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Motivation
The Omega  background was introduced by Nekrasov as a way of 
regularizing the 4d instanton partition function and 
reproducing the results of Seiberg and Witten.

Many applications:

In limit                    , partition fn is the same as for topological 
string (for            , refined top. string)

In the Nekrasov Shatashvili limit         , related to quantum 
integrable models with

Compactification of 6D (2,0) theory in Omega BG leads to AGT

All of the above can be understood via string theory by placing 
branes into a geometrical deformation of the bulk 
corresponding to the Omega BG !



Overview

fluxbrane BG

fluxtrap BG

T duality

+ D2, NS5 + D4, NS5

2d N=2 gauge theory
w. twisted masses

(2d Gauge/Bethe corr.)

4d N=2 gauge theory
in Omega BG

(4d Gauge/Bethe corr.)

M Theory lift

Gauge/Bethe correspondence relates susy gauge theories in 2d/4d 
to (quantum) integrable systems. Find/study string theory realization!

The same string theory background can give rise to different 
deformations (twisted masses/Omega deformation) depending on 
how we place branes in it!



Overview
Start from M theory lift of background.

Study different limits of (2,0) theory in 6d.

Why (2,0) theory?

4d SYM in Omega BG Liouville field theory (2d)

(2,0) in 6d on

compactify on compactify on

AGT

Here:

4d N=4 SYM in Omega BG reciprocal field theory (4d)

(2,0) in 6d on             in fluxtrap

compactify on angular 
directions of

compactify on 

Theories are realized via a chain of dualities.

Study BPS states in this duality web.



Bulk Probe Gauge Theory

type iib in Melvin space D5
six-dimensional gauge theory with Wilson
line boundary conditions in two directions

mT–duality in ũ1 and ũ2

type iib in complex fluxtrap D3 Ω–deformed N = 4 SYM

mT–duality in x̃6 and lift

M–theory fluxtrap M5 (2, 0) six-dimensional theory

mreduction in σ1 and σ2

type iib in deformed D5/NS5
(reciprocal background) D3 Reciprocal gauge theory

Table 1: The chain of dualities among the different string frames and the corresponding
effective gauge theories.

Adding the two spectator directions �x6 and x7, we have the following variables:

ρ1, θ1, ρ2, θ2, ρ3, θ3, �x6, x7, �u1, �u2. (2.2)

In the notation of [10] we want to set up a fluxbrane with two independent deformation
parameters, one of which being purely real, the other being purely imaginary. Shifts
are induced in the θ1, θ2–directions, which for supersymmetry preservation need to be
compensated by a shift in the θ3–directions. We impose the monodromies1






�u1 � �u1 + 2π ,

θ1 � θ1 + 2π�1 �R1 ,

θ3 � θ3 − 2π�1 �R1 ,






�u2 � �u2 + 2π ,

θ2 � θ2 + 2π�2 �R2 ,

θ3 � θ3 − 2π�2 �R2 ,

(2.3)

and we change to new angular coordinates φi which are 2π periodic:

θ1 = φ1 + R1�1�u1 , (2.4)

θ2 = φ2 + R2�2�u2 , (2.5)

θ3 = φ3 − R1�1�u1 − R2�2�u2 . (2.6)

1 The two parameters �1 and �2 are real. In the habitual conventions for the Ω–deformation they
correspond to a real and a purely imaginary ε. See [10, 11] for comparison.
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A Chain of Dualities
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A Chain of Dualities: Bulk
Fluxbrane background with two independent deformation 
parameters, one purely real, the other purely imaginary

ρ1, θ1, ρ2, θ2, ρ3, θ3, �x6, x7, �u1, �u2






�u1 � �u1 + 2π ,

θ1 � θ1 + 2π�1 �R1 ,

θ3 � θ3 − 2π�1 �R1 ,






�u2 � �u2 + 2π ,

θ2 � θ2 + 2π�2 �R2 ,

θ3 � θ3 − 2π�2 �R2 ,

IIB FB

IIB FT

IIA FT

M FT

IIB rec

θ1 � θ1 + 2π k2 , θ2 � θ2 + 2π k3

�x8 = �R1 �u1 , �x9 = �R2 �u2

fluxbrane parameter

This corresponds to the well known Melvin or fluxbrane 
background.

impose identifications

Introduce new angular variables
θ1 = φ1 +R1�1�u1 ,

θ2 = φ2 +R2�2�u2 ,

θ3 = φ3 −R1�1�u1 −R2�2�u2 .



