Cosmic Acceleration and Modified Gravity

Wayne Hu <u>KIPMU, December 2012</u>

Outline

- Falsifiablility of ACDM and Smooth Dark Energy Distance-Redshift vs Structure Growth
- Modified gravity
 - Formal equivalence of dark energy and modified gravity Nonlinear screening mechanism to return GR locally Chameleon and Vainshtein signatures
- Toy model examples: f(R), DGP, massive gravity
- Collaborators on the Market

Lucas Lombriser Iggy Sawicki Amol Upadhye Mark Wyman Ali Vanderveld

Equo le'Ceegngtcukqp

• Geometric measures of distance redshift from SN, CMB, BAO

Standard Ruler Sound Horizon v CMB, BAO angular and redshift separation

Mercury or Pluto?

• General relativity says Gravity = Geometry

• And Geometry = Matter-Energy

• Could the missing energy required by acceleration be an incomplete description of how matter determines geometry?

Two Potentials

• Line Element

$$ds^2 = -(1+2\Psi)dt^2 + a^2(1+2\Phi)dx^2$$

- Newtonian dynamical potential Ψ
- Space curvature potential Φ
- As in the parameterized post Newtonian approach, cosmological tests of the Φ/Ψ
- Space curvature per unit dynamical mass
- Given parameterized metric, matter falls on geodesics

Dynamical vs Lensing Mass

• Newtonian potential: $\Psi = \delta g_{00}/2g_{00}$ which non-relativistic particles feel

• Space curvature: $\Phi = \delta g_{ii}/2g_{ii}$ which also deflects photons

 Tests of space curvature per unit dynamical mass are the least model dependent

Dynamical vs Lensing Mass

• Newtonian potential: $\Psi = \delta g_{00}/2g_{00}$ which non-relativistic particles feel

• Space curvature: $\Phi = \delta g_{ii} / 2g_{ii}$ which also deflects photons

Solar system: sun Cosmology: unknown dark sector

• Tests of space curvature per unit dynamical mass are the least model dependent, but one suffices cosmologically combined with distance

Modified Gravity = Dark Energy?

- Solar system tests of gravity are informed by our knowledge of the local stress energy content
- With no other constraint on the stress energy of dark energy other than conservation, modified gravity is formally equivalent to dark energy

$$F(g_{\mu\nu}) + G_{\mu\nu} = 8\pi G T^{M}_{\mu\nu} - F(g_{\mu\nu}) = 8\pi G T^{DE}_{\mu\nu}$$
$$G_{\mu\nu} = 8\pi G [T^{M}_{\mu\nu} + T^{DE}_{\mu\nu}]$$

and the Bianchi identity guarantees $\nabla^{\mu}T^{\rm DE}_{\mu\nu} = 0$

- Distinguishing between dark energy and modified gravity requires closure relations that relate components of stress energy tensor
- For matter components, closure relations take the form of equations of state relating density, pressure and anisotropic stress

Smooth Dark Energy

- Scalar field dark energy has $\delta p = \delta \rho$ (in constant field gauge) relativistic sound speed, no anisotropic stress
- Jeans stability implies that its energy density is spatially smooth compared with the matter below the sound horizon

$$ds^2 = -(1+2\Psi)dt^2 + a^2(1+2\Phi)dx^2$$

 $\nabla^2 \Phi \propto$ matter density fluctuation

• Anisotropic stress changes the amount of space curvature per unit dynamical mass: negligible for both matter and smooth dark energy

 $abla^2(\Phi+\Psi) \propto \text{anisotropic stress approx } 0$

in contrast to modified gravity or force-law models

Falsifiability of Smooth Dark Energy

- With the smoothness assumption, dark energy only affects gravitational growth of structure through changing the expansion rate
- Hence geometric measurements of the expansion rate predict the growth of structure
 - Hubble Constant
 - Supernovae
 - Baryon Acoustic Oscillations
- Growth of structure measurements can therefore falsify the whole smooth dark energy paradigm
 - Cluster Abundance
 - Weak Lensing
 - Velocity Field (Redshift Space Distortion)

• Anomalous events for highly predictive smooth dark energy model

standard model for appearance of Japanese women

• Anomalous events for highly predictive smooth dark energy model

• Anomalous events for highly predictive smooth dark energy model

Harajuku: sampling bias, trials factor

• Anomalous events for highly predictive smooth dark energy model

systematic error! high redshift interloper

Falsifying Quintessence

• Dark energy slows growth of structure in highly predictive way

Cosmological Constant

Quintessence

• Deviation significantly >2% rules out Λ with or without curvature

• Excess >2% rules out quintessence with or without curvature and early dark energy [as does >2% excess in H_0]

Dynamical Tests of Acceleration

• Dark energy slows growth of structure in highly predictive way

ACDM Falsified?

