generator �D. Invariance under the special conformal generators �Kµ is a more restrictive condition,

and is generally not satisfied unless specific linear combinations of dilatation invariant terms are
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Figure 1: Sketch of the scalar potential for the simplest realization of our mechanism. The potential

is well approximated by a negative quartic form along the solid curve. Higher-dimensional operators
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Simplest example: negative quartic

There is a solution where the field rolls down a 
negative quartic potential:

p� =
2

�t4
, w = 1

• This solution has zero energy

• Pressure is non-zero and positive 
(satisfies the NEC, infinite equation of 
state)

• Solution is an attractor
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p
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, t 2 (�1, 0)



Simplest example: negative quartic
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so(4,1) generators are realized linearly on fluctuations around the solution: � = �̄+ '

around the background (6), 'I = �I � �̄I . We will see that it is fixed by the symmetries up to a

few constants. The action will linearly realize the unbroken symmetries, and non-linearly realize

the broken ones. In this Section we derive the most general, 2-derivative action for 'I . We will

then use this general action to study the stability of the background (Section 2.2), as well as to

derive the spectrum of perturbations generated from an adiabatic vacuum (Sections 2.3 and 2.4).

The unbroken so(4, 1) subalgebra acts linearly on the perturbations 'I ,

�Pi' = �@i' , �Jij' =
�
xi@j � xj@i

�
' ,

�D' = � (�+ xµ@µ)' , �Ki' =
��2xi�� 2xix

⌫@⌫ + x2@i
�
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�
' ,

�K0' = ��x2

t
�̄+

�
2t�+ 2tx⌫@⌫ + x2@t

�
' . (11)

By imposing these symmetry transformations, we can deduce the form of the quadratic action for

the 'I ’s. (As mentioned above, the case where all dI = 0 or where all fields with dI 6= 0 have a

vanishing background profile is exceptional, since all 15 symmetries are linearly realized in this

case.)

Consider the original lagrangian L, and replace the original fields �I with �̄I + �'I , where �

is a formal parameter to count powers of the perturbations. Since �̄I is a solution to the equations

of motion of L, expanding the lagrangian for the perturbations in a formal series in � gives an

expansion that starts at order �2:

L = �2

�L
(2)

+ �L
(3)

+ �2L
(4)

+ . . .
�
. (12)

The lagrangian L possesses the symmetries (10) and (11), each of which may also be expanded in

powers of �,

�'I = �
(0)

'I + ��
(1)

'I . (13)

The statement that �'I is a symmetry of L is

�ELL
�'I

�'I ' 0 , (14)
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Rolling solution preserves an so(4,1) subgroup:

�Pi �̄ = 0 , �D�̄ = 0 , �Jij �̄ = 0 , �Ki �̄ = 0 , i = 1, 2, 3

used. In any case, the details of the lagrangian are not too important, and the features of our

scenario follow largely from the symmetry breaking pattern.

Now, suppose the �I ’s take a time-dependent background value

�̄I(t) =
cI

(�t)dI
, (6)

where the cI ’s are constant coe�cients. Since we envision a pre-big bang scenario, we have chosen

time to run over negative values �1 < t < 0. We claim that if at least one field has dI 6= 0 and

a non-vanishing background profile, this profile will induce the symmetry breaking pattern (2).

Indeed, the subalgebra of 10 generators that annihilate �̄I are

�Pi , �D , �Jij , �Ki , i = 1, 2, 3 . (7)

That is, the background (6) preserves spatial translations and rotations, the spatial components

of the special conformal transformations, and dilatations. These 10 unbroken generators can

be assembled into an anti-symmetric matrix �Jab , with a, b taking the five values (�2,�1, i), by

defining �J�2,�1 = �D, �J�2,i = (�P i ��Ki)/2 and �J�1,i = (�P i +�Ki)/2. The commutation relations

then take the form

[�Jab , �Jcd ] = ⌘ac�Jbd � ⌘bc�Jad + ⌘bd�Jac � ⌘ad�Jbc , (8)

where ⌘ab = diag(�1, 1, �ij) is a 5d Minkowski metric with one time direction. These are the

commutation relations of so(4, 1). Meanwhile, the remaining 5 generators do not annihilate �̄I ,

and no non-trivial linear combination of them does. The 5 broken generators act on the background

solution as

�P0�̄ =
��̄

t
, �J0i�̄ = ��xi

t
�̄ , �K0�̄ = ��xµxµ

t
�̄ . (9)

Hence, as claimed, we have the symmetry breaking pattern so(4, 2) ! so(4, 1). (In the case where

all dI = 0, or all the background profiles vanish for dI 6= 0, the full conformal group is preserved.)

2.1 E↵ective Action for the Goldstone fluctuations

We will now see how far this symmetry breaking pattern can take us, without knowing the un-

derlying lagrangian. We will study the quadratic action for the perturbations (Goldstone fields2)

2It is well-known that the usual counting of Goldstone modes does not work for spontaneously broken space-time

symmetries [73]. Though our background breaks 5 symmetries, we only have one Goldstone field.
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The rest are realized non-linearly

around the background (6), 'I = �I � �̄I . We will see that it is fixed by the symmetries up to a

few constants. The action will linearly realize the unbroken symmetries, and non-linearly realize

the broken ones. In this Section we derive the most general, 2-derivative action for 'I . We will

then use this general action to study the stability of the background (Section 2.2), as well as to

derive the spectrum of perturbations generated from an adiabatic vacuum (Sections 2.3 and 2.4).

