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We don’t really “understand” Quantum 
Mechanics, do we? 
•  For those who are not shocked when they first come 

across quantum theory cannot possibly have understood 
it – Niels Bohr (quoted in Heisenberg, 1971). 

•  I think I can safely say that nobody understands 
quantum mechanics – Richard Feynman (1965). 

•  It is often stated that of all the theories proposed in this 
century, the silliest is quantum theory. In fact, some say 
that the only thing that quantum theory has going for it is 
that it is unquestionably correct – Michio Kaku (1995). 



What is Quantum Mechanics? 
• We have prescriptions for the “quantization” of a 
physical system, and the “interpretation” of the 
resulting theory, but beyond that do we really 
understand what it means? 
 

• QM predicts the probabilities of possible outcomes of 
a “measurement,” but what is “measurement” 
anyway? 
 

• What is probability? (Especially if something only 
happens once.) 

 



What is Quantum Mechanics? 
• Where should we draw the line between the observer 
and the observed? 

• How does deterministic CM emerge from probabilistic 
QM? 

• Neither QFT nor String Theory challenge the 
basic tenets of QM. 

• More phenomenology will not tell us anything 
except what we already know – QM works! 



Why Quantum Mechanics? 
•  Is QM inevitable? 

• Can it be derived from a few basic physical principles 
that everyone can agree on, a la Relativity?   

• Can the mathematical axioms of QM be derived from 
those physical principles? 

• Will understanding the connection between the physics 
and the math teach us how to quantize gravity? (And 
perhaps explain dark energy?) 



Geneticist’s Approach to  
Quantum Mechanics: 
• How are the Mathematical Genotypes of QM related to its 

Physical Phenotypes?   
• Genotypes: complex vector space, inner product, 

normalizable states, hermitian operators, etc. 
• Phenotypes: interference, probabilities that do not allow 

hidden variable mimics, violation of Bell’s inequalities, 
etc. 

• Which “gene” is responsible for which characteristic? 
⇒ Try to create “mutant” versions of QM in which some of 

the “genes” are knocked out. 



Bell’s Inequality: 

Figure from the Wikipedia 



Clauser-Horne-Shimony-Holt (CHSH): 

AB + Ab + aB − ab ≤ 2 (classical, Bell)

≤ 2 2 (QM, Cirel'son)
≤ 4 (Absolute bound)



The Mutation: C → GF(q) 
•  Replace vector space over the complex number field C with 

that over the finite Galois field GF(q), q=pn, p=prime : 

•  No inner product, no normalizable states, no symmetric/
hermitian operators! 

GF(2) = Z2 = {0,1}
GF(3) = Z3 = {0,1, 2}

GF(4) = Z2[ω]= {0,1,ω,ω
2}, ω 2 +ω +1= 0

GF(5) = Z5 = {0,1, 2,3, 4}
GF(7) = Z7 = {0,1, 2,3, 4, 5, 6}

GF(8) = Z2[ε]= {0,1,ε,1+ε,ε
2,1+ε 2,ε +ε 2,1+ε +ε 2}, ε3 +ε +1= 0

GF(9) = Z3[i]= {0,1, 2, i, 2i,1+ i,1+ 2i, 2+ i, 2+ 2i}, i2 +1= 0 etc.



Inner Product : 
•  The inner product is a map                   such that: 

•  Bilinear: 

•  Symmetric: 
 
•  Positive Definite:  

• Not to be confused with: 

V ×V→ K
u ,a v + b w( ) = a u , v( )+ b u , w( )
a u + b v , w( ) = a u , w( )+ b v , w( )

u , v( ) = v , u( )

u , u( ) ≥ 0,  and u , u( ) = 0 if and only if u = 0

a u , a ∈V *, u ∈V



Mutation 1: States, Outcomes, 
Observables, and Probabilities: 

States : ψ ∈V = KN , K =GF(q)

Outcomes : x ∈V *, x ψ ∈ K

Observables : choice of basis of V *

Probability :P x ;ψ( ) =
x ψ

2

y ψ
2

y∑

These relations are identical to canonical QM. 