• 95% of Λ CDM parameter space predicts less than 1 cluster in 95% of samples of the survey area >M(>z)

Pink Elephant Parade

• SPT catalogue on 2500 sq degrees

Cosmic Shear Tests

Convergence power spectrum of CFHLT-like survey; currently consistent with ΛCDM

Cosmic Shear Tests

- Systematics from baryonic feedback (e.g. AGN, cooling, star formation in clusters) comparable to statistical errors
- Calibration must be improved
- Residual uncertainties characterized by variations in Halofit parameters

Neutrinos

- New dark-sector physics not necessarily dark energy
- Sterile neutrinos change CMB inferences and allow more small scale power through tilt
- Accidental degeneracy will soon be resolved by Planck

Falsify in Favor of?

- Parameterize ignorance: $\Phi/\Psi(\mathbf{x},t)$ - not constant not k
- Develop and study toy models derivable from Lagrangian screening models, nonlinear tests

Hordes of parameters (people, telecons...) Something fishy (kill what you work on...)

Mercury or Pluto?

 Excess power could be explained by changing force law Keep Gravity as Geometry (microscopic equivalence principle)

• But modify how Geometry = Matter-Energy

Nonlinearly Screened DOFs

- Modifications of gravity will introduce new propagating degrees of freedom (Weinberg)
- These DOFs mediate fifth forces and may lead to ghost and tachyon instabilities
- Even attempts to modify gravity on cosmological scales (IR) will have consequences for small scales (e.g. vDVZ discontinuity)
- Fifth forces are highly constrained in the solar system and lab
- Must be screened by a nonlinear mechanism in the presence of matter source: chameleon, symmetron, Vainshtein...
- Realization in models: f(R), DGP, galileon, massive gravity
- f(R), DGP examples solved from horizon scales through to dark matter halo scales with *N*-body simulations

Cast of f(R) Characters

- *R*: Ricci scalar or "curvature"
- f(R): modified action (Starobinsky 1980; Nojiri & Odintsov 2003; Carroll et al 2004)

$$S = \int d^4x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right]$$

- $f_R \equiv df/dR$: additional propagating scalar degree of freedom (metric variation)
- $f_{RR} \equiv d^2 f/dR^2$: Compton wavelength of f_R squared, inverse mass squared
- *B*: Compton wavelength of f_R squared in units of the Hubble length

$$B \equiv \frac{f_{RR}}{1 + f_R} R' \frac{H}{H'}$$

• $' \equiv d/d \ln a$: scale factor as time coordinate

Form of f(R) Models

- Transition from zero to constant across an adjustable curvature scale
- Slope *n* controls the rapidity of transition, field amplitude f_{R0} position
- Background curvature stops declining during acceleration epoch and thereafter behaves like cosmological constant

Hu & Sawicki (2007)

Three Regimes

- Fully worked f(R) example show 3 regimes
- Superhorizon regime: constant comoving curvature, g(a)
- Linear regime closure ↔ "smooth" dark energy density:

$$k^{2}(\Phi - \Psi)/2 = 4\pi G a^{2} \Delta \rho$$
$$(\Phi + \Psi)/(\Phi - \Psi) = g(a, k)$$

In principle G(a) but conformal invariance: deviations order f_R
Non-linear regime, scalar f_R:

$$\nabla^2 (\Phi - \Psi)/2 = -4\pi G a^2 \Delta \rho$$

$$\nabla^2 \Psi = 4\pi G a^2 \Delta \rho + \frac{1}{2} \nabla^2 f_R$$

with non-linearity in the field equation

$$\nabla^2 f_R = g_{\rm lin}(a)a^2 \left(8\pi G\Delta\rho - N[f_R]\right)$$

Non-Linear Chameleon

• For f(R) the field equation

$$\nabla^2 f_R \approx \frac{1}{3} (\delta R(f_R) - 8\pi G \delta \rho)$$

is the non-linear equation that returns general relativity

- High curvature implies short Compton wavelength and suppressed deviations but requires a change in the field from the background value $\delta R(f_R)$
- Change in field is generated by density perturbations just like gravitational potential so that the chameleon appears only if

$$\Delta f_R \leq rac{2}{3} \Phi$$
 ,

else required field gradients too large despite $\delta R = 8\pi G \delta \rho$ being the local minimum of effective potential

Non-Linear Dynamics

Supplement that with the modified Poisson equation

$$\nabla^2 \Psi = \frac{16\pi G}{3} \delta \rho - \frac{1}{6} \delta R(f_R)$$

- Matter evolution given metric unchanged: usual motion of matter in a gravitational potential Ψ
- Prescription for *N*-body code
- Particle Mesh (PM) for the Poisson equation
- Field equation is a non-linear Poisson equation: relaxation method for f_R
- Initial conditions set to GR at high redshift

Environment Dependent Force

 Chameleon suppresses extra force (scalar field) in high density, deep potential regions

density: max[ln(1+ δ)] potential: min[Ψ] field: min[f_R/f_{R0}]

Environment Dependent Force

• For large background field, gradients in the scalar prevent the chameleon from appearing

density: max[ln(1+ δ)] potential: $\min[\Psi]$ field: $\min[f_R/f_{R0}]$ $f_{R0}=|10^{-6}|$ $f_{R0}=|10^{-4}|$

Oyaizu, Lima, Hu (2008) [AMR high resolution: Zhao, Li, Koyama]

Cluster Abundance

• Enhanced abundance of rare dark matter halos (clusters) with extra force

Cluster f(R) Constraints

- Clusters provide best current cosmological constraints on f(R) models
- Spherical collapse rescaling to place constraints on full range of inverse power law models of index *n*

Solar System & Lab

- Strictly valid for solar system / lab or are beyond effective theory?
- If former, solar system f(R) tests of more powerful by at least 10 (Hu & Sawicki 2009; exosolar tests: Jain et al., Davis et al.)
- Laboratory tests: within factor of 2 of ruling out all gravitational strength chameleon models [m < 0.0073(ξρ/10g cm³)^{1/3}eV]
 Already exceeded the vacuum scale (1000km) and earth (1cm) of Vainshtein models (Nicolis & Rattazzi 2004)

Chameleon Pile-Up

- Chameleon threshold at intermediate masses $(10^{13} h^{-1} M_{\odot})$
- Mergers from smaller masses continues, to higher masses stops
- Pile up of halos at threshold

PPF Parameterization

• Interpolate between linear f(R) enhanced $\sigma(M)$ and ordinary gravity

Chameleon Mass Function

- Simple single parameter extention covers variety of models
- Basis of a halo model based post Friedmann parameterization of chameleon

Power Spectrum

• Connect to linear regime with interpolation of HaloFit

Motion: Environment & Object

 Self-field of a "test mass" can saturate an external field (for *f*(*R*) in the gradient, for DGP in the second derivatives)

Hui, Nicolis, Stubbs (2009) Jain & Vanderplas (2011) Zhao, Li, Koyama (2011)

DGP Braneworld Acceleration

• Braneworld acceleration (Dvali, Gabadadze & Porrati 2000)

$$S = \int d^5x \sqrt{-g} \left[\frac{{}^{(5)}R}{2\kappa^2} + \delta(\chi) \left(\frac{{}^{(4)}R}{2\mu^2} + \mathcal{L}_m \right) \right]$$

with crossover scale $r_c = \kappa^2/2\mu^2$

- Influence of bulk through Weyl tensor anisotropy solve master equation in bulk (Deffayet 2001)
- Matter still minimally coupled and conserved
- Exhibits the 3 regimes of modified gravity
- Weyl tensor anisotropy dominated conserved curvature regime $r > r_c$ (Sawicki, Song, Hu 2006; Cardoso et al 2007)
- Brane bending scalar tensor regime $r_* < r < r_c$ (Lue, Soccimarro, Starkman 2004; Koyama & Maartens 2006)
- Strong coupling General Relativistic regime $r < r_* = (r_c^2 r_g)^{1/3}$ where $r_g = 2GM$ (Dvali 2006)

DGP CMB Large-Angle Excess

- Extra dimension modify gravity on large scales
- 4D universe bending into extra dimension alters gravitational redshifts in cosmic microwave background