The unbroken so(4, 1) subalgebra acts linearly on the perturbations 'I ,

�Pi' = �@i' , �Jij' =
�
xi@j � xj@i

�
' ,

�D' = � (�+ xµ@µ)' , �Ki' =
��2xi�� 2xix

⌫@⌫ + x2@i
�
' , (10)

whereas the 5 broken generators act non-linearly,

�P0' =
�

t
�̄� '̇ , �J0i' = ��xi

t
�̄+

�
t@i + xi@t

�
' ,

�K0' = ��x2

t
�̄+

�
2t�+ 2tx⌫@⌫ + x2@t

�
' . (11)

By imposing these symmetry transformations, we can deduce the form of the quadratic action for

the 'I ’s. (As mentioned above, the case where all dI = 0 or where all fields with dI 6= 0 have a

vanishing background profile is exceptional, since all 15 symmetries are linearly realized in this

case.)

Consider the original lagrangian L, and replace the original fields �I with �̄I + �'I , where �

is a formal parameter to count powers of the perturbations. Since �̄I is a solution to the equations

of motion of L, expanding the lagrangian for the perturbations in a formal series in � gives an

expansion that starts at order �2:

L = �2

�L
(2)

+ �L
(3)

+ �2L
(4)

+ . . .
�
. (12)

The lagrangian L possesses the symmetries (10) and (11), each of which may also be expanded in

powers of �,

�'I = �
(0)

'I + ��
(1)

'I . (13)

The statement that �'I is a symmetry of L is

�ELL
�'I

�'I ' 0 , (14)
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Symmetry breaking pattern: so(4,2) → so(4,1)



negative quartic: fluctuations

Quadratic action for fluctuations

• Modes propagate exactly at the speed of light (no superluminality issue)

Squad ⇠ �1

2

Z
d4x

✓
⌘

µ⌫
@µ'@⌫'� 6

t

2
'

2

◆
.

• Power spectrum at late times is red-tilted 

�k ⇠
p
�tH

(1)
5/2(�kt) )

k|t|⌧1
P'(k) ⇠

1

k5t4

�̈k +

✓
k2 � 6

t2

◆
�k = 0

� = �̄+ '



Getting scale invariant fluctuations

Couple in a weight zero field

L = �1

2
(@�)2 +

�

4
�4 � 1

2
�2(@�)2

Shift invariant, conformally invariant coupling
�� = 0

The weight zero field has a constant background profile

�̄ = const.�̄ =

p
2p

�(�t)
,

Scale invariant spectrum:

v ⌘ (�t)�, v̈k +

✓
k2 � 2

t2

◆
vk = 0

vk ⇠ e�ikt

p
2k

✓
1� i

kt

◆
)

k|t|⌧1
P�(k) ⇠

1

k3

Quadratic action for chi fluctuations looks like a massless scalar on a “fake” de Sitter

S

�
quad ⇠ �1

2

Z
d4x

1

t

2
⌘

µ⌫
@µ�@⌫� ,

t = 0



Adding gravity
Couple minimally to gravity (breaks conformal invariance at 1/MP level):

S =

Z
d4x

p
�g

✓
M

2
Pl

2
R� 1

2
g

µ⌫
@µ�@⌫�+

�

4
�

4

◆

Solution has zero energy ⇒ spacetime approximately flat
Solve the Friedman equations in powers of 1/MP

�(t) ⇡
p
2p

�(�t)
a(t) ⇡ 1� 1

6�t2M2
P

H(t) ⇡ 1

3�t3M2
P

, ,

Solution is a slowly contracting universe

Approximation is valid in the range 

tend ⇠ � 1p
�MPl

, �end ⇠ MPl .

�1 < t < tend

⇢� ⇡ 1

3�2t6M2
P

, p� ⇡ 2

�t4
, w ⇡ 6�t2M2

P

w goes from ≫1 to O(1) as t ranges from -∞ to tend

The field forms a very stiff fluid



Solution to flatness, smoothness problems

There is now a scalar field component with extremely stiff equation of state w ≫ 1

3M2
PH

2 = �3M2
P k

a2
+

⇢m,0

a3
+

⇢r,0
a4

+
⇢A,0

a6
+ ⇢�

⇠ 1

t6
rapidly increasing

Homogeneous energy density of the scalar washes out everything else

Similar to ekpyrotic cosmology (contracting universe with w >> 1)
Khoury, Ovrut, Steinhardt, Turok (2001);
Gratton, Khoury, Steinhardt, Turok (2003);
Erickson, Wesley, Steinhardt, Turok (2004).

≈ constant



Why this is not inflation
3 Cosmological Dynamics — Why This is Not Inflation

The pseudo-conformal scenario assumes that the CFT couples minimally to Einstein gravity,

S =

Z
d4x
p�g

✓
M2

Pl

2
R + LCFT [gµ⌫ ]

◆
. (3.1)

Conformal invariance is thus (mildly) broken at the 1/MPl level. (The above covariantization is

consistent with that assumed in the Galilean Genesis scenario [51]; in his �4 example, Rubakov

[50] instead considers conformal coupling to gravity.)

The action (3.1) is cast in Einstein frame, where the Planck scale is constant and the metric

will be nearly flat. We first describe our cosmological background in this frame, and then turn

to a “Jordan-frame” description in terms of the e↵ective de Sitter geometry which the weight-0

spectators couple to. Comparing the descriptions will make clear that the conformal scenario is

dramatically di↵erent than inflation.

3.1 Einstein-Frame Cosmology

At su�ciently early times (to be made precise shortly), gravity is negligible, hence the solu-

tion (1.2) is approximately valid. Since this background only depends on time and is invariant

under dilatation, the pressure and energy density must both scale as 1/t4. But energy conserva-

tion implies ⇢ ' const. at zeroth order in 1/MPl, hence ⇢ ' 0. Thus, the assumed symmetries

completely fix the form of the energy density and pressure of the CFT,

⇢CFT ' 0 , PCFT ' �

t4
, (3.2)

up to a constant parameter �. For instance, for the quartic potential model discussed in Sec. 2.1,

� = 2/� > 0 corresponding to positive pressure. In the Galilean Genesis scenario [51], on the

other hand, � < 0, and the CFT violates the Null Energy Condition.

