Rik J. Williams

Carnegie Observatories, Pasadena

<u>With:</u> John Mulchaey Dan Kelson Alan Dressler Ryan Quadri Pat McCarthy Marijn Franx (Leiden)

Wilkinson Microwave Anisotropy Probe

Wilkinson Microwave Anisotropy Probe

Wilkinson Microwave Anisotropy Probe

The Cosmic Pie

The Cosmic Pie

Galaxy formation, cold era (~1-3 Gyr after Big Bang; z>2.5)

Dekel et al. 2009

Galaxy formation, cold era (~1-3 Gyr after Big Bang; z>2.5)

Dekel et al. 2009

Galaxy formation, t > 3 Gyr

credit: B.D. Oppenheimer

Stars

Galaxy assembly in the thermal era Dynamically hot structures surrounded by thermally hot gas.

z~7 galaxy candidates (R. Bouwens)

Hopkins & Beacom 2006

Surveys and Galactic Anthropology

WFCAM detector, UK Infrared Telescope

IMACS spectrograph, Magellan

Hopkins & Beacom 2006

* UKIDSS UDS / Subaru-XMM Deep
 Survey (z=1-3)

- * 0.8 square degrees of optical-mid
 IR photometry, ~80,000 detected
 galaxies
- * K-selected
- * Photometric redshifts to ~2%

- * Carnegie-Spitzer-IMACS Survey
 (z=0.3-1.3)
 - * 5.3 square degrees, photometry and low-resolution prism spectroscopy
 - * 35,000 galaxy spectra
 - Redshifts to 1%, strong emission
 lines
 - * IRAC 3.6um selected
 - * Ultimately: 15 square degrees,~100,000 galaxies

- * Sloan Digital Sky Survey (z<0.2)
 - Millions of spectra over 25% of the sky (but we cut it down to ~10⁴ galaxies)

From photons to physics

* SED fitting

Maximum likelihood fit of a library of stellar population models; varying age, dust, star formation rate

Best-constrained parameters: Redshift Luminosity Mass-to-light ratio

UDS catalog, Williams et al. 2009

From photons to physics

* SED fitting

Maximum likelihood fit of a library of stellar population models; varying age, dust, star formation rate

Best-constrained parameters: Redshift Luminosity Mass-to-light ratio

CSI, Kelson et al. (2013)

Bell et al. (2004)

* UVJ Color Cut

Rest-frame colors cleanly separate star-forming and quiescent galaxies

Williams et al. 2009; 2013 in prep

* UVJ Color Cut

Rest-frame colors cleanly separate star-forming and quiescent galaxies

Williams et al. 2009; 2013 in prep

* UVJ Color Cut

Rest-frame colors cleanly separate star-forming and quiescent galaxies

Strong bimodality suggests rapid quenching, persists to z>2

Williams et al. 2009; 2013 in prep

* UVJ Color Cut

Rest-frame colors cleanly separate star-forming and quiescent galaxies

Strong bimodality suggests rapid quenching, persists to z>2

Williams et al. 2009; 2013 in prep

* UVJ Color Cut

Rest-frame colors cleanly separate star-forming and quiescent galaxies

Strong bimodality suggests rapid quenching, persists to z>2

Williams et al. 2009; 2013 in prep

Is there a mass threshold for quiescence?

Is there a mass threshold for quiescence?

Is there a mass threshold for quiescence?

Angular correlation fn w(θ) = A $\theta^{-\delta}$

Landy-Szalay estimator:

 $w(\theta) \sim \frac{DD(\theta) - 2DR(\theta) + RR(\theta)}{RR(\theta)}$

DD = data-data pairs DR = data-random RR = random-random

Angular correlation fn w(θ) = A $\theta^{-\delta}$

Landy-Szalay estimator:

```
w(\theta) \sim \frac{DD(\theta)-2DR(\theta)+RR(\theta)}{RR(\theta)}
```

DD = data-data pairs DR = data-random RR = random-random

Separating the samples

Williams et al. 2009

Quiescent galaxies cluster more strongly, live in higher-mass DM halos

Williams et al. 2009

Quiescent galaxies cluster more strongly, live in higher-mass DM halos

This effect is independent of stellar mass

Williams et al. 2009
There may be a (halo) mass threshold for quiescence.

~10¹² M_{sun} (consistent with theory)

Galaxy halos or something bigger?

Galaxy halos or something bigger?

Dressler 1980

Williams et al. 2012

Williams et al. 2012

High-resolution followup (preliminary!)

M*~2.5x10¹²

High-resolution followup (preliminary!)

High-resolution followup (preliminary!)

M*~4x10¹¹

M*~2.5x10¹²

 ΔRA (arcmin)

 ΔRA (arcmin)

z=0.4

?

Williams et al. 2005

Local

Williams et al. 2005

Local Groups/ Filaments?

Williams et al. 2005

Williams et al. 2010b

Zappacosta et al. (2010)

Zappacosta et al. (2010)

Williams, Mulchaey, & Kollmeier 2012

Williams, Mulchaey, & Kollmeier 2012

Williams, Mulchaey, & Kollmeier 2012
Direct signatures of the thermal era

Williams, Mulchaey, & Kollmeier 2012

Hot, dense gas is associated with galaxies and groups

Hot, dense gas is associated with galaxies and groups

What's next?

- Elephant in the room: AGN quenching/feedback
 - X-ray and line diagnostics will be possible with full CSI data
 - Role of AGN in group and field galaxies
- Statistical sample of group velocity dispersions across masses and redshifts (upcoming Magellan program)
- Progenitors of z=2-3 massive quiescent galaxies: where did they come from?

 Probing lower density gas with X-ray/UV stacking; galaxies around COS-Halos absorbers (HST snapshots)

• The thermal era (z<2; past 10 Gyr) is characterized by hot intergalactic gas surrounding dynamically hot stellar systems

• The thermal era (z<2; past 10 Gyr) is characterized by hot intergalactic gas surrounding dynamically hot stellar systems

• Star formation quenching depends more on halo mass than stellar mass (though the two are correlated)

• The thermal era (z<2; past 10 Gyr) is characterized by hot intergalactic gas surrounding dynamically hot stellar systems

• Star formation quenching depends more on halo mass than stellar mass (though the two are correlated)

• Galaxy groups grow dramatically during the thermal era, possibly accelerating the decline in star formation

• The thermal era (z<2; past 10 Gyr) is characterized by hot intergalactic gas surrounding dynamically hot stellar systems

• Star formation quenching depends more on halo mass than stellar mass (though the two are correlated)

• Galaxy groups grow dramatically during the thermal era, possibly accelerating the decline in star formation

• We may have detected the hot gas directly responsible for quenching star formation during the thermal era