Detectable Signature of First Stars in 21-cm Signal

In Collaboration with:

Rennan Barkana, TAU Eli Visbal, Harvard Christopher Hirata, Caltech Dmitri Tseliakhovich

Anastasia Fialkov Tel Aviv University 8 November 2012, IPMU

Outline:

- 1. Basic Intro:
 - i. First Stars
 - ii. 21-cm

- 2. Effect of Relative Velocities on the First Stars
- 1. Signature of First Stars in the 21-cm Signal

Gas

DM

- AF, Barkana, Tseliakhovich & Hirata (2012)
- Visbal, Barkana, AF, Tseliakhovich & Hirata, Nature (2012)
- **AF**, Barkana, Visbal, Tseliakhovich, Hirata, Submitted

Cosmic History:

Image: Loeb, Scientific American 2006

First stars heat & ionize the gas

Cold neutral gas \rightarrow hot ionized gas

Image: Loeb, Scientific American 2006

CMB (z ~ 1100)

Point sources (z < 10)

Local structure (z < 2)

Unobserved:

Image: Loeb, Scientific American 2006

Dark ages First stars & galaxies Reionization

This talk: The Epoch of the First Stars

Image: Loeb, Scientific American 2006

The First Stars:

From H_2 in light halos M ~ 10⁵ M_{sun} Tegmark et al 1997

Formed at z < 65 AF, Barkana, Tseliakhovich, Hirata 2012

Hydrogen

Artist impression of the core of the SKA. Created by: Xilostudios

HI can be probed with redshifted 21-cm line

21-cm as a Space Probe. Since 1942

1942 – Van de Hulst predicted 21-cm line from interstellar HI

1952 – HI in the Milky Way First detection by Ewen and Purcell

First Detector

Future – Probe the epoch of first stars

Van de Hulst

21-cm Line: Spin-Flip Transition of Hl

v = 1420 MHz (Radio)

 $\lambda = 21 \text{ cm}$

Parallel spins: higher-energy configuration Photon, wavelength = 21 cm

Opposite spins: lower-energy configuration

 $n_1/n_0 \equiv 3exp(-T_*/T_s), \qquad T_* = 0.068 \text{ K}$

What Determines T_s

- Absorption of CMB: $T_S \rightarrow T_{CMB}$ $\bigwedge_{\gamma_{CMB}}$
- Collisions with other HI: $T_S \rightarrow T_{gas}$

• Absorption and reemission of Ly α : $T_S \rightarrow T_{gas}$

 $\gamma_{Ly\alpha}$

21-cm Signal from High Redshifts

Redshifted 21-cm signal of HI from high z:

$$\approx 9 x_{HI} (1+\delta)(1+z)^{1/2} (1-T_{CMB}T_{S}^{-1})$$

Global signal (model dependent)

Source: CMB Black Body

Observations are challenging! Foregrounds ≈ (10⁵ – 10⁹) × Signal

Astrophysical Foregrounds

- Galactic Synchrotron Emission
- Extragalactic Radio Sources

Synchrotron De Oliveira-Costa *et al* 2008

Terrestrial

- Radio Frequency Interference
- Ionosphere Distortions

Current Effort:

Epoch of Reionization LOFAR 11.5 > z > 6.5 (PS) GMRT z \approx 9 (PS)

Future Telescopes SKA 20 > z (PS) LEDA 30 > z >15 (global) DARE 35 > z >11 (global)

LEDA

Outline:

- 1. Basic Intro:
 - i. First Stars
 - ii. 21-cm

2. Effect of Relative Velocities on the First Stars

1. Signature of First Stars in the 21-cm Signal

IC for Structure Formation Baryon – DM Relative Velocity

- Supersonic: $\sigma_{vbc} \approx 30$ km/s $\approx 5c_s$
- Decays as (1+z)
- Random: MB distribution

Tseliakhovich & Hirata, 2010

Gas, V_{bc}

DM

Gas overshoots DM halos

IC for Structure Formation Baryon – DM Relative Velocity

- Supersonic: $\sigma_{vbc} \approx 30$ km/s $\approx 5c_s$
- Decays as (1+z)
- Random: MB distribution