Integrating M2
PlḢ = �(⇢CFT + PCFT)/2 gives the Hubble parameter

H(t) ' �

6t3M2
Pl

, (3.3)

9

Can’t we just do a Weyl transformation to bring the background metric to de Sitter?

ge↵µ⌫ = �2gµ⌫

couple to an e↵ective, “Jordan-frame” metric1

ge↵
µ⌫ = �2gµ⌫ . (3.7)

Let us see how the de Sitter background arises in Jordan frame. Upon the conformal transforma-

tion (3.7), the action (3.1) becomes

S =

Z
d4x
p�ge↵

✓
M2

Pl

2�2
Re↵ +

3M2
Pl

�4
gµ⌫
e↵ @µ�@⌫� +

1

�4
LCFT

⇥
��2ge↵

µ⌫

⇤◆
. (3.8)

The Friedmann and scalar field equations that derive from (3.8) take the simple form

3H2
e↵ ' 6He↵

�̇

�2
� 3

�̇2

�4
,

�̈

�3
+ 3He↵

�̇

�2
� 3

�̇2

�4
� Re↵

6
= � �

4�2M2
Plt

4
, (3.9)

where He↵ = ��1d ln ae↵/dt is the Jordan-frame Hubble parameter, and dots are time derivatives

with respect to the time coordinate t (we have not changed coordinates, only conformal frames).

We have used (3.2) to substitute for the energy density and pressure of the CFT.

The � term on the right hand side of the second equation of (3.9) is suppressed by 1/MPl and

hence is negligible at su�ciently early times (specifically when t⌧ tend from (3.5)). In this regime,

the equations allow for a solution � ⇠ 1/t and He↵ = constant, consistent with the Einstein-frame

analysis. Thus the e↵ective geometry is indeed approximately de Sitter. But this is emphatically

not inflation in any usual sense. The de Sitter expansion results from the non-minimal coupling

of � to gravity in this Jordan frame. In particular, the e↵ective Planck scale M e↵
Pl ⇠ 1/� varies by

order unity in a Hubble time.

4 Phenomenological Lagrangians

We now turn to the systematic construction of actions realizing the symmetry breaking pattern

(1.1) of the conformal scenario. Symmetry is a powerful tool in the study of physical phenomena.

1The e↵ective metric ge↵
µ⌫ thus defined carries units, but this is inconsequential to our arguments; alternatively,

one could write ge↵
µ⌫ = (�2/M2)gµ⌫ and carry the mass scale M throughout the calculation.
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Action in “Jordan frame”

Acceleration now results from the non-minimal coupling to the CFT. 
Effective Planck mass                 varies by order one in a Hubble time.M e↵

Pl ⇠ 1/�



General framework

Start with any CFT with scalar primary operators: 

These need not be fundamental fields or degrees of freedom, and a conformal 
invariant stable ground state need not exist.

�I , I = 1, . . . , N. conformal weight �I

We will see in this Section that the essential features of the mechanism, such as stability

of the background solution and scale invariance of perturbations, are completely determined by

this symmetry breaking pattern, irrespective of the details of the underlying dynamics. For this

purpose, we can ignore gravity and work in flat, Minkowski space. We will see later that this is a

consistent approximation at su�ciently early times.

We imagine that the early universe is described by a general conformal field theory involving

some collection of conformal scalars �I , indexed by I = 1, . . . , N . Each scalar may have a di↵erent

conformal weight dI . The 15 (linear) generators of the conformal transformations act on �I as

�Pµ� = �@µ� , �Jµ⌫� = (xµ@⌫ � x⌫@µ)� ,

�D� = �(�+ xµ@µ)� , �Kµ�I =
��2xµ�� 2xµx

⌫@⌫ + x2@µ
�
� . (3)

�Pµ�I = �@µ�I , �Jµ⌫�I = (xµ@⌫ � x⌫@µ)�I ,

�D�I = �(�I + xµ@µ)�I , �Kµ�I =
��2xµ�I � 2xµx

⌫@⌫ + x2@µ
�
�I . (4)

The Pµ and Jµ⌫ generate space-time translations and rotations, respectively, D generates di-

latations, and the Kµ generate special conformal transformations. These satisfy the commutation

relations

⇥
�D, �Pµ

⇤
= ��Pµ ,

⇥
�D, �Kµ

⇤
= �Kµ ,

⇥
�Kµ , �P⌫

⇤
= 2

�
�Jµ⌫ � ⌘µ⌫�D

�
,

⇥
�Jµ⌫ , �K�

⇤
= ⌘�µ�K⌫ � ⌘�⌫�Kµ ,

⇥
�Jµ⌫ , �P�

⇤
= ⌘µ��P⌫ � ⌘⌫��Pµ ,

⇥
�Jµ⌫ , �J�⇢

⇤
= ⌘µ��J⌫⇢ � ⌘⌫��Jµ⇢ + ⌘⌫⇢�Jµ� � ⌘µ⇢�J⌫� , (5)

with all other commutators being zero. By defining �J�2,�1 = �D, �J�2,µ = (�Pµ � �Kµ)/2 and

�J�1,µ = (�Pµ + �Kµ)/2, we can assemble all the conformal generators into an anti-symmetric

matrix �JAB , with A,B taking the six values (�2,�1, µ). The commutation relations (5) then

take the form

[�JAB , �JCD ] = ⌘AC�JBD � ⌘BC�JAD + ⌘BD�JAC � ⌘AD�JBC , (6)

where ⌘AB = diag(�1, 1, ⌘µ⌫) is a 6d Minkowski metric with two time directions. These are the

commutation relations of so(4, 2).

