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Cosmological models���

Theoretical physics Astrophysics Cosmology 

Principles 
Local law of nature 

Phenomena 

Extrapolations 
models 

Constraints 

Compatible with local physics 
Save the apperances 

Gravity=GR 
Matter=SU(3)XSU(2)xU(1) 

1.  Theory of gravity [General relativity] 
2.  Matter [Standard model fields + CDM + Λ] 
3.  Symmetry hypothesis [Copernican Principle] 
4.  Global structure [Topology of space is trivial] 

Its construction relies on 4 hypothesis 

In agreement with all the data. 

New physics with simple 
 cosmological solution 

Standard physics with  
more involved solution 
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Microphysics and structure 
unknown 

Speculative 
microphysics 

Microphysics 
not understood 
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1011 K 
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Needs to test these hypothesis���

This model is in agreement with all existing observational data at the expense of the 
introduction of a dark sector:���
���

 - dark matter: galaxy rotation curves, properties of the large scale structure of���
         the universe.���
 candidate: Weakly interacting massive particles (many candidates, e.g. from���
     supersymmetry) ���
              or a modification of general relativity in the low acceleration regime���
 ���
 - dark energy: acceleration of the cosmic expansion���
 candidate: cosmological constant���
    or more exotic models (quintessence, modification of GR in the IR ���
         etc….) ���

This reveals the need for new degrees of freedom in our cosmological model:���
 - physical���
 - geometrical���



Motivations ���
to test���

the Copernican principle���



Cosmological models���

1.  Theory of gravity [General relativity] 
2.  Matter [Standard model fields + CDM + Λ] 
3.  Symmetry hypothesis [Copernican Principle] 
4.  Global structure [Topology of space is trivial] 

Its construction relies on 4 hypothesis 

Testing these hypothesis has been a part of my scientific activity over the past years: 
 

 - testing GR on astrophysical scales  
  . Equivalence principle [jpu (2000,2011)] 
  . Large scale structure [jpu & Bernardeau (2001)] 

 
 - testing for spatial topology [jpu, lehoucq, luminet, riazuelo, weeks (2003)] 

 
 - testing for the Copernican principle [jpu, clarckson, Ellis (2008)] 



Isotropy: motivation���

(c) L. Haddad & G. Duprat 

Observationally, the universe seems very isotropic around us. 



Uniformity principle���

(c) L. Haddad & G. Duprat 

Two possibilities to achieve this: 

Copernican Principle: we do not occupy a particular spatial location in the universe 

Spatially homogeneous & isotropic Spherically symmetric 
Universe has a center 



Geometrical implication���

There exists a priviledged class of observers for which the spatial sections look isotropic 
and homogeneous. 
 
The spatial sections are constant curvature hypersurface. 
 
The spacetime is of the Friedmann-Lemaître type with metric 

Consequences: 
     1- The dynamics of the universe reduces to  
          the one of the scale factor 
     2- It is dictated by the Friedmann equations 



Implications of the Copernican principle���

Independently of any theory (H1, H3), the Copernican principle  
implies that the geometry of the universe reduces to a(t). 

so that 

Hubble diagram gives 
  - H0 at small z 

 - q0 
Supernovae data (1998+) show 

The expansion is now 
accelerating 

Consequences: H2 

No hypothesis on gravity at this stage. 



Motivations to test for isotropy���

The Copernican principle has thus important implications for our understanding of 
the origin of the acceleration of the cosmic expansion.  
 
Among other competing explanations, void models have been proposed. 
 
At early time, the isotropisation of the universe is efficient only if inflation lasts 
long enough. 

 What is the dynamical effect of an early anisotropy? 
 Can it be constrained observationally? 

 
Thiago Pereira, Cyril Pitrou, J.-P. U., JCAP 09 (2007) 006 
Cyril Pitrou, Thiago Pereira, J.-P. U., JCAP 04 (2008) 004 

At late time: 
  - any model of dark energy involving vector fields and some models of modification 
of gravity have a non-vanishing anisotropic stress tensor; 
  - it has also been shown that in the approach in which the acceleration is explained 
by backreaction effect, the Hubble flow becomes anisotropic at late time 

[Marozzi, JPU, arXiv:1206.4887] 

 
 How can we constrain a late time anisotropy? 