Massive Gravity

- DGP model motivated re-examination of massive gravity models
- Nonlinearly complete Fierz-Pauli action: Vainshtein strong coupling (restoring vDVZ continuity), no Boulware Deser ghost, effective theory out to Λ₃ Arkani-Hamed, Georgi, Schwartz (2003)
- Massive gravity action [de Rham, Gabadadze, Tolley et al, Hassan & Rosen, ... (2010-2012)]

$$S = \frac{M_p}{2} \int d^4x \sqrt{-g} \left[R - \frac{m^2}{4} \sum_{n=0}^4 \alpha_n S_n(\sqrt{\mathbf{g}^{-1}\boldsymbol{\eta}}) \right]$$

where η is a fiducial (Minkowski) metric

 Diffeomorphism invariance can be restored by introducing Stückelberg fields

$$\mathbf{g}^{-1}\boldsymbol{\eta} \to g^{\mu\nu}\partial_{\mu}\phi^{a}\partial_{\nu}\phi^{b}\eta_{ab}$$

which carry transformation from unitary to arbitrary gauge

Self Acceleration

- Graviton mass $\sim H_0$ provides self-acceleration
- Generalizing results de Rham et al, Koyama et al, Mukohyama et al... for any isotropic metric a cosmological constant stress-energy is an exact solution Gratia, Hu, Wyman (2012); Motohashi & Suyama (2012)

$$\rho_m = -p_m = \frac{m^2 M_p^2}{2} P_0$$

where P_0 constant given α_n

- Cosmic acceleration if $m \sim H_0$, remains constant for arbitrarily large radial matter perturbations
- Stückelberg fields are inhomogeneous in isotropic coordinates d'Amico et al (2011)
- Stress-energy depends only on spatial Stückelberg fields, leaving a set of solutions that differ in φ₀ or the choice of unitary time

Self Acceleration

- Self-accelerating solution approached from arbitrary initial conditions? classically and quantum-mechanically stable?
- Field fluctuations again decouple with spatial Stückelberg field obeying first order closed equation
- Stable to radial field perturbations Wyman, Hu, Gratia (2012)

 $\delta p / \delta \rho = a \ddot{a} / 3 \dot{a}^2$

e.g. de Sitter $\delta p / \delta \rho = 1/3$

- Stückelberg dynamics determined by unitary time: special cases with no dynamics, no stress energy perturbations Gumrukcuoglu et al
- Stability to anisotropic perturbations and higher order terms in action? Koyama et al; de Felice et al; d'Amico
- Effective theory to 1000km in vacuum, on earth 1cm or 1km? Burrage, Kaloper, Padilla (2012)

Nonlinear Interaction

Nonlinearity in field equation recovers linear theory if $N[\phi] \to 0$ $\nabla^2 \phi = g_{\text{lin}}(a)a^2 \left(8\pi G \Delta \rho - N[\phi]\right)$

• For f(R), $\phi = f_R$ and

 $N[\phi] = \delta R(\phi)$

a nonlinear function of the field

Linked to gravitational potential

• For DGP, ϕ is the brane-bending mode and

$$N[\phi] = \frac{r_c^2}{a^4} \left[(\nabla^2 \phi)^2 - (\nabla_i \nabla_j \phi)^2 \right]$$

a nonlinear function of second derivatives of the field Linked to density fluctuation - Galileon invariance - no self-shielding of external forces

DGP N-Body

• DGP nonlinear derivative interaction solved by relaxation revealing the Vainshtein mechanism

Newtonian Potential

Brane Bending Mode

Schmidt (2009); Chan & Scoccimarro (2009) (cf. Khoury & Wyman 2009)

Weak Vainshtein Screening

- Screening occurs when objects are separated by a Vainshtein radius
- Vainshtein radius depends on mass $m^{1/3}$
- Halos in compensated voids experience acceleration toward the center proportional to *m*

Belikov & Hu (2012)

Strong Vainshtein Screening

- Objects separated by much less than Vainshtein radius
- Screened acceleration also mass dependent due to nonlinearity
- Universal precession rate is not universal: corrections scale as $(M_B/M_A)^{3/5}$

Hiramatsu, Hu, Koyama, Schmidt (2012)

Summary

- Formal equivalence between dark energy and modified gravity
- Practical inequivalence of smooth dark energy and extra propagating scalar fifth force
- Appears as difference between dynamical mass and lensing mass or dark energy anisotropic stress
- Smooth dark energy (e.g. quintessence) highly falsifiable
- Three regimes of modified gravity
- Nonlinear screening in field equations return to ordinary gravity Chameleon/symmetron: deep potential well Vainshtein: high local density

manifest in the f(R) model and DGP/galileon/massive gravity

• Characteristic signatures of different screening mechanisms