The lagrangian should be invariant under all these symmetries. Constructing the lagrangian

out of Poincaré invariant terms which all have dimension 4 (so that there are no dimensionful

6

Dynamics must be such that the operators get a VEV:

�̄I(t) =
cI

(�t)�I
,

KH, Justin Khoury arXiv:1106.1428 

VEV preserves an so(4,1) subgroup of so(4,2):

�Pi �̄I = 0 , �D�̄I = 0 , �Jij �̄I = 0 , �Ki �̄I = 0 ,

�P0 �̄I =
�I �̄I

t

6= 0 , �J0i
�̄I = ��Ix

i

t

�̄I 6= 0 , �K0 �̄I = ��Ixµx
µ

t

�̄I 6= 0 .

http://arxiv.org/abs/arXiv:1106.1428
http://arxiv.org/abs/arXiv:1106.1428


Pseudo-conformal symmetry breaking pattern

The rest are realized non-linearly:

2.1 E↵ective Action for the Goldstone fluctuations

We will now see how far this symmetry breaking pattern can take us, without knowing the un-

derlying lagrangian. We will study the quadratic action for the perturbations (Goldstone fields2)

around the background (7), 'I = �I � �̄I . We will see that it is fixed by the symmetries up to a

few constants. The action will linearly realize the unbroken symmetries, and non-linearly realize

the broken ones. In this Section we derive the most general, 2-derivative action for 'I . We will

then use this general action to study the stability of the background (Section 2.2), as well as to

derive the spectrum of perturbations generated from an adiabatic vacuum (Sections 2.3 and 2.4).

The unbroken so(4, 1) subalgebra acts linearly on the perturbations 'I ,

�Pi' = �@i' , �Jij' =
�
xi@j � xj@i

�
' ,

�D' = � (�+ xµ@µ)' , �Ki' =
��2xi�� 2xix

⌫@⌫ + x2@i
�
' , (11)

whereas the 5 broken generators act non-linearly,

�P0' =
�

t
�̄� '̇ , �J0i' = ��xi

t
�̄+

�
t@i + xi@t

�
' ,

�K0' = ��x2

t
�̄+

�
2t�+ 2tx⌫@⌫ + x2@t

�
' . (12)

�Pi'I = �@i'I , �Jij'I =
�
xi@j � xj@i

�
'I ,

�D'I = � (�I + xµ@µ)'I , �Ki'I =
��2xi�I � 2xix

⌫@⌫ + x2@i
�
'I , (13)

whereas the 5 broken generators act non-linearly,

�P0'I =
�I

t
�̄I � '̇I , �J0i'I = ��Ixi

t
�̄I +

�
t@i + xi@t

�
'I ,

�K0'I = ��Ix2

t
�̄I +

�
2t�I + 2tx⌫@⌫ + x2@t

�
'I . (14)

By imposing these symmetry transformations, we can deduce the form of the quadratic

action for the 'I ’s. (As mentioned above, the case where all dI = 0 or where all fields with dI 6= 0

have a vanishing background profile is exceptional, since all 15 symmetries are linearly realized in

this case.)

2It is well-known that the usual counting of Goldstone modes does not work for spontaneously broken space-time

symmetries [73]. Though our background breaks 5 symmetries, we only have one Goldstone field.
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so(4,1) generators are realized linearly on fluctuations around the VEV:

2.1 E↵ective Action for the Goldstone fluctuations

We will now see how far this symmetry breaking pattern can take us, without knowing the un-

derlying lagrangian. We will study the quadratic action for the perturbations (Goldstone fields2)

around the background (7), 'I = �I � �̄I . We will see that it is fixed by the symmetries up to a

few constants. The action will linearly realize the unbroken symmetries, and non-linearly realize

the broken ones. In this Section we derive the most general, 2-derivative action for 'I . We will

then use this general action to study the stability of the background (Section 2.2), as well as to

derive the spectrum of perturbations generated from an adiabatic vacuum (Sections 2.3 and 2.4).

The unbroken so(4, 1) subalgebra acts linearly on the perturbations 'I ,

�Pi' = �@i' , �Jij' =
�
xi@j � xj@i

�
' ,

�D' = � (�+ xµ@µ)' , �Ki' =
��2xi�� 2xix

⌫@⌫ + x2@i
�
' , (11)

whereas the 5 broken generators act non-linearly,

�P0' =
�

t
�̄� '̇ , �J0i' = ��xi

t
�̄+

�
t@i + xi@t

�
' ,

�K0' = ��x2

t
�̄+

�
2t�+ 2tx⌫@⌫ + x2@t

�
' . (12)

�Pi'I = �@i'I , �Jij'I =
�
xi@j � xj@i

�
'I ,

�D'I = � (�I + xµ@µ)'I , �Ki'I =
��2xi�I � 2xix

⌫@⌫ + x2@i
�
'I , (13)

whereas the 5 broken generators act non-linearly,

�P0'I =
�I

t
�̄I � '̇I , �J0i'I = ��Ixi

t
�̄I +

�
t@i + xi@t

�
'I ,

�K0'I = ��Ix2

t
�̄I +

�
2t�I + 2tx⌫@⌫ + x2@t

�
'I . (14)

By imposing these symmetry transformations, we can deduce the form of the quadratic

action for the 'I ’s. (As mentioned above, the case where all dI = 0 or where all fields with dI 6= 0

have a vanishing background profile is exceptional, since all 15 symmetries are linearly realized in

this case.)