A Chain of Dualities: Bulk
�u1 �u2 u2u1T dualize    and    into    and   Fluxtrap background

φ1 + φ2 + φ3 = ψCoordinate change:

ρ1,φ1, ρ2,φ2, ρ3,ψ, �x6, x7, x8 =
α�

�R1

u1, x9 =
α�

�R2

u2

ρ3 << ρ1, ρ2Study the limit

IIB FB

IIB FT

IIA FT

M FT

IIB rec

ds2 = dρ21 +
ρ21 dφ

2
1 + dx2

8

1 + �21ρ
2
1

+ dρ22 +
ρ22 dφ

2
2 + dx2

9

1 + �22ρ
2
2

+ dρ23 + ρ23 dψ
2 + d�x2

6 + dx2
7 ,

B = �1
ρ21

1 + �21ρ
2
1

dφ1 ∧ dx8 + �2
ρ22

1 + �22ρ
2
2

dφ2 ∧ dx9 ,

e−Φ =
�
(1 + �21ρ

2
1) (1 + �22ρ

2
2)

Bulk fields

Before T duality, locally, the metric was still flat, but some of 
the rotation symmetries were broken globally. 

B field has appeared

A quarter of the original supersymmetries are preserved.

creates a potential that localizes 
instantons

not anymore flat



A Chain of Dualities: Bulk

Space splits into (ρ3,ψ, x7)

r

φ1
1
�1

R2

R × S1

Figure 1: Cartoon of the geometry of the base of the manifold M3(�1): a cigar with
asymptotic radius 1/�1.

The space splits into a product

M10 = M3(�1)× M3(�2)× R3 × S1 , (2.14)

where R3 is generated by (ρ3, ψ, x7), the S1 is generated by (x6, x7), and M3 is a three-
dimensional manifold which is obtained as a R foliation (generated by x8 or x9) over
the cigar with asymptotic radius 1/�i described by (ρ1, φ1) or (ρ2, φ2) (see the cartoon
in Figure 1):

R�x8� M3(�1)

cigar �ρ1, φ1� (2.15)

This shows that the effect of the Ω–deformation is to regularize the rotations
generated by ∂φ1 and ∂φ2 in the sense that the operators become bounded:

� ∂φ1�2 =
ρ2

1
1 + �2

1ρ2
1
<

1
�2

1
, � ∂φ2�2 =

ρ2
2

1 + �2
2ρ2

2
<

1
�2

2
. (2.16)

In a different frame this will translate into a bound on the asymptotic coupling of the
effective gauge theory for the motion of a D–brane.

As a final remark we observe that even though the background in Equation (2.13)
where the contributions of the two �i are decoupled was obtained as a limit, it is by
itself a solution of the ten-dimensional supergravity equations of motion for any value
of ρi.

What we have obtained is the starting point of the chain of dualities leading
eventually to the reciprocal background, as detailed in Table 1.

M–theory. As a first step we dualize in x6 to type iia and then lift to M–theory.
A remarkable feature of the M–theory background is the fact that it is symmetric
under the exchange {ρ1, φ1, x8, �1} ↔ {ρ2, φ2, x9, �2}. This is the origin of the S–duality
covariance of the final type iib background. This has to be contrasted with the fact
that the directions x6 and the M–circle x10 appear in a non-symmetric fashion. This is
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�x6

IIB FB

IIB FT

IIA FT

M FT

IIB rec

ρ1,φ1, ρ2,φ2, ρ3,ψ, �x6, x7, x8 =
α�

�R1

u1, x9 =
α�

�R2

u2



A Chain of Dualities: Bulk

Now we want to lift to M theory. First T dualize in     to IIA, 
then lift:

�x6

σi =
φi

�i

Return to IIA by reducing on    : backreaction of the near horizon 
limit of a D6 brane in the fluxtrap

σ1

ds2 = (∆1∆2)
2/3

�
dρ21 +

�21ρ
2
1

1 + �21ρ
2
1

dσ2
1 +

dx2
8

1 + �21ρ
2
1

+ dρ22 +
�22ρ

2
2

1 + �22ρ
2
2

dσ2
2 +

dx2
9

1 + �22ρ
2
2

+ dρ23 + ρ23 dψ
2 + dx2

6 + dx2
7

�
+ (∆1∆2)

−4/3 dx2
10 ,

A3 =
�21ρ

2
1

1 + �21ρ
2
1

dσ1 ∧ dx8 ∧ dx10 +
�22ρ

2
2

1 + �22ρ
2
2

dσ2 ∧ dx9 ∧ dx10

∆2
i = 1 + �2i ρ

2
i

Symmetric under exchange

ρ3 << ρ1, ρ2

Origin of S duality covariance in final BG.