$v_{bc} \rightarrow$ Large Impact on Structure Formation at High z

 ρ_{gas} z = 20, $M_h \sim 1.5 \times 10^5$

O'Leary & McQuinn, 2012

v_{bc} Main Impact on High z and Small Scales 10⁴ - 10⁷ M_{sun}

- Scale-dependent bias
- Suppresses halo abundance

Tselikhovich & Hirata 2010; Naoz, Yoshida, Gnedin 2012

- Suppresses amount of gas in halos
- BAO in PS of early structure Dalal, Pen & Seljak 2010; Tselikhovich, Barkana &Hirata 2011; Naoz, Yoshida, Gnedin 2012
- Harder to form stars (boosts minimal cooling mass)
 AF, Barkana, Tselikhovich & Hirata 2012

(relying on the simulations: Maio, Koopmans & Ciardi 2011; Stacy, Bromm & Loeb 2011; Greif, White, Klessen & Springel 2011; Naoz, Yoshida & Gnedin 2011; O'Leary & McQuinn 2012)

$v_{bc} \rightarrow Less Halos Form$

Tseliakhovich & Hirata(2010)

The variance of fluctuations in spheres with mass M

z = 20

Tseliakhovich, Barkana & Hirata (2010)

$v_{bc} \rightarrow$ Less Gas in Halos

Dalal, Pen & Seljak (2010)

 v_{bc} acts as pressure $\rightarrow\,$ less gas in halos $\,$ M/ $M_{\odot}\,<\,10^7$

Tseliakhovich, Barkana & Hirata (2010)

z = 20

Simulations: Minimal H₂ Cooling Mass

Stacy, Bromm & Loeb (2011)

Greif, White, Klessen & Springel (2011)

Stars form later and in more massive halos

M_{cool} Depends on v_{bc}

$M_{cool}(v_{bc}) \rightarrow v_{bc}$ affects star formation

AF, Barkana, Tseliakhovich & Hirata (2012)

Greif, White, Klessen & Springel (2011)

v_{bc} Suppresses Gas Fraction in Halos

Minihalos at z = 20: by 3.1 Star-forming halos & stars at z = 20: by 1.8

Tseliakhovich, Barkana & Hirata (2010) **AF**, Barkana, Tseliakhovich & Hirata (2012)

v_{bc} Delays Star Formation

The redshift of the first star $\Delta z \sim 5$, $\Delta t \sim 3.6$ Myr, $\sim 10\%$ effect

Random v_{bc} → Patchy Early Universe

400 Mpc

Contribution of v_{bc} bins to star formation

AF, Barkana, Tseliakhovich & Hirata (2012)

First Stars are Highly Biased

1. Supersonic relative velocities \rightarrow scale dependent bias

Tselikhovich & Hirata 2010; Dalal, Pen & Seljak 2010; Tselikhovich, Barkana & Hirata, 2011; Maio, Koopmans & Ciardi 2011; Stacy, Bromm & Loeb 2011; Greif, White, Klessen & Springel 2011; Naoz, Yoshida & Gnedin 2011; O'Leary & McQuinn 2012; **AF**, Barkana, Tselikhovich & Hirata 2012

Velocity Pattern

v_{bc} suppresses star formation

First Stars are Highly Biased

- 1. Supersonic relative velocities \rightarrow scale dependent bias
- 2. Local density fluctuations are biased by δ_{LS}

Press & Schechter 1974; Bardeen, Bond, Kaiser & Szalay 1986; Kaiser 1984; Bond, Cole, Efstathiou & Kaiser 1991; Cole & Kaiser 1989; Mo & White 1996

First Stars are Highly Biased

- 1. Supersonic relative velocities \rightarrow scale dependent bias
- 2. Local density fluctuations are biased by δ_{LS}

Press & Schechter 1974; Bardeen, Bond, Kaiser & Szalay 1986; Kaiser 1984; Bond, Cole, Efstathiou & Kaiser 1991; Cole & Kaiser 1989; Mo & White 1996

Star formation starts in regions with high δ_{LS} and low v_{bc}

Spatial Distribution of First Rare Stars

Visbal, Barkana, **AF,** Tseliakhovich & Hirata, *2012, Nature*

We need to include

- 1. Stars (small scales)
- 2. Fluctuations (large scales)

Hard to do in numerical simulations

Spatial Distribution of First Rare Stars

Visbal, Barkana, **AF,** Tseliakhovich & Hirata, *2012, Nature*

We need to include

- 1. Stars (small scales)
- 2. Fluctuations (large scales)