2It is well-known that the usual counting of Goldstone modes does not work for spontaneously broken space-time

symmetries [73]. Though our background breaks 5 symmetries, we only have one Goldstone field.
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�I = �̄I + 'I

Symmetry breaking pattern for pseudo-conformal scenario is:  so(4,2) → so(4,1)



General form of the quadratic action for fluctuations
KH, Justin Khoury arXiv:1106.1428 

Actions for fields and fluctuations can be constructed using coset techniques.
KH, Justin Khoury, Austin Joyce arXiv:1202.6056

The broken and unbroken symmetries fix the form of the quadratic fluctuations �I = �̄I + 'I

Lquad ⇠ �1

2
(�t)2(��1)⌘µ⌫@µ'@⌫'� 1

2
(�t)2(��2)(�+ 1)(�� 4)'2

v ⌘ (�t)��1',

v̈k +

✓
k2 � 6

t2

◆
vk = 0 , vk ⇠

p
�tH

(1)
5/2(�kt) )

k|t|⌧1
P'(k) ⇠

1

k5t2(�+1)

Weight ≠0 fields always red-tilted:

Weight zero fields always get a scale invariant spectrum:

S

�
quad ⇠ �1

2

Z
d4x

1

t

2
⌘

µ⌫
@µ�@⌫� ,

v ⌘ (�t)�, v̈k +

✓
k2 � 2

t2

◆
vk = 0 vk ⇠ e�ikt

p
2k

✓
1� i

kt

◆
)

k|t|⌧1
P�(k) ⇠

1

k3
,

http://arxiv.org/abs/arXiv:1106.1428
http://arxiv.org/abs/arXiv:1106.1428
http://arxiv.org/abs/arXiv:1106.1428
http://arxiv.org/abs/arXiv:1106.1428


Another example: galileon genesis

L = �1

2
c2(@�)

2 + c3


�1

2

(@�)2⇤�

�3
+

1

4

(@�)4

�4

�
+ · · ·

Ghost-free conformal galileon

There is a so(4,1) invariant solution             when: �̄ =
↵

(�t)
↵c2 �

3c3
2↵

= 0

Lagrangian is that appearing as the dilaton in the a-theorem proof
Komargodski, Schwimmer, 2011

Creminelli, Nicolis & Trincherini, 2010

• Violates the NEC (negative pressure)

• Slowly expanding spacetime (no bounce required)

• Superluminal propagation around nearby solutions (see 
however                                                   )Creminelli, KH,  Khoury,  Nicolis,  Trincherini, arXiv:1209.3768 

http://inspirehep.net/author/Creminelli%2C%20Paolo?recid=1186405&ln=en
http://inspirehep.net/author/Creminelli%2C%20Paolo?recid=1186405&ln=en
http://inspirehep.net/author/Hinterbichler%2C%20Kurt?recid=1186405&ln=en
http://inspirehep.net/author/Hinterbichler%2C%20Kurt?recid=1186405&ln=en
http://inspirehep.net/author/Khoury%2C%20Justin?recid=1186405&ln=en
http://inspirehep.net/author/Khoury%2C%20Justin?recid=1186405&ln=en
http://inspirehep.net/author/Nicolis%2C%20Alberto?recid=1186405&ln=en
http://inspirehep.net/author/Nicolis%2C%20Alberto?recid=1186405&ln=en
http://inspirehep.net/author/Trincherini%2C%20Enrico?recid=1186405&ln=en
http://inspirehep.net/author/Trincherini%2C%20Enrico?recid=1186405&ln=en
http://arxiv.org/abs/arXiv:1209.3768
http://arxiv.org/abs/arXiv:1209.3768


DBI realization

There will be one transverse ⇡I field corresponding to the radial direction z, and we will call

this field �. According to (26), these generate the following global symmetries on � in the

gauge-fixed action,

�D� = � (�� + x⌫@⌫)� ,

�Kµ� = �2xµ (�� + x⌫@⌫)�+ x2@µ�+
1

�2

@µ� , (29)

where �� = 1. In addition, the manifest Poincaré symmetries of the xµ coordinates generate

the standard Poincaré transformations on �. Together, the 5 symmetries (29) and the 10

Poincaré symmetries satisfy the algebra (6) and provide a non-linear realization of so(4, 2).

Compared to the transformations (5) in the standard case, there is an extra term ��2@µ� in

the expression for �Kµ�; in the DBI action, the special conformal transformations are thus

realized non-linearly.

To construct the leading order action for the brane, we combine a tadpole potential term

with a kinetic term arising from the induced volume form on the brane. The induced metric

on the brane (24) is, in the gauge (25),

ginducedµ⌫ (x) = R2�2

✓
⌘µ⌫ +

@µ�

�2

@⌫�

�2

◆
, (30)

hence the world-volume action arising from the determinant is

S
2

⌘ R�4

Z
d4x

p
�ginduced =

Z
d4x

�4

�
, (31)

where we have introduced the Lorentz factor

� ⌘ 1p
1 + (@�)2/�4

, (32)

and where indices are contracted with ⌘µ⌫ . Meanwhile, the tadpole action

S
1

⌘
Z

d4x�4 (33)

is the unique local action which does not depend on derivatives and is invariant under all 15

of our symmetries. Geometrically, it is the proper 5-volume between the brane and some fixed

reference brane [89].

Combining the tadpole (33) and induced volume form (30), with a relative coe�cient

governed by �, we arrive at the DBI action.

S
DBI

=

✓
1 +

�

4

◆
S
1

� S
2

=

Z
d4x�4

✓
1 +

�

4
� ��1

◆
. (34)
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Different realization of so(4,2), inherited from bulk AdS5 isometries

L = �4

"
1 +

�

4
�

s

1 +
(@�)2

�4

#

�

AdS5

Rolling solution:

�̄ =
↵

(�t)

For convenience we have chosen the constant so that a Poincaré invariant solution � = constant

exists only when � = 0, and have normalized the action so that expanding around this solution

we have a canonical, healthy scalar kinetic term. Note that in the limit of small field gradients,

|(@�)2| ⌧ �4, this action reduces to the negative quartic model (21).