IIB FB

IIB FT

IIA FT

M FT

IIB rec



A Chain of Dualities: Bulk
Last step: T duality in σ2

ds2 = �1ρ1

�
1 + �22ρ

2
2

�
dρ21 + dρ22 +

dσ̃2
2

�21ρ
2
1�

2
2ρ

2
2

+ dρ23 + ρ23 dψ
2 + dx2

6 + dx2
7+

+
dx2

8

1 + �21ρ
2
1

+
dx2

9

1 + �22ρ
2
2

+
dx2

10

(1 + �21ρ
2
1) (1 + �22ρ

2
2)

�
,

B =
�21ρ

2
1

1 + �21ρ
2
1

dx8 ∧ dx10 ,

e−Φ=
�2ρ2
�1ρ1

�
1 + �21ρ

2
1

1 + �22ρ
2
2

,

C2 =
�22ρ

2
2

1 + �22ρ
2
2

dx9 ∧ dx10

String coupling constant:

The bulk is the backreaction of the near horizon limit of an NS5 
and a D5 brane.

Under S duality,     is exchanged with    , which amounts to swapping 
the D5 with the NS5. 

from D5

from NS5

IIB FB

IIB FT

IIA FT

M FT

IIB rec



A Chain of Dualities: Branes

Bulk Probe Gauge Theory

type iib in Melvin space D5
six-dimensional gauge theory with Wilson
line boundary conditions in two directions

mT–duality in ũ1 and ũ2

type iib in complex fluxtrap D3 Ω–deformed N = 4 SYM

mT–duality in x̃6 and lift

M–theory fluxtrap M5 (2, 0) six-dimensional theory

mreduction in σ1 and σ2

type iib in deformed D5/NS5
(reciprocal background) D3 Reciprocal gauge theory

Table 1: The chain of dualities among the different string frames and the corresponding
effective gauge theories.

Adding the two spectator directions �x6 and x7, we have the following variables:

ρ1, θ1, ρ2, θ2, ρ3, θ3, �x6, x7, �u1, �u2. (2.2)

In the notation of [10] we want to set up a fluxbrane with two independent deformation
parameters, one of which being purely real, the other being purely imaginary. Shifts
are induced in the θ1, θ2–directions, which for supersymmetry preservation need to be
compensated by a shift in the θ3–directions. We impose the monodromies1






�u1 � �u1 + 2π ,

θ1 � θ1 + 2π�1 �R1 ,

θ3 � θ3 − 2π�1 �R1 ,






�u2 � �u2 + 2π ,

θ2 � θ2 + 2π�2 �R2 ,

θ3 � θ3 − 2π�2 �R2 ,

(2.3)

and we change to new angular coordinates φi which are 2π periodic:

θ1 = φ1 + R1�1�u1 , (2.4)

θ2 = φ2 + R2�2�u2 , (2.5)

θ3 = φ3 − R1�1�u1 − R2�2�u2 . (2.6)

1 The two parameters �1 and �2 are real. In the habitual conventions for the Ω–deformation they
correspond to a real and a purely imaginary ε. See [10, 11] for comparison.
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IIB FB

IIB FT

IIA FT

M FT

IIB rec



A Chain of Dualities: Branes

Start from M5 brane extended in (ρ1, ρ2, σ1, σ2, x6, x10)

R2 × T 2 × T 2

N = 4Ω deformed           SYM:

(ρ1,φ1, ρ2,φ2)

D3 branes extended in
                    in fluxtrap

Reciprocal gauge theory:
D3 branes in reciprocal BG
extended in (ρ1, ρ2, x6, x10)

Effective 4D gauge theories on D3 branes in different duality 
frames/bulk backgrounds.  

IIB FB

IIB FT

IIA FT

M FT

IIB rec

IIB FB

IIB FT

IIA FT

M FT

IIB rec

IIB FB

IIB FT

IIA FT

M FT

IIB rec



A Chain of Dualities: Branes
N = 4Ω deformed           SYM:

LΩ =
1

4g2ym

�
FijF

ij+
1

2

�
∂iϕ+ V kF i

k

� �
∂iϕ̄+ V̄ kFki

�
−1

8
(V̄ i ∂iϕ− V i ∂iϕ̄+ V kV̄ lFkl)

2

+
1

4

�
δij + V iV̄ j

�
(∂iz ∂j z̄ + c.c.) +

1

4

�
δij + V iV̄ j

�
(∂iw ∂jw̄ + c.c.)

+
1

2 i

�
�3V̄

i + �̄3V
i
�
(w̄ ∂iw − c.c.) +

1

2
|�3|2 ww̄

�

w(ξ) =
ρ3 eiψ

πα� , z(ξ) =
x6 + ix7

πα� , ϕ(ξ) =
x8 + ix9

πα�

V = �1
�
ξ0 ∂1−ξ1 ∂0

�
+ i �2

�
ξ2 ∂3−ξ3 ∂2

�
g2ym = 2πgΩiib

3 cplx scalars describing motion of D3:

(ρ1,φ1, ρ2,φ2)D3 branes extended in                    in 
fluxtrap bg

DBI action for one D3 brane:

new
kinetic term

mass term

one derivative term 

breaks Lorentz 

invariance

IIB FB

IIB FT

IIA FT

M FT

IIB rec



A Chain of Dualities: Branes
Reciprocal gauge theory:

U1 + iU2 =
ρ3 eiψ

2πα� , U3 =
x7

2πα� , U4 =
σ̃2

2πα� , U5 =
x8

2πα� , U6 =
x9

2πα�

Lrec =
y2

8πy1
FklFkl+

�21y1y2
4π

�
3�

k=1

(Fk4 − ∂kU5)
2+

1

∆2
2

3�

k=1

�
i
�2
�1

y2
y1

(∗F )k4 − ∂kU6

�2

+τkl(ξ)hij(ξ) ∂kUi ∂lUj+∆2
2(∂4U5)

2+∆2
1(∂4U6)

2+
�
y−2
1 + y−2

2

� �
U2
1 + U2

2

�
�

τkl(ξ) =





1
1

1
∆2

1∆
2
2



 , hij(ξ) =





1
1

1
(�1y1)

−2(�2y2)
−2





(ρ1, ρ2, x6, x10)D3 branes in reciprocal BG extended in 

Supersymmetric non Lorentz invariant gauge theory

Dynamics described by

Effective action for D3 brane: from B field from C field

IIB FB

IIB FT

IIA FT

M FT

IIB rec

Embedding ρ1 = y1 , ρ2 = y2 , x6 = y3 , x10 = y4



A Chain of Dualities: Branes

Define gauge kinetic tensor:

1

g2eff
=

�
2

3
||M ||K =

�
2

3
�ijkl�i�j�k�l�M iji�j�Mklk�l�

Lg = M ijklFijFkl

Define scalar gauge coupling:

Gauge coupling in reciprocal gauge theory:

1

g2rec
=

1

2π

y2
�

1 + �21y
2
1

y1
�

1 + �22y
2
2

g2rec −−−−−−→y1,y2→∞
2π

�2
�1

Far away from the branes (large y limit), this reduces to

IIB FB

IIB FT

IIA FT

M FT

IIB rec



A Chain of Dualities: Branes

The reciprocal gauge theory displays several features of Liouville 
field theory:

Asymptotic coupling constant is proportional to b2

Ldual(�1, �2) = Lg(�2, �1)

By comparison we find

b2 =
�2
�1

Define Liouville parameter as

b ↔ 1/bS duality exchanges            , like Liouville duality which 
exchanges perturbative and instanton spectrum

The S dual of the Lagrangian is defined as follows:

Ldual =
1

16π2
(M−1)ijkl(∗F )ij(∗F )kl

Ldual(�1, �2) =
y1

4πy2

�
(∗F )4k(∗F )k4

1 + �21y
2
1

+ Fk4Fk4

�
1 + �22y

2
2

��

IIB FB

IIB FT

IIA FT

M FT

IIB rec



BPS States in the 
Duality Web



BPS States in the Duality Web
In Omega deformed SYM: 2 sets of BPS objects

BPS instanton configurations 
in IIB and particles in IIA, 
localized at the origin

oscilloids

perturbative modes of the 
fundamental string stretching 
between two D4 branes carrying 
angular momentum along the 
                 rotational isometries 
localized at infinity

DOZZoids

U(1)× U(1)

L = −µ0e
−Φ = − 1

gΩIIAlΩ

�
(1 + �21ρ

2
1) (1 + �22ρ

2
2)

ED0 =
nD0

gΩIIAlΩ

�
(1 + �21ρ

2
1) (1 + �22ρ

2
2)

E2 =

�
�2J2 −

L2

2πα�

�
+

J2
2

ρ22Give rise to the modular form 
defining the holomorphic 
factor of the Liouville 
partition function

Reproduce the holomorphic 
DOZZ factors of the Liouville 
partition function

IIB FB

IIB FT

IIA FT

M FT

IIB rec



BPS States in the Duality Web

oscilloids DOZZoids

type IIA

M theory

D0 branes in fluxtrap 
at origin

M theory

momentum mode in x10

reciprocal 
framemomentum mode in x10

fundamental string 
extended in     with 
momentum in 

x9

φ2

M2 brane with 
momentum in φ2

(x6, x9, x10, σ̃2)

σ̃2

D3 brane in 
with el. flux in

Now only one kind of BPS state carrying both types of charge and 
living at a finite radius.

Follow BPS states along chain of dualities to reciprocal frame.

IIB FB

IIB FT

IIA FT

M FT

IIB rec

IIB FB

IIB FT

IIA FT

M FT

IIB rec

IIB FB

IIB FT

IIA FT

M FT

IIB rec



BPS States in the Duality Web

Follow the BPS states along the chain of dualities:

frame object ρ1 φ1 ρ2 φ2 ρ3 ψ x6 x7 x8 x9 x10

D4 × × × × × × �
F1 � × × �iia fluxtrap
D0 × �
M5 × × × × × ×
M2 � × × ×M–theory
momentum � �
D3 × � × × ×
D3 � × × × ×
momentum � � �
D5 � × × × × × ×

reciprocal frame

NS5 × � × × × × ×

Table 2: Extended objects in the various different frames. The objects are extended in
the direction of the crosses (×). Angular momentum in a direction is marked as � and
momentum as �. The direction marked with a square (�) in type ii is not geometrical. The
white background is for the dynamical branes described by the gauge theories; the light
grey (�) for the branes that correspond to the bps excitations and the dark grey background
(�) for non-dynamical objects in the bulk.

particles in five dimensions, that are static in the (Euclidean) timelike x6 direction. We
need go into this aspect no further; this description has been discussed in detail in [1, 5].
We note simply that the localization of these objects to the origin by the Ω–deformation
is easy to understand at the field-theoretic level: the scalar effective gauge coupling that
controls the mass of a small instanton has a global maximum at the origin, and so the
instanton’s action is globally minimized there. Further discussion of this effect can be
found in [9].

Field-theoretic description of the BPS DOZZoids. These are linearized eigen-
modes of the 4D massive vector multiplet in the Ω–deformed gauge theory, with or
without angular momenta J1,2 in the U(1)× U(1) angular directions. The eigenvalue of
the Laplace operator on these modes χ obeys a bps condition

−∇2χ =

����
L

2πα� + �1 J1 + �2 J2

����
2

χ , (4.1)

where L is the distance between the branes in string frame, and so L
2πα� is the vev of

the scalar in the vector multiplet. The angular momenta J1,2 include both orbital contri-
butions depending on the profile of the mode and intrinsic contributions depending
on the representation of the field. Treated as particles in the five-dimensional gauge
theory on a circle, these are bps particle excitations of the vector multiplet, with a mass
determined by the free-field equation of motion:

mBPS =

����
L

2πα� + �1 J1 + �2 J2

���� . (4.2)

13

extended in direction

nongeometrical direction

angular momentum

momentum

dynamical 
branes

BPS 
excitations

non dynamical

IIB FB

IIB FT
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M FT
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Extended objects in the reciprocal frame:
IIB FB

IIB FT

IIA FT

M FT

IIB rec

IIB FB

IIB FT

IIA FT

M FT

IIB rec

IIB FB

IIB FT

IIA FT

M FT

IIB rec
x9

x10

ρ2

D3 (dynamical)

D3 (dynamical)D3 (bps)

NS5 (bulk)



BPS States in the Duality Web
M theory

 Introduce a D3 brane extended in                      with an 
electric field in    , velocity   in       and another component of 
the electric field in      , which is required by the coupling of    
in the DBI action.

(x6, x9, x10, σ̃2)

σ̃2

v

x10v

x10

x6 = iζ0 , x9 =
L2

πRWS
ζ1 , σ̃2 = 2πα��2

ζ2
κ

, x10 = ζ3 + vζ0 , x8 = 0 ,

ρ1 = const. , ρ2 = const. , ρ3 = 0 , x7 = 0

F02 =
1

κ
f02 , F03 =

1

κ
f03

S = −µ3

�
d4ζe−Φ

�
− det(g +B + 2πα�F ) + µ3

�
exp(B + 2πα�F ) ∧

�

q

Cq

=
�1L2R10

2πα�

�2ρ22 (f02 + vf03)−
�

(1 + �22ρ
2
2) (1 + ρ22f

2
03 (1 + �21ρ

2
1))− ρ22 (f02 + vf03)

2

1 + �22ρ
2
2

J2 =
δS

δf02
, D3 =

δS

δf03
, P =

δS

δv

IIB FB

IIB FT

IIA FT

M FT

IIB rec
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E2 =

��
�1R10

2πα� L2 − �2J2

�2

+

�
J2
ρ2

�2
��

1 + ρ22
�
1 + �21ρ

2
1

�� P

J2

�2
�
.

From the Hamiltonian, we find

This is minimized for
ρ22 =

J2
2

P
�
�1R10
2πα� L2 − �2J2

�

Energy of the BPS states:

EBPS =

����
�1R10

2πα� L2 − �2J2 + P

����

Eosc = P

P = 0

Edozz =

����
�1R10

2πα� L2 − �2J2

����

oscilloids DOZZoids

L2 = J2 = 0

EBPS = Eosc + Edozz

IIB FB

IIB FT

IIA FT

M FT

IIB rec



BPS States in the Duality Web
States are only marginally stable with respect to their decay 
into separate  oscilloids and DOZZoids.
Any decay would have to tunnel over a barrier, since a state 
that is broken apart locally would have an energy that is 
strictly larger than the one of the bound state. Any such decay 
process would have to be nonperturbatively suppressed.

IIB FB

IIB FT

IIA FT

M FT

IIB rec
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Summary

We described the Omega BG and its various limits via a fluxtrap 
BG in string theory.

Allows us to study different gauge theories of interest via string 
theoretic methods.

Gives a geometrical interpretation for the Omega BG and its 
properties, such as localization etc.

Understanding of relation between deformation parameters and 
quantization of spectral curve.

Omega deformation and twisted mass deformation have same 
origin.



Summary

Reciprocal gauge theory displays properties of Liouville field 
theory: 

Progress towards understanding the (2,0) theory in 6D in Omega 
BG.

Studied two limits of (2,0) theory linked by a chain of dualities.

Important step towards realization of Liouville theory from 
string theory.

b ↔ 1/bS duality exchanges            , like Liouville duality which 
exchanges perturbative and instanton spectrum

Asymptotic coupling constant is proportional to b2 =
�2
�1

Compactify on angular directions: Reciprocal gauge theory on R2
+ × T 2

Compactify on torus: Omega deformed N=4 SYM on R4



Summary

BPS states appearing on the SYM side of the AGT correspondence: 
fundamental strings and D0 branes in type IIA fluxtrap

Reciprocal frame: D3 branes carrying both electric fields and 
momentum in the 10 direction, localized at a finite value of the 
radial direction

Two distinct types of states localized in different positions (the 
origin and infinity) in one duality frame.

States carrying both charges localized in one place in the other 
duality frame.

Presence of new phenomena which are only accessible via a 
microscopic description.



Outlook

The reciprocal theory is intrinsically fourdimensional.

Aim: construct Liouville field theory as compactification of an M5 
brane in M theory fluxtrap background.

Start from a geometry of the type             to be able to reduce on 
the 4d part and realize a 2d theory on the Riemann surface.

S4
Ω × Σ



Thank you for your attention!