  



Test of homogeneity���



This is difficult���

(c) L. Haddad & G. Duprat 



Test of homogeneity���

[Sandage1962, McVittie 1962] 

Typical order of magnitude (z~4)  

 Homogeneous and isotropic universe 



Test of homogeneity���

[Sandage1962, McVittie 1962] 

Typical order of magnitude (z~4)  

Inhomogeneous universe 

[JPU, Clarkson, Ellis, PRL (2008)] 

 Homogeneous and isotropic universe 



Time drift and homogeneity���

H⇥ = H�

Friedmann-Lemaître LTB (spherically symmetric universe) 

H⇥ = H�

By combining distance measurements (DA or DL), one can test whether  

H⇥ = H�
We have information off the past light-cone. 



How sensitive can such a test be?���

[Dunsby,Goheer,Osano,JPU, 1002.2397] 

We assume that 

i.e. same DL(z) & same matter profile BUT NO cosmological constant 



Other methods���

Interaction of CMB photon with hot gas of galaxy clusters 
CMB photons are scattered into our line of sight. 
 
Gives information on the inside of our past lightcone 



Other methods���

SZ effect – Temperature of scattered CMB photons: 
-  It induces spectral distortions: 

-  Thermal SZ (due to thermal motion of electrons) reflects the monopole seen 
by the cluster 

-  If the blackbody T from different direction are different, then huge 
distortion. 

-  Motion of the cluster induces kinetic SZ that reflects the CMB dipole 

-  Applied to a class of LTB model. Impressive constraints (even if do not rule 
out all the models) 

[Goodman, astro-ph/9506068; Caldwell & Stebbins, arXiv:0711.3459; 
 Zhang & Stebbins, arXiv:1009.3967] 

SZ effect – Polarisation of scattered CMB photons: 
- Cluster bulk tranverse velocity & CMB monopole, quadrupole and octopole induce 
modifications in CMB polarisation through scattering off cluster gas. 

In principle, gives access to monopole-octopole of the CMB as 
seen by the cluster. 



Beyond ���
Friedmann-Lemaître���

spacetimes���



Classifying spacetimes���

The solutions of Einstein equations can be classified according to their symmetries. 
The symmetries are characterized by the set of Killing vectors:  

The Killing vectors satisfy  

Isometry group   =   isotropy group    +    transitivity group 
                                        « rotation »                 « translations » 

r � n(n + 1)
2

q ⇥ n(n� 1)
2

s � n

(s, q, r) &Ca
bcOne thus needs to specify 



Simplest solutions���
In n=4 dimensions, r=q+s≤10 so that 

  
 s can run between 0 and 4.  
 s=4 corresponds to static spacetimes 

 
For s<4, the possibilities are then 

 q=3 (isotropic) 
 q=2 is impossible [no subgroup of O(3) of dimension 2] 
 q=1 (locally invariant under rotation) 
 q=0 (anisotropic) 

Indeed, the real universe has r=0! 



Friedmann-Lemâıtre Bianchi I
homogène-anisotropehomogène-isotrope

s = 3 q = 0
r = 3

q = 3
r = 6

s = 3

Lemâıtre-Tolman-Bondi

s = 2 q = 1
s = 0

r = 3

q = 3

inhomogène-loc. isotrope

(centre)

Examples���



Testing local isotropy���
with���

weak lensing���

[Pitrou, JPU, Pereira, arXiv:1203.4069] 



Description of the geodesic bundle���

observateur

nµ
1

nµ
2

�µ

source

Let us consider a bundle of null 
geodesics, xµ(v,s). 
 
v is an affine parameter along the 
geodesic and we choose v=0 at the 
observer. 
 
s labels the different geodesics of the 
bundle. 