A field configuration � = f , where f is a constant, is preserved only by the Poincaré

subalgebra spanned by �Pµ , �Jµ⌫ . Expanding in fluctuations about such a configuration,

� = f + ', the action of the symmetry generators on ' is

�Pµ' = �@µ' , �Kµ' = �2xµ��f � 2xµ (�� + x�@�)'+ x2@µ'+
1

(f + ')2
@µ',

�Jµ⌫' = xµ@⌫'� x⌫@µ' , �D' = ���f � (�� + xµ@µ)' , (35)

A symmetry is broken if and only if the transformation acting on the fluctuation has a constant

part. The only transformations without a constant part are the Poincaré transformations

�Pµ , �Jµ⌫ , so we confirm that the symmetry breaking pattern is so(4, 2) ! Poincaré in this

case. The di↵erence here is that the special conformal transformations are now non-linear,

since there are quadratic and higher order pieces coming from expanding out 1

(f+')2 in powers

of the fluctuation. In Sec. 2, the transformations were all at most linear in the fluctuations.

Looking for purely time-dependent solutions, � = �̄(t), the equation of motion derived

from (34) reduces to

d

dt

⇣
�̄ ˙̄�

⌘
= �̄3

�
4 + �� 2�̄�1 � 2�̄

�
, (36)

where �̄ = 1/
q
1� ˙̄�2/�̄4 � 1. We look for solutions of the form

�̄(t) =
↵

(�t)
, �1 < t < 0 , (37)

where ↵ can be assumed positive without loss of generality since the theory is Z
2

symmetric.

On the background (37), the relativistic factor � is a constant,

�̄(↵) =
1p

1� 1/↵2

> 1 , (38)

and the equation of motion (36) becomes

�̄(↵) = 1 +
�

4
. (39)

In the “non-relativistic” limit, ↵ � 1, we recover the relation (23) between ↵ and �. More

generally, since � � 1 the existence of a non-trivial solution requires

� > 0 . (40)
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The solution (37) is annihilated by the 10 generators �D, �Pi , �Ki , and �Jij , but not by

the 5 generators �P0 , �K0 , or �J0i , which act as

�P0�̄ =
�̄

t
; �J0i�̄ =

xi�̄

t
; �K0�̄ = �

✓
x2 +

1

�̄2

◆
�̄

t
. (41)

Our background therefore spontaneously breaks the so(4, 2) symmetry of the DBI action down

to an so(4, 1) subalgebra, realizing pseudo-conformal symmetry breaking in the same manner

as the background (23).

3.1 Quadratic action for fluctuations

For perturbations ' ⌘ �� �̄ about the background scaling solution (37), the unbroken so(4, 1)

subalgebra action starts at linear order in ',

�Pi' = �@i' �Jij' =
�
xi@j � xj@i

�
'

�D' = � (1 + xµ@µ)' �Ki' = �2xi'� 2xix�@�'+

✓
x2 +

1

�̄2

◆
@i'+O('2) , (42)

while the broken generators start at zeroth order in ',

�P0' =
�̄

t
+O(') , �J0i' = xi

�̄

t
+O(') , �K0' = �

✓
x2 +

1

�̄2

◆
�̄

t
+O(') . (43)

The di↵erence with the transformations here and those of (8) and (9) in Sec. 2 is that the trans-

formations now contain higher order pieces from expanding the denominators, even though the

symmetry breaking pattern is the same. In addition, the transformations at linear order for

the unbroken generators, and at zeroth order for the broken generators, are di↵erent because

of the 1/�̄2 terms.

These di↵erences in the transformation rules result in perturbations having a strictly

subluminal sound speed. Expanding (34) around the background solution (37), the quadratic

action for the fluctuations ' is

S =
1

2
�̄3

Z
d4x

✓
'̇2 � 1

�̄2

(@i')
2 +

6

t2
'2

◆
. (44)

As advocated, the sound speed of the fluctuations is strictly less then one

cs =
1

�̄
< 1 . (45)

More generally, we will see in Sec. 6 that the quadratic action (44), and in particular the

sound speed, is completely fixed by the symmetries (except for the overall normalization).
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Symmetry breaking pattern is still so(4,2) → so(4,1):
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DBI realization: quadratic fluctuations
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Quadratic action is fixed up to overall normalization by these symmetries:

The solution (37) is annihilated by the 10 generators �D, �Pi , �Ki , and �Jij , but not by

the 5 generators �P0 , �K0 , or �J0i , which act as

�P0�̄ =
�̄

t
; �J0i�̄ =

xi�̄

t
; �K0�̄ = �

✓
x2 +

1

�̄2

◆
�̄

t
. (41)

Our background therefore spontaneously breaks the so(4, 2) symmetry of the DBI action down

to an so(4, 1) subalgebra, realizing pseudo-conformal symmetry breaking in the same manner

as the background (23).

3.1 Quadratic action for fluctuations

For perturbations ' ⌘ �� �̄ about the background scaling solution (37), the unbroken so(4, 1)

subalgebra action starts at linear order in ',

�Pi' = �@i' �Jij' =
�
xi@j � xj@i

�
'

�D' = � (1 + xµ@µ)' �Ki' = �2xi'� 2xix�@�'+

✓
x2 +

1

�̄2

◆
@i'+O('2) , (42)

while the broken generators start at zeroth order in ',

�P0' =
�̄

t
+O(') , �J0i' = xi

�̄

t
+O(') , �K0' = �

✓
x2 +

1

�̄2

◆
�̄

t
+O(') . (43)

The di↵erence with the transformations here and those of (8) and (9) in Sec. 2 is that the trans-

formations now contain higher order pieces from expanding the denominators, even though the

symmetry breaking pattern is the same. In addition, the transformations at linear order for

the unbroken generators, and at zeroth order for the broken generators, are di↵erent because

of the 1/�̄2 terms.

These di↵erences in the transformation rules result in perturbations having a strictly

subluminal sound speed. Expanding (34) around the background solution (37), the quadratic

action for the fluctuations ' is

S =
1

2
�̄3

Z
d4x

✓
'̇2 � 1

�̄2

(@i')
2 +

6

t2
'2

◆
. (44)

As advocated, the sound speed of the fluctuations is strictly less then one

cs =
1

�̄
< 1 . (45)

More generally, we will see in Sec. 6 that the quadratic action (44), and in particular the

sound speed, is completely fixed by the symmetries (except for the overall normalization).

