What turns galaxies off? - Revealing the links between galaxy color, structure and dark matter halo properties

David Wake (University of Wisconsin-Madison)

Wake, van Dokkum and Franx 2012 Wake, Franx and van Dokkum 2012

David Wake, University of Wisconsin Madison

Kavli IMPU

Galaxy bi-modality

David Wake, University of Wisconsin Madison

Kavli IMPU

Galaxy bi-modality

Kauffmann et al. (2003)

David Wake, University of Wisconsin Madison

Kavli IMPU

What drives the bi-modality?

Kauffmann et al. (2003, 2006) - Surface Stellar Mass Density ($\Sigma_{*} = M/R_{e}^{2}$) provides the best correlation. Franx et al. (2008) - Inferred velocity dispersion (M/R_e) may be better than Σ_{*} .

David Wake, University of Wisconsin Madison

Kavli IMPU

What drives the bi-modality?

Bell 2008 - Sersic index (n) may be better than Σ_{*} .

Surface brightness $\propto \exp(radius^n)$

David Wake, University of Wisconsin Madison

Kavli IMPU

What drives the bi-modality?

Bell et al. (2012) - n is even better than inferred velocity dispersion.

David Wake, University of Wisconsin Madison

Kavli IMPU

Which of these properties is the best indicator of a galaxy's color?

- SDSS data is large enough to make a precise test.
- Spectroscopic data provides measured velocity dispersion (σ).
- Fix each parameter in turn and see how the mean color depends on the others.
- If color only depended on say mass, when the mass is fixed their will be no trend with the other parameters.

The data

- SDSS DR7 MAIN galaxies selected from the NYUVAGC (Blanton et al. 2003).
- NYUVAGC provides k-corrected colors, Sersic fits to give n and R_e.
- Stellar mass-to-light ratios from the MPA-JHU group (Kauffmann et al. 2003).
- Fiber velocity dispersions are transformed to central dispersions within Re/8 (Cappellari et al. 2008).
- Morphological classifications come from Galaxy Zoo (Linetott et al. 2011).
- Restrict the sample to 0.02 < z < 0.1, $M_{star} > 10^{10} M_{\odot}$, $\sigma > 65 km/s$ and no edge on galaxies ($P_{edge} < 0.3$).
- This leaves a sample of 111,966 galaxies.

The Structural Parameters

David Wake, University of Wisconsin Madison

Kavli IMPU

Isolating the dominant correlation.

Surface Mass Density vs Stellar Mass

Stellar Mass vs Sersic Index

David Wake, University of Wisconsin Madison

Kavli IMPU

Surface Mass Density vs Sersic Index

David Wake, University of Wisconsin Madison

Kavli IMPU

Velocity Dispersion vs Stellar Mass

David Wake, University of Wisconsin Madison

Kavli IMPU

Velocity Dispersion vs Surface Mass Density

David Wake, University of Wisconsin Madison

Kavli IMPU

Velocity Dispersion vs Sersic Index

David Wake, University of Wisconsin Madison

Kavli IMPU

David Wake, University of Wisconsin Madison

Kavli IMPU

ATLAS^{3D} Cappellari et al. (2012)

David Wake, University of Wisconsin Madison

Kavli IMPU

DEEP2/AEGIS - Cheung et al. (2012)

David Wake, University of Wisconsin Madison

Kavli IMPU

What causes the observed correlations?

- Best indicator is σ (or Σ_{1kpc}), followed by n, Σ (or M/ R_e) and finally mass.
- This implies that the formation of a dominant bulge is contributing to the shut off of SF (Major merger, gas exhaustion/removal, AGN feedback e.g. Hopkins et al. 2009).
- Something is keeping these galaxies shut off high mass halos have shock heated gas and continuing 'radio mode' feedback (e.g. Croton et al. 2006, Dekel & Birnboim 2006)
- Could σ be telling us about the halo (more so than M_{star})?

Using clustering to relate galaxies to dark matter halos

Zehavi et al. (2011)

- Dependence of clustering on luminosity, stellar mass, color, SFR and morphology have all be investigated.
- For central galaxies M_{star} is thought to be tightly correlated with M_{halo}.
- No one has investigated how clustering depends on σ or Σ even though they are strongly correlated with galaxy properties.