Absolute Value Function: 
• Define absolute values as: 

 

• All non-zero elements of the Galois field are mapped to 1. 
→ They are all “phases.”  
→        and          represent the same state.  
→  State space has projective geometry PG(N-1,q): 

k =
0 if k = 0
1 if k ≠ 0

"
#
$

%$
so that k l = k l

ψ k ψ (k ≠ 0)

PG(N −1,q) = KN \ {

0}
K \ {0}



Projective Geometry & Projective Group: 

 

PG(N −1,q) = GL(N,q)
AGL(N,q)× Z(N,q)

PGL(N,q) = GL(N,q)
Z(N,q)

cf. K=C case: 

CPN−1 = CN \ {

0}
C \ {0} = U(N )

U(N −1)×U(1)

SU(N ) = U(N )
U(1)



Example: N=2, K=GF(2) 
• Only three states: 

• Only three outcomes: 

• Brackets: 
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0 if r = s
1 if r ≠ s
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%$
→ r s =1−δrs



Observables: 
• Six observables: 

• Spins: 

•  Three “spin directions”: 

Aab = a , b{ }, Abc = b , c{ }, Aca = c , a{ },
Aba = b , a{ }, Acb = c , b{ }, Aac = a , c{ }.

Ars = { r , s }
↑ ↑

+1 −1

Ars = −Asr

Z = Aab = a , b{ }, X = Abc = b , c{ }, Y = Aca = c , a{ }



Rotations: PGL(2,2)=S3 



Probabilities: 

P Ars = +1;t( ) =
r t

2

r t
2
+ s t

2 =
1−δrt

2− (δrt +δst )
=

0  if t = r
1
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1  if t = s
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Two-Particle Spin Correlations: 
•  Tensor two vector spaces together. 
•  The space has 24-1=15 states = 9 product + 6 entangled. 

 

• Product observables: 
 

S = a ⊗ a + b ⊗ b + c ⊗ c

(ab) = a ⊗ b + b ⊗ a + c ⊗ c

(bc) = a ⊗ a + b ⊗ c + c ⊗ b

(ca) = a ⊗ c + b ⊗ b + c ⊗ a

(abc) = a ⊗ b + b ⊗ c + c ⊗ a

(acb) = a ⊗ c + c ⊗ b + b ⊗ a

ArsAtu = r ⊗ t , r ⊗ u , s ⊗ t , s ⊗ u{ }



Probabilities and Correlations: 
For the state S :

++ +− −+ −− Corr.

XX,YY,ZZ 0 1
2

1
2

0 −1

XY,YZ,ZX 1
3

1
3

0 1
3

1
3

XZ,ZY,YX 1
3

0 1
3

1
3

1
3



Classical Implications: 

X1 ��
�

X2 ��<�

Z2 ��
�

Z1 ��<�

Y1 ��
�

Y2 ��<�

X2 ��
�

X1 ��<�

Z1 ��
�

Z2 ��<�

Y2 ��
�

Y1 ��<�

No hidden variable mimic is possible. 
 
cf: 
Greenberger, Horne, Zeilinger, arXiv:0712.0921v1,  
Greenberger, Horne, Shimony, Zeilinger, Am. J. Phys. 
58, 1131 (1990), 
Hardy, Phys. Rev. Lett. 71, 1665 (1993). 



Clauser-Horne-Shimony-Holt Inequality: 

•  It is straightforward to show that: 

•  The Galois Field QM bound of 2 applies to all GF(q), not 
just for the case q=2. 

AB + Ab + aB − ab ≤ 2 (classical, Bell)

≤ 2 2 (QM, Cirel'son)
≤ 2 (Galois Field QM)



Other q: 

q # of states # of spin directions PGL(2,q)
2 3 6 S3

3 4 12 S4

4 5 20 A5

5 6 30 S5



q=3, PGL(2,3)=S4 



q=4, PGL(2,4)=A5 



q=5, PGL(2,5)=S5 



Mutation 2 : Biorthogonal Quantum Mechanics 
Biorthogonal System :

Basis of V = KN : 1 , 2 ,, N{ }
        Basis of V * : 1 , 2 ,, N{ }

!
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$#
r s = δ rs

Observables : Â = α k k
k=1

N

∑ k , α k ∈ K

Expectation Value : Â = ψ Â ψ ∈ K ϕ# →# R

where ψ  and ψ  are members of some biorthogonal system
and ϕ  is a product preserving map from K  to R.