12

cs =
1

�̄
< 1Speed of fluctuations is strictly less than 1

Using this quadratic action, we can compute the power spectrum of '. In terms of

the sound horizon time y ⌘ t/�̄ and the canonically normalized variable v ⌘ �̄', the mode

function equation takes the same form as in the luminal case (13):

v00k +

✓
k2 � 6

y2

◆
vk = 0 , (46)

where 0 ⌘ @/@y. As before, the power spectrum is strongly tilted to the red:

P'(k) =
9

2

�̄2

k5(�t)4
. (47)

The scale invariant contribution must once again arise from weight-0 entropy perturbations.

In Sec. 5 we will show how these can naturally arise as embedding coordinates for a brane

moving in additional co-dimensions.

By examining the behavior of the perturbations, we can see that the background (37) is

again a dynamical attractor. In the limit k ! 0, where spatial gradients can be neglected, the

quadratic action (44) agrees with (12) with � = 1. Thus the time-dependence of the growing

mode is identical, and the time-shift argument (16) carries over to the DBI case.

4 Another Example: DBI Galilean Genesis

The original Galilean Genesis scenario [67] relies on the conformal galileon terms, which con-

sist of conformally-invariant derivative interaction terms, to generate a 1/t background. The

stress energy tensor of the conformal galileon can violate the null energy condition without

ghost instabilities or other pathologies [101], and thus can drive an expanding phase from an

asymptotically static past — the Galilean Genesis solution. One drawback of the scenario,

however, is that although perturbations propagate exactly at the speed of light on this back-

ground — as dictated by the general symmetry analysis reviewed in Sec. 2 — perturbations

can propagate superluminally on slightly di↵erent backgrounds, which lie within the purview

of the e↵ective theory.

In this Section we consider the DBI generalization of the Galilean Genesis scenario [67].

Aside from o↵ering another example of our symmetry-breaking pattern, it also presents a

cure to the superluminality problem — perturbations must propagate subluminally on the 1/t

background — while retaining the same number of symmetries. Alternatively, the sound speed

can be made subluminal through explicit breaking of special conformal transformations [73].

The action of the conformal DBI galileon has five independent conformally-invariant
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Power spectrum still red-tilted:
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DBI realization: weight 0 fields

Weight 0 fields have a natural interpretation as the brane moving in 
additional internal directions with isometries.

�

AdS5 × S1

Example: AdS5 × S1 weight 0 field is the S1 direction, shift symmetry
comes from isometry of S1

particular, invariance under the shift symmetry ✓ ! ✓ + c implies that the tadpole does not

depend on #.) Thus we consider the following action:

S�✓ =

Z
d4x�4

 
1 +

�

4
�
s

1 +
(@�)2

�4

+
(@✓)2

�2

+
(@�)2(@✓)2 � (@� · @✓)2

�6

!
, (67)

where we have canonically normalized ✓ so that it now ranges over (0, 2⇡`R ).

5.1 Pseudo-conformal background

To realize pseudoconformal symmetry breaking with this action, we must show that the equa-

tions of motion admit a solution for which

�̄ =
↵

(�t)��
=

↵

(�t)
; ✓̄ =

✓
0

(�t)�✓
= ✓

0

, (68)

where ↵ > 0, without loss of generality, and ✓
0

is constant (which can be arbitrary, thanks to

the shift symmetry). For purely time-dependent field profiles, the equations of motion are

d

dt

⇣
�̄ ˙̄�
⌘
= �̄� ˙̄✓2 + �̄3

✓
4 + �� 2�̄ � 2

�̄

◆
;

d

dt

⇣
�̄�̄2 ˙̄✓

⌘
= 0 , (69)

where the background relativistic factor is

�̄ ⌘ 1q
1� ˙̄�2/�̄4 � ˙̄✓2/�̄2

. (70)

Substituting our ansatz (68), the equation of motion implies that �̄ is constant and related to

� by

�̄(↵) =
1p

1� 1/↵2

= 1 +
�

4
. (71)

The background �̄ = �↵/t is annihilated by the generators �D, �Pi , �Ki , and �Jij , as well

as �C , but not by the 5 generators �P0 , �K0 , or �J0i , which act as (41). The background ✓̄ = ✓
0

is annihilated by all 15 conformal generators �Pµ , �Jµ⌫ , �D, �Kµ , but not by the shift symmetry

�C , which acts as �C ✓̄ = 1. The background solution �̄ = �↵/t, ✓̄ = ✓
0

therefore spontaneously

breaks six of the 16 symmetries of the action. The 10 unbroken generators �Pi , �Jij , �D , �Ki

generate a residual so(4, 1) algebra. The background (68) realizes pseudo-conformal symmetry

breaking (1), and also spontaneously breaks the shift symmetry ✓ ! ✓ + c.
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✓

5.2 Quadratic action for fluctuations

Consider now how the symmetries act on the fluctuations � = �̄+' and ✓ = ✓̄+#. To leading

order in ', the unbroken so(4, 1) subalgebra acts linearly on ',

�Pi' = �@i' , �Jij' =
�
xi@j � xj@i

�
' ,

�D' = � (�� + xµ@µ)' , �Ki' = �2xi (�� + xµ@µ)'+

✓
x2 +

1

�̄2

◆
@i'+ . . . , (72)

while the broken conformal generators act non-linearly on ',

�P0' =
�̄

t
+ . . . , �J0i' = xi

�̄

t
+ . . . , �K0' = �

✓
x2 +

1

�̄2

◆
�̄

t
+ . . . . (73)