Use hybrid methods

- Zagh et al 2005; Mesinger & Furlanetto 2007; Geil & Wyithe 2008; Alvarez et al 2009; Choudhury, Heahnelt & Regan 2009; Thomas et al 2009; Mesinger, Furlanetto, Cen 2011 (21CMFAST);
- Visbal, Barkana, AF, Tseliakhovich & Hirata, 2012, Nature; AF, Barkana, Visbal, Tseliakhovich & Hirata, 2012, submitted

Hybrid Method

- Large scales (> 3 Mpc): linear evolution
- Small scales (< 3 Mpc): evolve nonlinearly Analytical models, small scale simulations

- Volume ~ (400 Mpc)³
- Initial conditions for δ_{LS} and v_{bc}
- Pixels of 3 Mpc each of fixed $\delta_{LS} \& v_{bc}$

Initial Conditions: Realistic Sample of the Universe

Realistic samples of the Universe on large scales

Gas Fraction in Star Forming Halos

Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

The Effect of v_{bc} Decays with Redshift Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

Log [gas fraction (normalized)

Outline:

- 1. Basic Intro:
 - i. First Stars
 - ii. 21-cm

2. Effect of Relative Velocities on the First Stars

3. Signature of First Stars in the 21-cm Signal

Starlight Couple to T_S → Signature of Stars it 21-cm

Lya: $T_{s} \rightarrow T_{gas}$ (Wouthuysen-Field effect)

Lyman-Werner : Dissociate $H_2 \rightarrow$ Lessen star formation ($T_{gas} \downarrow$) "Negative feedback to star formation"

X-rays (starbursts): Heat the gas $(T_{gas} \uparrow)$

21-cm from Heating Fluctuations at Heating Transition

Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

Pritchard & Loeb, 2012

Heating Transition $T_{gas} = T_{CMB}$ (we set z = 20)

21-cm from Heating Fluctuations at Heating Transition

Visbal, Barkana, AF, Tseliakhovich, Hirata, Nature (2012)

Hybrid methods

Fluctuations in X-rays (maximal around z ~ 20)

- ✓ LW "toy models":
 - Molecular cooling (no LW feedback)
 - Atomic cooling (saturated LW feedback)

Ignore: Fluctuations in Ly α (max around z ~ 30)

21-cm from Heating Fluctuations

Feedback Erases BAO

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

21-cm Power Spectrum at z_{heat}

Visbal, Barkana, AF, Tseliakhovich & Hirata, Nature (2012)

Feedback, $v_{bc} \rightarrow BAO$, stronger clustering

Following Time Evolution of 21-cm Signal

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

- Hybrid methods + Simulation
- Fluctuations in X-rays
- Fluctuations in LW, realistic LW
- Interplay between LW and v_{bc}

 $M_{cool}(v_{bc}, J_{LW}, z) = [1+6.96(4 \pi J_{LW})^{0.47}] \times M_{cool,0}(v_{bc})$ Machacek et al 2001; Wise & Abel 2007; O'Shea & Norman 2008

Relative Timing: LW & Heating

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

No v_{bc} , no fbk v_{bc} , no fbk v_{bc} weak fbk v_{bc} strong fbk v_{bc} saturated fbk

LW transition: $z_{LW} \approx 19 - 23$

Relative Timing: LW & Heating

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

No v_{bc} , no fbk v_{bc} , no fbk v_{bc} weak fbk v_{bc} strong fbk v_{bc} saturated fbk

Heating: $z_{heat} \approx 15 - 18$

Heating is delayed by v_{bc} & LW ~ 3% (no feedback) ~ 17% (saturated feedback)

Best Prospects at z_{heat} + 3 ≈ 20

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

Evolution with time $\delta T_b - \langle \delta T_b \rangle$

150

100

50

0

-50

-100

No v_{bc}

V_{bc}

Best Prospects at z_{heat} + 3 \approx 20

(AF, Barkana, Visbal, Tseliakhovich, Hirata, Submitted)

 v_{bc} no fbk v_{bc} weak fbk v_{bc} strong fbk v_{bc} saturated fbk

Dashed: noise

 $\frac{\text{S/N}^2_{\text{new}} \sim 2.6 \times \text{S/N}^2_{\text{old}}}{\text{S/N}^2_{\text{new}} \sim 4.4 \times \text{S/N}^2_{\text{old}}}$

Summary and Future Plans

- Velocity is important
- v_{bc} & LW have strong effect on 21-cm signal
- Good observational prospects for $z \approx 20!$

Future Plans

- Fluctuations from Ly α
- Explore parameter space
- Shock heating
- More simulations needed

Thank you!