We define: kµ as the tangent vector of the nll-geodesic 
     uµ as the 4-velocity of the observer 

 
Then the redshift is given by: 
 
so that the energy of the incoming photon is 

We then introduce nµ, the spacelike unit vector pointing along the line of sight 



Screen description���

xµ[n0, v]

uµ

kµ

uµ

The integration of the geodesic equation gives xµ[n0,v]. 
 
It follows that n[n0,v]. 
 
Along the geodesic, we can define a basis of the 2-
dimensional orthogonal to n. 

This basis can be parallely transported along the 
geodesic 

where we have introduced the screen projector 

From this basis, we can define the helicity basis by n± =
1�
2
(n1 ± n2)



Sachs equation���

The deformation of the geodesic bunble can be obtained from the geodesic deviation  
equation 

We can then decompose the connecting vector on the basis of the screen to obtain 

with 

The linearity of this equation implies that 

Sachs equation Initial condition 



Program���

Sachs equation Initial condition 

1- Express the projected Riemann tensor 
 in terms of Ricci / eletric and magnetic part of the Weyl 

  
2- Decompose the Jacobi matrix 

 in terms of a convergence/shear/rotation 
 
3- Derive an equation of propagation for these components 
 
4- Perform an harmonic decomposition.  



Expression of the projected Riemann tensor���
It is convenient to change the affine parameter to  

It is related to v by  and we have 

The projected Ricci tensor then takes the form 

Weyl Ricci 

The he Weyl tensor can be expressed as 

with 



Expression of the projected Riemann tensor���
The projected Ricci tensor then takes the form 

Weyl Ricci 

It can be expressed as 

with 

The Ricci term is a scalar. 

The Weyl  term is a spin-2. 



Decomposition of the Jacobi matrix���

The shear can be shown to be a spin-2 and can thus be decomposed as 



Propagation of the degrees of freedom���

The sachs equation gives the equation of propagation for the components of the 
Jacobi matrix 

The integration of this system requires: 
 - to determine the light-cone structure 
  na(n0,v), H//(n0,v),…. 
  in this sense, this equation is non-local. 
  in general na(n0,v)≠ n0 

 
 - the extraction of the component +/- also depends on na(n0,v) 
  n0 is the direction of observation. 

 
To go further we insert the multipolar decomposition in this equation. 



Multipolar decomposition���

Scalars Spin-2 

Jacobi matrix 
 
[shape of the 
bundle] 

Source terms 
 
[Properties of 
the spacetime] 



Multipolar hierachy���

I skip the details but it involves decomposing products of spherical (spinned) harmonics, 
hence the C-coefficients.  

- Hierarchy similar to CMB Boltzmann hierarchy 
-  does not depend on the choice of any background spacetime [but needs hlm etc..] 
-  never been derived and generalized the particular FL case 
-  non-vanishing Weyl implies E/B modes due to coupling to convergence 



Application to FL spacetime���

First, we need to show that we recover the standard results. 
 
Background FL spacetime:  

 - vanishing Weyl so  that 
 - geodesic equation leads to                             and thus hlm are all vanishing but 

 
  
 - space is homogeneous so that  the Ricci depends only on time. Only R(0)

00 

κ  and V  have only the 00 components which is non-vanishing 
satisfy the same equations but with different initial conditions 

V (0)
�m = E(0)

�m = B(0)
�m = 0

�(0)
00 = DA



Linear perturbations���

We work at linear order in perturbation 
 3 types of modes: S, V, T. Only S are important at low redshift. 
  

This implies that the Weyl has no magnetic part: 
 
We can work in the Born approximation:                              so that only h00≠0   

E(1)
�m ⇥

�
R(0)

00 � h(0)
00

d

dv̂

⇥
E(1)

�m � 2�(0)
00 E

(1)
�m

B(1)
�m ⇥

�
R(0)

00 � h(0)
00

d

dv̂

⇥
B(1)

�m

Shear: E and B modes 

Only E-modes are sourced. 



Linear perturbations���

Convergence and rotation: 

�(1)
�m ⇥

�
R(0)

00 � h(0)
00

d

dv̂

⇥
�(1)

�m +R(1)
�m�(0)

00

V (1)
�m ⇥

�
R(0)

00 � h(0)
00

d

dv̂

⇥
V (1)

�m

Rotation is not sourced.  

V (1)
�m = B(1)

�m = 0

�(1)
�m �= 0 & E(1)

�m �= 0

This reproduces the standard lore. 



Observational constraints���
B-modes:  
 - V & T modes 
 - non-linear perturbation (electroc and magntic Weyl / beyond Born approx) 

 [see Bonvin et al. PRD 81 (2010) 083002] 
 - astrophysical effects [intrinsic alignments / lens-lens coupling] 
 - systematics 

[Fu et al., A&A 479 (2008) 9] 



Bianchi universes���

There are major differences with FL case 

1- At background level the Weyl is non vanishing 

E(0)
ij = H⇥ij +

1
3
⇥2�ij � ⇥ik⇥k

j

B(0)
ij = 0

This implies l=2 terms E(0)
20 =

�
6�

5
EzzE(0)

2±0 =
�

�

5
(Exx � Eyy)

2- The geodesic structure implies that n(n0, v̂) = n0

One can demonstrate that this sources B-modes for all multipole. 



What to expect with Euclid���

(i) Visible imaging (ii) NIR photometry (iii) NIR spectroscopy. 
15,000 square degrees 
100 million redshifts, 2 billion images 
Median z~1 
 
I will provide: 
  - P(k,z) on 15,000 square degrees, 70,000,000 galaxy redshift 
with 0.5<z<2. 
 - weak lensing on 15,000 square degrees, 40 galaxy images per 
square arcmin with 0.5<z<3.  

The error bars on the B-modes should be divided by (10-40) compared to CFHTLS. 
 
Linear regime typically for scales larger than 1 deg. And Euclid will probe scales up 
to ~40 deg. 
 
It will probe large scales for which astrophysical effects leading to B-modes are 
important. 



Testing���
the Copernican principle���

Fluid approximation���



Extending CP: how homogeneous is homogeneous?���

Rµ� = 0

Rµ� �= 0

Cµ⇤�⇥ �= 0

Cµ⇤�⇥ = 0

[Clarkson, Ellis, Maartens, Umeh, JPU, arXiv:1109.2484] 



Extending CP: how homogeneous is homogeneous?���

Rµ� = 0

Rµ� �= 0

Cµ⇤�⇥ �= 0

Cµ⇤�⇥ = 0

[Clarkson, Ellis, Maartens, Umeh, JPU, arXiv:1109.2484] 

SN:  - beam is very thin: 1 AU @ z=1 corresponds to 10-7 arcsec. Typically smaller than the 
distance between any massive object. 

 - beam propagates mostly in underdense regions [Zel’dovich, Dyer, Roeder] 
 - distribution of magnification 
 - scatter of the m-z diagram allow to constrain the smoothness of the matter distribution. 
 systematic shift + scatter 

On which scale are we allowed to use the fluid approximation? 
Different from the backreaction approach. 



Extending CP: how homogeneous is homogeneous?���

[Fleury, Dupuy, JPU, in preparation] 

Small scales (e.g. ~AU) cannot be reched by numerical simulations. 
Find some approximate exact solutions 



Extending CP: how homogeneous is homogeneous?���

Preliminary

[Fleury, Dupuy, JPU, in preparation] 

74% matter in point masses 
26% matter in homoheneous fluid 



Conclusions���

We have demonstrated that a violation of local spatial isotropy implies the existence 
of non-vanishing B-modes for the cosmic shear. 
 
This is based on a new formalism providing a multipolar hierarchy for weak-lensing 
independently of the choice of a particular background spacetime. 
 
It recovers the standard lore when the background is FL. 
 
For Bianchi I universe, we have shown that B-modes will be non-vanishing on all 
multipoles. 
 
The exact amplitude of the expected B/E-modes requires to work out the complete 
perturbation theory. This is undergoing. 
 
Hopefully, it will allow to set strong constraints from the Euclid observations. 
 
This is important for some dark energy model (with anisotropic stress) and also for 
backreaction models. 