Example : N=2, K=GF(9) 
The only vectors and dual vectors that are members of biorthogonal systems are
the following and their scalar multiples:
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Biorthogonal Systems :

a , b{ }, a , b{ }{ }, c , d{ }, c , d{ }{ }, e , f{ }, e , f{ }{ }



Observables : 

1 a a −1 b b =
1 0
0 −1
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1 c c −1 d d =
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1 0
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Expectation Values : 

a σ̂ 1 a = 0 → 0

b σ̂ 1 b = 0 → 0

c σ̂ 1 c =1 → 1

d σ̂ 1 d = −1 → −1

e σ̂ 1 e = 0 → 0

f σ̂ 1 f = 0 → 0

a σ̂ 2 a = 0 → 0

b σ̂ 2 b = 0 → 0

c σ̂ 2 c = 0 → 0

d σ̂ 2 d = 0 → 0

e σ̂ 2 e =1 → 1

f σ̂ 2 f = −1 → −1

a σ̂ 3 a =1 → 1

b σ̂ 3 b = −1 → −1

c σ̂ 3 c = 0 → 0

d σ̂ 3 d = 0 → 0

e σ̂ 3 e = 0 → 0

f σ̂ 3 f = 0 → 0



Two-Spin System : 

σ̂ 1⊗ σ̂ 1 =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
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Correlations : 
Consider the two-spin state :

U =

1
0
1

1+ i
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, U = 1 0 1 1− i!
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++ σ̂ 3 ⊗ σ̂ 3 U =1

+− σ̂ 3 ⊗ σ̂ 3 U = 0

−+ σ̂ 3 ⊗ σ̂ 3 U =1

−− σ̂ 3 ⊗ σ̂ 3 U =1+ i

U σ̂ 1⊗ σ̂ 1 U = U σ̂ 1⊗ σ̂ 3 U = U σ̂ 3 ⊗ σ̂ 3 U = −1 ϕ# →# −1

U σ̂ 3 ⊗ σ̂ 1 U =1 ϕ# →# 1

ϕ σ̂ 1⊗ σ̂ 3( )+ϕ σ̂ 3 ⊗ σ̂ 3( )+ϕ σ̂ 1⊗ σ̂ 1( )−ϕ σ̂ 3 ⊗ σ̂ 1( ) = 4

The CHSH bound for this mutant is the super-quantum 4 ! 



Probabilities? 
−1=ϕ U σ̂ 3 ⊗ σ̂ 3 U( )
= P(++)+P(−−)−P(+−)−P(−+)
↓

0 = P(++)+P(−−)
1= P(+−)+P(−+)

Probabilities are indeterminate even though we have 
definite expectation values. 



Conclusions: 
•  It is possible to construct QM-like theories on a vector 

space without an inner product, normalizable states, or 
symmetric/hermitian operators in more than one way. 

•  The probabilities predicted by mutant #1 cannot be 
reproduced in any hidden variable theory. Nevertheless, the 
CHSH bound of the mutant is the “classical” 2. 

•  The CHSH bound of mutant #2 is the super-quantum 4. 
The mutant predictions expectation values without going 
through probabilities.  In fact, probabilities in this mutant are 
indeterminate. 

•  These mutants serve as existence proofs of theories that 
are QM-like, but their correlations are quite different. 

 



Work in Progress :  
Quantum Mechanics on Banach Spaces 
Banach Space:  
• A complete normed vector space over R or C.   
• Natural generalization of Hilbert spaces. 
• Do not have inner products in general. 
• Many different kinds with a variety of different properties. 
• Could provide a rich supply of mutants. 

Conjecture: 
• CM can be understood as a mutation of QM. 
• Quantum Gravity can be constructed as a mutant of QM. 