Which of stellar mass, surface mass density or velocity dispersion is the best indicator of clustering amplitude?

- Fix one parameter whilst varying the other and see how the clustering amplitude changes.
- Large volume limited sample of galaxies, complete in both mass and velocity dispersion.
- Parent sample with 0.04 < z < 0.15 and M_{star} > $6 \times 10^{10} M_{\odot}$.

Samples are matched by rank in either σ or M_{star}

David Wake, University of Wisconsin Madison

Kavli IMPU

Varying σ at fixed M_{star}

David Wake, University of Wisconsin Madison

Varying σ at fixed M_{star}

1000 $11 < M_{star} < 11.16$ Ē $234.8 < \sigma < 921.7$ $79 < \sigma < 185.2$ 100 10 1000 $11.16 < M_{star} < 11.32$ $257.4 < \sigma < 565.1$ $81.4 < \sigma < 207.9$ 100 d M 10 1000 $11.32 < M_{star} < 11.48$ $279.4 < \sigma < 562.7$ $102.9 < \sigma < 232.9$ 100 10 0.1 10 1 $r_{p} (h^{-1}Mpc)$

Varying M_{star} at fixed σ

David Wake, University of Wisconsin Madison

Varying M_{star} at fixed σ

David Wake, University of Wisconsin Madison

Potential systematic errors?

- Errors on M_{star} are much larger than those on σ .
- Replace M_{star} with dynamical mass $(M_{dyn} \propto \sigma/R_e)$
- Replace σ with surface mass density $(\Sigma = M_{star}/R_e^2)$.

David Wake, University of Wisconsin Madison

Kavli IMPU

24th October 2012

Varying σ at fixed M_{dyn}

Combined $P_{ratio=1} = 0.0071$

Varying M_{star} at fixed Σ

Combined P_{ratio=1} = 0.66

David Wake, University of Wisconsin Madison

Kavli IMPU

David Wake, University of Wisconsin Madison

Kavli IMPU

Third variable?

- Both σ and Σ are more strongly correlated than either M_{star} or M_{dyn} with clustering amplitude.
- What about color or morphology?

Fixed M_{dyn}

Fixed σ

David Wake, University of Wisconsin Madison

Kavli IMPU

Dependence of clustering amplitude on morphology

Dependence of clustering amplitude on color

Color could be the third variable

David Wake, University of Wisconsin Madison

Kavli IMPU

Red galaxies only

Kavli IMPU

Elliptical galaxies only

Combined $P_{ratio=1} = 0.0043$

Combined $P_{ratio=1} = 0.77$

• Even at fixed color or morphology σ is the best indicator of clustering amplitude.

Relating clustering amplitude and halo properties.

- Three possibilities:
 - I. Tighter correlation between σ and M_{halo} than between M_{star} and M_{halo} for central galaxies.
 - 2. There is a correlation between σ and halo formation time for central galaxies.
 - 3. There is correlation between σ and M_{halo} for satellite galaxies.

σ and M_{halo} Centrals

σ and halo formation time

Gao et al. (2005)

David Wake, University of Wisconsin Madison

Kavli IMPU

σ and M_{halo} Satellites

- Need satellite galaxies of a given mass to be in a higher mass halo if they have a higher σ.
- Tidal striping could cause this.

David Wake, University of Wisconsin Madison

Kavli IMPU

σ and M_{halo} Satellites

- Need satellite galaxies of a given mass to be in a higher mass halo if they have a higher σ.
- Tidal striping could cause this.

David Wake, University of Wisconsin Madison

Kavli IMPU

Back to color

- σ is the best indicator of a galaxy's color.
- High σ means their is a large bulge, which means a large black hole => truncation of SF.
- σ could also be better correlated with halo mass or halo age.
- High halo mass is required to maintain a low SFR (shock heated gas, radio mode feedback).
- Old halos should host galaxies with older stellar populations.

Next steps

- Which mechanism is responsible for the tight relationship between σ - clustering amplitude?
 - Lensing (CS82, CFHT-LS, HSC)
 - Satellite kinematics
 - Group catalogs
- Resolved spectroscopy MaNGA.