The ellipses in these expressions indicate terms that serve to constrain contributions to the

action of higher than quadratic order, and hence can be ignored for the present purpose. To

leading order in ', the unbroken so(4, 1) subalgebra acts linearly on #,

�Pi# = �@i# , �Jij# =
�
xi@j � xj@i

�
# ,

�D# = � (�✓ + xµ@µ)# , �Ki# = �2xi (�✓ + xµ@µ)#+

✓
x2 +

1

�̄2

◆
@i#+ . . . (74)

while the broken conformal generators also act linearly on #,

�P0# = �@t# , �J0i# = t@i#� xi@t# ,

�K0# = �2t (�✓ + xµ@µ)#+

✓
x2 +

1

�̄2

◆
@t#+ . . . (75)

The shift symmetry acts on ' and # as

�C' = 0 , �C# = 1 . (76)

Expanding the action (67) around the background �̄ = ↵/(�t) and ✓̄ = ✓
0

to quadratic

order in the perturbations ' and #, we obtain

S
quad

=
1

2
�̄3

Z
d4x

✓
'̇2 � 1

�̄2

(@i')
2 +

6

t2
'2

◆
+

1

2
�̄

Z
d4x �̄2(t)

✓
#̇2 � 1

�̄2

(@i#)
2

◆
. (77)

Both ' and # propagate with identical, subluminal sound speed cs = �̄�1 < 1. Since these

fields have di↵erent weights, they do not mix at quadratic level, consistent with the general

discussion in Sec. 6. The ' part of the action is identical to (44), and hence leads to the same

power spectrum as in (47). To calculate the power spectrum for #, we introduce as before the

sound horizon time y ⌘ t/�̄ and define the canonically normalized variable u ⌘ �̄#:

S# =
1

2

Z
dy d3x

✓
(u0)2 � (@iu)

2 +
2

y2
u2

◆
. (78)
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Quadratic action gives scale invariant fluctuations,

The equation of motion for the mode functions is given by

u00
k +

✓
k2 � 2

y2

◆
uk = 0 , (79)

whose solution with the standard adiabatic vacuum is uk = e�iky
p
2k

⇣
1� i

ky

⌘
. The power spec-

trum for the original variable is therefore scale invariant:

P#(k) =
�̄2 � 1

2

1

k3

. (80)

Note that the amplitudes of the fields # and ' are related: they are both set by �̄.

6 The General Quadratic Action

In this Section, we apply symmetry arguments to derive the most general 2-derivative quadratic

action for perturbations around the background (7), including multiple fields �I of arbitrary

conformal weights �I . The derivation closely parallels that presented in [58] (see Sec. 2 of

that paper) and reviewed in Sec. 2, with the key di↵erence being that the speed of propagation

is now fixed to be subluminal, because the conformal symmetries of interest are of the DBI

type, with special conformal transformations including terms of all orders in 'I = �I � �̄I .

We will see that the resulting action is fixed by the symmetries up to a few constants. The

action will linearly realize the unbroken symmetries, and non-linearly realize the broken ones.

For the purpose of deriving the quadratic action, the main di↵erences between the DBI

conformal symmetries — e.g., (72)�(75) — and the ordinary ones — e.g., (9) — amount to

additional 1/�̄2 ⇠ t2 contributions to the �Kµ transformations. Inspired by the transformation

rules (72)�(75) that arise in the geometric construction, we assume the unbroken symmetries

act on the fluctuations linearly as

�Pi'I = �@i'I , �Jij'I = (xi@j � xj@i)'I ,

�D'I = � (�I + xµ@µ)'I , �Ki'I = �2xi (�I + xµ@µ)'I +
�
xµxµ + A2t2

�
@i'I + . . . (81)

where the constant A is a model-dependent function of the ↵I ’s of the background solution.

If �I 6= 0 (and ↵I 6= 0), then the 5 broken generators act non-linearly on the perturbations,

�P0'I = � �I↵I

(�t)�I+1

+ . . . �J0i'I = �xi
�I↵I

(�t)�I+1

+ . . .

�K0'I =
�
xµxµ + A2t2

� �I↵I

(�t)�I+1

+ . . . (82)
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This kind of setup is common in attempts to realize inflation in string 
theory (DBI inflation).



AdS/CFT realization?

t = 0

t = �1

AdS5

• Realization in a truly quantum strongly 
coupled CFT.

• Cosmological application of AdS/CFT where 
we are interested in the boundary.

• Dual AdS should be a configuration which is 
constant on a foliation of AdS5 by dS4 leaves:

�Bulk = �

✓
z

(�t)

◆

 z



Distinguishable from inflation?

• Detailed predictions (spectral index, non-gaussianity, etc...) will depend 
on the realization.

• Pseudo-conformal scenario is more symmetric than inflation 

• Symmetries → Ward identities → constraints/relations on correlators

Inflation (spectator) so(4,1) → so(4,1)

Inflation (inflaton) so(4,1) → iso(3)

Pseudo-conformal so(4,2) → so(4,1)

Symmetry breaking patterns:



Challenges

Models which satisfy NEC have contracting 
spacetime → Bounce required to match → 
NEC violation during matching.
Models which have expanding spacetime 
violate NEC.

• Requires matching onto a standard radiation dominated 
cosmology.

• Seems to require NEC violation at some stage: 

• How are the scale invariant perturbations of the weight zero 
fields imprinted onto the adiabatic mode?

• Gravity waves?

• Non-gaussianities?

• Solid realization within a stable quantum mechanically 
conformal CFT (AdS/CFT?)

Brandenberger, Wang 1206.4309

Brandenberger, Davis, Perreault 1105.5649



Conclusions

• The conformal scenario is an alternative to inflation.

• Generic scenario: early universe is a CFT in ≈ flat 
spacetime, with specific time-dependent VEVs:                   

• Symmetry breaking pattern: so(4,2) → so(4,1), more 
symmetric than inflation.

• Requires matching to a standard radiation dominated phase 
(probably requires some NEC violation).

�� ⇠ 1/(�t)�


