Primordial Spikes from Wrapped Brane Inflation

Takeshi Kobayashi (CITA)

based on arXiv:1210.4427 w/ J. Yokoyama

IPMU, December 11, 2012

Primordial Density Perturbations from Cosmic Inflation

image: NASA/WMAP Science Team

Power Spectrum of Perturbations

almost scale-invariant, with amplitude ~10⁻⁹

image : NASA / WMAP Science Team

image : M. Blanton and SDSS

A Closer Look at the Primordial Power Spectrum

fine structures in the power
 spectrum can tell us much
 about early universe physics

• e.g. oscillations as "standard clocks" Chen '11

Wrapped brane inflation produces spikes that are tied to properties of the extra dimensional space.

Brane Inflation

Dvali, Tye '98

Branes moving along the extra dimensions can drive cosmic inflation.

Inflation with Wrapped Branes

TK, Mukohyama, Kinoshita '07 Becker, Leblond, Shandera '07 Silverstein, Westphal '10

p-branes with p > 3 wrap the internal manifold

brane's oscillation modes (i.e. KK modes)
 excited during inflation by localized sources/features

Inflation with Wrapped Branes

TK, Mukohyama, Kinoshita '07 Becker, Leblond, Shandera '07 Silverstein, Westphal '10

p-branes with p > 3 wrap the internal manifold

brane's oscillation modes (i.e. KK modes)
 excited during inflation by localized sources/features

Excited KK modes produce spikes!

Effective 4-Dim. Theory

- inflaton (= zero mode position of brane) couples to heavy oscillating fields (= KK modes)
- resonant features in the pert. spectrum are localized to narrow Δk
 - (in contrast to most previous works)
- brane's Nambu-Goto action sources strong resonance

Outline

- wrapped brane inflation setup
- effects on curv. pert. from oscillating KK modes
 - weak resonance sourcing oscillations

strong resonance sourcing spikes

 $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} + A^{2}dr^{2} + B^{2}r^{2}d\lambda^{2}$

Nambu-Goto action $S = -T_4 \int d^5 \xi \sqrt{-\det(G_{MN})}$

cf. D-brane monodromy model by Silverstein & Westphal '08

in the absence of KK modes :

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{V(\phi)}{\gamma} \simeq -V(\phi) - \frac{1}{2}(\partial\phi)^2$$

-1/2

$$V(\phi) = \mu^{10/3} \phi^{2/3}$$

drives large-field inflation

$$\mu \equiv \left(\frac{3\pi p T_4 B}{A}\right)^{1/5} \qquad \gamma = \left(1 + \frac{(\partial \phi)^2}{V}\right)$$

p: winding number

in the absence of KK modes :

$$\frac{\mathcal{L}}{\sqrt{-g}} = -\frac{V(\phi)}{\gamma} \simeq -V(\phi) - \frac{1}{2}(\partial\phi)^2$$

-1/2

$$V(\phi) = \mu^{10/3} \phi^{2/3}$$

drives large-field inflation

$$\mu \equiv \left(\frac{3\pi p T_4 B}{A}\right)^{1/5} \qquad \gamma = \left(1 + \frac{(\partial \phi)^2}{V}\right)$$

p : winding number

Effective 4-Dim. Theory

$$\begin{array}{c}
\hline
\psi_n & & & \\
\hline
\end{pmatrix}
ds_{int}^2 = A^2 dr^2 + B^2 r^2 d\lambda^2$$
full Lagrangian:

$$\begin{array}{c}
\frac{\mathcal{L}}{\sqrt{-g}} = -V \left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{\frac{1}{2}(\partial \psi_n)^2 - \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial \phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial \phi \cdot \partial \psi_n)\right\}$$

$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{(\partial \phi \cdot \partial \psi_n)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2}\left((\partial \phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial \phi)^2(\partial \phi \cdot \partial \psi_n)\right\} + \mathcal{O}(\psi_n^3)$$

$$V(\phi) = \mu^{10/3}\phi^{2/3} \quad \mu \equiv \left(\frac{3\pi pT_4 B}{A}\right)^{1/5} \quad \gamma = \left(1 + \frac{(\partial \phi)^2}{V}\right)^{-1/2} \quad \alpha_n^2 \equiv \frac{1}{9}\frac{A^2}{B^2}\frac{n^2}{p^2}$$

$$\frac{\mathcal{L}}{\sqrt{-g}} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{ \frac{1}{2} (\partial \psi_n)^2 - \frac{1}{6} \frac{\psi_n^2}{\phi^2} (\partial \phi)^2 + \frac{1}{3} \frac{\psi_n}{\phi} (\partial \phi \cdot \partial \psi_n) \right\}$$
$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{ (\partial \phi \cdot \partial \psi_n)^2 + \frac{1}{9} \frac{\psi_n^2}{\phi^2} \left((\partial \phi)^2 \right)^2 - \frac{2}{3} \frac{\psi_n}{\phi} (\partial \phi)^2 (\partial \phi \cdot \partial \psi_n) \right\} + \mathcal{O}(\psi_n^3)$$
$$V(\phi) = \mu^{10/3} \phi^{2/3} \qquad \gamma = \left(1 + \frac{(\partial \phi)^2}{V} \right)^{-1/2}$$

$$\frac{\mathcal{L}}{\sqrt{-g}} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{ \frac{1}{2} (\partial \psi_n)^2 - \frac{1}{6} \frac{\psi_n^2}{\phi^2} (\partial \phi)^2 + \frac{1}{3} \frac{\psi_n}{\phi} (\partial \phi \cdot \partial \psi_n) \right\}$$
$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{ (\partial \phi \cdot \partial \psi_n)^2 + \frac{1}{9} \frac{\psi_n^2}{\phi^2} \left((\partial \phi)^2 \right)^2 - \frac{2}{3} \frac{\psi_n}{\phi} (\partial \phi)^2 (\partial \phi \cdot \partial \psi_n) \right\} + \mathcal{O}(\psi_n^3)$$
$$V(\phi) = \mu^{10/3} \phi^{2/3} \qquad \gamma = \left(1 + \frac{(\partial \phi)^2}{V} \right)^{-1/2}$$

inflaton ϕ : drives slow-roll inflation while $\phi > M_p$

effective KK mass

 $rac{\mathcal{L}}{\sqrt{-g}}$

$$= -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{ \frac{1}{2} (\partial \psi_n)^2 - \frac{1}{6} \frac{\psi_n^2}{\phi^2} (\partial \phi)^2 + \frac{1}{3} \frac{\psi_n}{\phi} (\partial \phi \cdot \partial \psi_n) \right\}$$
$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{ (\partial \phi \cdot \partial \psi_n)^2 + \frac{1}{9} \frac{\psi_n^2}{\phi^2} \left((\partial \phi)^2 \right)^2 - \frac{2}{3} \frac{\psi_n}{\phi} (\partial \phi)^2 (\partial \phi \cdot \partial \psi_n) \right\} + \mathcal{O}(\psi_n^3)$$
$$V(\phi) = \mu^{10/3} \phi^{2/3} \qquad \gamma = \left(1 + \frac{(\partial \phi)^2}{V} \right)^{-1/2}$$

inflaton ϕ : drives slow-roll inflation while $\phi > M_p$

effective KK mass

$$\frac{1}{2} = -V\left(\frac{1}{\gamma} + \frac{2\gamma\sum_{n\neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}}{\phi^2}\right) - \gamma \sum_{n\neq 0} \left\{\frac{1}{2}(\partial\psi_n)^2 + \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial\phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial\phi\cdot\partial\psi_n)\right\} + \frac{\gamma^3}{2V}\sum_{n\neq 0} \left\{(\partial\phi/\partial\psi_n)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2}\left((\partial\phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial\phi)^2(\partial\phi\cdot\partial\psi_n)\right\} + \mathcal{O}(\psi_n^3) + V(\phi) = \mu^{10/3}\phi^{2/3} \qquad \gamma = \left(1 + \frac{(\partial\phi)^2}{V}\right)^{-1/2}$$

inflaton ϕ : drives slow-roll inflation while $\phi > M_p$ KK modes ψ_n : oscillates with $m_{KK} \sim \frac{n}{(\text{wrapped volume})}$

effective KK mass

$$\frac{2}{-g} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{\frac{1}{2}(\partial\psi_n)^2 + \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial\phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial\phi \cdot \partial\psi_n)\right\}$$
$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{(\partial\phi / \partial\psi_n)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2}\left((\partial\phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial\phi)^2(\partial\phi \cdot \partial\psi_n)\right\} + \mathcal{O}(\psi_n^3)$$
$$V(\phi) = \mu^{10/3}\phi^{2/3} \qquad \gamma = \left(1 + \frac{(\partial\phi)^2}{V}\right)^{-1/2}$$

inflaton ϕ : drives slow-roll inflation while $\phi > M_p$ KK modes ψ_n : oscillates with $m_{\rm KK} \sim \frac{n}{({\rm wrapped volume})}$

coupled through potential & kinetic terms

Inhomogeneous Fluctuations

 $\phi \to \phi + Q$

$$S_2 = \int dt d^3x \, a^3 \left[\frac{B}{2} \dot{Q}^2 - \frac{G}{2} \frac{(\partial_i Q)^2}{a^2} + \frac{1}{2} \left\{ M - \frac{(a^3 C)}{a^3} \right\} Q^2 \right]$$

on flat hypersurfaces

$$B = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{3}{2} \sum_{n \neq 0} \frac{\psi_n^2}{V} + \cdots \\ G = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{1}{2} \sum_{n \neq 0} \frac{\psi_n^2}{V} + \cdots$$
 socillating b.g.

•

 $Q_k \rightarrow \zeta_k$ via the δN -formalism

Two Kinds of Parametric Resonance

 Weak Resonance from small KK excitations, sourcing oscillations

 Strong Resonance from large KK excitations, sourcing spikes

$$\begin{aligned} & \mathcal{L}_{\sqrt{-g}} = -\mu^{10/3} \phi^{2/3} \left(\frac{1}{\gamma} + 2\gamma \alpha_1^2 \frac{\psi_1^2}{\phi^2} \right) - \frac{\gamma}{2} (\partial \psi_1)^2 + \cdots \\ & \text{one KK mode is excited} \\ \phi_{\text{exc}} \approx 8.2M_p \quad \mu \approx 0.0016M_p \quad \alpha_1 = 100 \quad (m_{\text{KK}}/H \sim 40) \\ \phi_{\text{exc}} \approx 8.2M_p \quad \psi_1 \exp \left(\frac{M_p}{1000} \right) \\ \phi_{1 \exp} = \frac{M_p}{1000} \\ \phi_{1 \exp} = \frac{M_p}{$$

Weak Resonance

resonant signals $\propto \psi_{\rm exc}^2$

Resonant effects depend non-linearly on ψ_{exc} .

$$0 = \ddot{u_{k}} + \left\{ \frac{G}{B} \frac{k^{2}}{a^{2}} - \frac{M}{B} + \frac{\left(a^{3}C\right)^{\cdot}}{a^{3}B} - \frac{\left(a^{3/2}B^{1/2}\right)^{\cdot}}{a^{3/2}B^{1/2}} \right\} u_{k}$$

$$B = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{3}{2} \sum_{n \neq 0} \frac{\dot{\psi}_n^2}{V} + \cdots$$
$$G = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{1}{2} \sum_{n \neq 0} \frac{\dot{\psi}_n^2}{V} + \cdots$$
$$\vdots$$

$$0 = \ddot{u_{k}} + \left\{ \frac{G}{B} \frac{k^{2}}{a^{2}} - \frac{M}{B} + \frac{(a^{3}C)}{a^{3}B} - \frac{(a^{3/2}B^{1/2})}{a^{3/2}B^{1/2}} \right\} u_{k}$$

$$=f_{k\,\mathrm{eff}}^2$$

$$B = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{3}{2} \sum_{n \neq 0} \frac{\dot{\psi}_n^2}{V} + \cdots$$

$$G = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{1}{2} \sum_{n \neq 0} \frac{\dot{\psi}_n^2}{V} + \cdots$$

$$\vdots$$

$$0 = \ddot{u_{k}} + \left\{ \frac{G}{B} \frac{k^{2}}{a^{2}} - \frac{M}{B} + \frac{(a^{3}C)}{a^{3}B} - \frac{(a^{3/2}B^{1/2})}{a^{3/2}B^{1/2}} \right\} u_{k}$$
$$= f_{k\,\text{eff}}^{2} \left(\simeq \frac{k^{2}}{a^{2}} \quad \text{when inside the horizon} \right)$$

$$B = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{3}{2} \sum_{n \neq 0} \frac{\dot{\psi}_n^2}{V} + \cdots$$

$$I.5$$

$$G = 1 - 2\sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{1}{2} \sum_{n \neq 0} \frac{\dot{\psi}_n^2}{V} + \cdots$$

$$0.5$$

$$0.5$$

$$\frac{1}{2}$$

$$\frac{1}{4}$$

$$\frac{1}{6}$$

$$\frac{m_{\rm KK}}{2\pi}$$

$$0 = \vec{u_k} + \left\{ \frac{G}{B} \frac{k^2}{a^2} - \frac{M}{B} + \frac{(a^3 C)}{a^3 B} - \frac{(a^{3/2} B^{1/2})}{a^{3/2} B^{1/2}} \right\} u_k$$

$$= f_k^2 \operatorname{eff} \left(\simeq \frac{k^2}{a^2} \quad \text{when inside the horizon} \right)$$

$$B = 1 - 2 \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{3}{2} \sum_{n \neq 0} \frac{\psi_n^2}{V} + \cdots \qquad 15$$

$$G = 1 - 2 \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{1}{2} \sum_{n \neq 0} \frac{\psi_n^2}{V} + \cdots \qquad 15$$

$$G = 1 - 2 \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2} + \frac{1}{2} \sum_{n \neq 0} \frac{\psi_n^2}{V} + \cdots \qquad 10$$

$$0.5$$

normalized fluctuation : $u_{\mathbf{k}} = (a^3 B)^{1/2} Q_{\mathbf{k}}$

$$0 = \ddot{u_{k}} + \left\{ \frac{G}{B} \frac{k^{2}}{a^{2}} - \frac{M}{B} + \frac{\left(a^{3}C\right)^{\cdot}}{a^{3}B} - \frac{\left(a^{3/2}B^{1/2}\right)^{\cdot}}{a^{3/2}B^{1/2}} \right\} u_{k}$$

strong resonant amplification when $f_{k\,\mathrm{eff}}^2$ wildly oscillates around m_{KK}^2

Generation of Spikes

- strong resonant amplification is highly sensitive to the KK amplitude
- expansion of the universe quickly damps away strong resonant effects, leaving spikes in the

pert. spectrum

 $\begin{array}{c|c} \mathcal{P}_{\zeta}(k) \\ 6.\times 10^{-8} \\ 5.\times 10^{-8} \\ 4.\times 10^{-8} \\ 3.\times 10^{-8} \\ 2.\times 10^{-8} \\ 1.\times 10^{-8} \end{array}$

What Causes Resonance?

$$\frac{\mathcal{L}}{\sqrt{-g}} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{\frac{1}{2}(\partial \psi_n)^2 - \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial \phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial \phi \cdot \partial \psi_n)\right\}$$

$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{(\partial \phi \cdot \partial \psi_n)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2}\left((\partial \phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial \phi)^2(\partial \phi \cdot \partial \psi_n)\right\} + \mathcal{O}(\psi_n^3)$$

What Causes Resonance?

$$\frac{\mathcal{L}}{\sqrt{-g}} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{\frac{1}{2}(\partial\psi_n)^2 - \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial\phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial\phi \cdot \partial\psi_n)\right\}$$
$$+ \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{ (\partial\phi \cdot \partial\psi_n)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2} \left((\partial\phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial\phi)^2(\partial\phi \cdot \partial\psi_n)\right\} + \mathcal{O}(\psi_n^3)$$

most significantly oscillates fk eff

Couplings with $\partial \phi$ source weak/strong resonance.

What Causes Resonance?

$$\frac{\mathcal{L}}{\sqrt{-g}} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{\frac{1}{2}(\partial\psi_n)^2 - \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial\phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial\phi \cdot \partial\psi_n)\right\} + \frac{\gamma^3}{2V}\sum_{n \neq 0} \left\{\left(\partial\phi \cdot \partial\psi_n\right)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2}\left((\partial\phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial\phi)^2(\partial\phi \cdot \partial\psi_n)\right\} + \mathcal{O}(\psi_n^3)$$

most significantly oscillates fk eff

Couplings with $\partial \phi$ source weak/strong resonance. General Lesson : Kinetic couplings efficiently produce sharp resonant features in the perturbation spectrum.

$$\begin{aligned} & \frac{\mathcal{L}}{\sqrt{-g}} = -V\left(\frac{1}{\gamma} + 2\gamma \sum_{n \neq 0} \alpha_n^2 \frac{\psi_n^2}{\phi^2}\right) - \gamma \sum_{n \neq 0} \left\{\frac{1}{2}(\partial \psi_n)^2 - \frac{1}{6}\frac{\psi_n^2}{\phi^2}(\partial \phi)^2 + \frac{1}{3}\frac{\psi_n}{\phi}(\partial \phi \cdot \partial \psi_n)\right\} \\ & + \frac{\gamma^3}{2V} \sum_{n \neq 0} \left\{(\partial \phi \cdot \partial \psi_n)^2 + \frac{1}{9}\frac{\psi_n^2}{\phi^2}\left((\partial \phi)^2\right)^2 - \frac{2}{3}\frac{\psi_n}{\phi}(\partial \phi)^2(\partial \phi \cdot \partial \psi_n)\right\} + \mathcal{O}(\psi_n^3) \end{aligned}$$

Cubic and higher order KK interactions become important for very large KK excitations.

Even stronger resonance?

Summary

- Wrapped brane inflation models possess KK degrees of freedom that can be excited during inflation.
- Brane's Nambu-Goto action gives kinetic couplings efficient in producing resonant signals in the perturbation spectrum.
- Weak resonance sources oscillations, and strong resonance sources sharp spikes.
- Resonant signals can be used to probe extra dim.

Future Directions

observational consequences of resonant signals

• STRONGLY resonant non-Gaussianity Flauger et al. '09

explicit example

