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Introduction

Review of D-branes:

- in Ising model

- in (Ising)?= Free boson in S'/Z,
Numerical solutions in OSFT

-1, € branes from o
-0 brane from 1, ¢ — Positive energy solutions !!
- 181, e®e, 1€, €®1,.... branes from ocgo — Fractional branes !!

- Double branes in the universal sector

Conclusion



Boundary states

The nicest problems in theoretical physics
are ones which are: easy to state, difficult
to solve and with many relations to other
branches to physics

One such problem is classification of the
boundary states in a given CFT or
equivalently admissible open string vacua
or D-branes.



Boundary states

Describe possible boundary conditions from
the closed string channel point of view.

Conformal boundary states obey:
1) the gluing condition (Ln — L ,)|B)=0
2) Cardy condition (modular invariance)

3) sewing relations (factorization constraints)

See e.g. reviews by Gaberdiel or by Cardy



Boundary states

The gluing condition is easy to solve:
For any spin-less primary|v,) we can define

Vo)) =Y M"Y (ho)L_yL_s|V.)
IJ

where M’ is the inverse of the real symmetric
Gram matrix

Mipj(he) = (V| LiL_5|Va)

where L_y=1L_, ..L_,,
(with possible null states projected out).

[shibashi 1989



Boundary states

Explicitly:
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The other conditions are much harder to deal
with however. Perhaps not even the full set of
necessary conditions is known.

We will show today, how to construct boundary
states (appropriate linear combinations of
[shibashi states) from OSFT solutions.



Boundary states — Cardy’s solution

By demanding that

(allgz ot 8) = Tryeren (g0 31)

and noting that RHS can be expressed as
Z nosXi(Q)

Cardy derived integrality constraints on the boundary
states. Surprisingly, for certain class of rational CFT's he
found an elegant solution (relying on Verlinde formula)

Z S"o

where S is the modular matrix.




Ising model CFT

[sing model is the simplest of the unitary
minimally models with ¢ = V4.

[t has 3 primary operators
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Boundary states — Cardy’s solution

And thus the Ising model conformal
boundary states are
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The first two boundary states describe fixed
(+/-) boundary condition, the last one free
boundary condition



This model naturally arises when one
considers Ising model on a plane with a
and employs the




(Ising)?model is well known point on the
orbifold branch of the moduli space of c=1
models e o

Forbifold
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Even though Ising model itself has only 3
bulk primaries, (Ising)? has infinite number
of them (Yang 1987)

A=A Multiplicity | (Ising)? Examples Orbifold Examples
n?2=0.1.4.... 1 1®R1.eRQ¢ 1. 0X0X

(?3_4;1)'2 = % 2. % .. 2 1®c.e®1 cos( \@_X’). cos( \ﬁf&;)

n+1 19 25 : . 5 X

(antgl) = 1_1(3 % % 2 1®oc,o0®1.e®0.0® < | twist fields. excited twist fields

[t is precisely equivalent to a free boson on an orbifold 5! /7,
with radius R, = V2 (in our units «/ =1.)



Boundary states in (Ising)?

Some boundary states are readily available

However, in general the problem of
constructing D-branes in tensor product of
simple CFT’s is rather difficult since we get
always , and
hence potentially many new exotic
boundary states.



Boundary states in (Ising)?

Here is the list found by Affleck and Oshikawa (1996)

(Ising)? D-brane | Interpretation | Energy = (1) <U‘<\—ld>‘\ ) Position
1®e fractional DO % +1 TR
e®1 fractional DO % +1 ™R
1®1 fractional DO % +1 0
E® e fractional D0 % +1 0

1 ® o fractional D1 % —1 —
og®1 fractional D1 % —1 —
ER o fractional D1 % —1 —
o® e fractional D1 % —1 —
oRo centered bulk DO | 1 +1 ’"‘QR
Yo ai(0)|AT,i)) | generic bulk DO | 1 +1 oI
32, 0,(0)|AT, 1) | generic bulk D1 | v/2 ~1 —

Now we would like to find all this from OSFT !?!



Numerical solutions in OSFT

To construct new D-branes in a given BCFT
with central charge c using OSFT, we
consider strings ‘propagating’ in a
background BCFT, @ BCFT,, .and look for
solutions which do not excite any primaries
in BCFT, ..



Numerical solutions in OSFT

To get started with OSFT, we first have to specify the starting
BCFT, i.e. we need to know:

- spectrum of boundary operators

- their 2pt and 3pt functions

- bulk-boundary 2pt functions (to extract physics)

The spectrum for the open string stretched between D-branes a
and b is given by boundary operators which carry labels of

operators which appear in the fusion rules

bu X Oy =) N o.



Numerical solutions in OSFT

In the case of Ising the boundary spectrum
is particularly simple

D-brane | Energy | Boundary spectrum

1)) - |1
&) - |1
7)) 1 1, €




Ellwood conjecture

Solutions to OSFT e.o.m. are believed to be in
1-1 correspondence with consistent boundary
conditions.

The widely believed (and tested, but
unproven) Ellwood conjecture states that for

every V{:_{
< Vc.-i' f-"D_|Bq; > = —4m <]|V(.i(j)|\1; _ 11;T\_|_,> _

Here ¥ is a solution of the e.o.m., v, is the
tachyon vacuum and|By) is the boundary state
we are looking for.

Ellwood (2008)



Generalized Ellwood invariants

The restriction to an on-shell state can be
bypassed. Any solution built using reference
BCFT, can be written as

W= Z Z ay; L V)) @ L2 ¢ |0)

I = {ny,na9, }
J={mi,mo,...}

and uplifted to BCFT ®BCFT,, , where

BCFT. . has c=0 and contalns free boson Y

dux

with Dirichlet b.c. One can then compute
Ellwood invariant with YV = celV@e2vVIi-hYy,

Trick inspired by Kawano, Kishimoto
and Takahashi (2008)



Generalized Ellwood invariants

Since | By) CFT08CF Tane — | B yCFTo g | B\ CF T

That the lift leads to the factorization is

We flnd our little assumption !
(ceV*| ¢y |By ) = —4mi( EV)|[& — Uy )

This is gauge invariant even w.r.t. the gauge
symmetry of the original OSFT based on
BCFT,

Lift o (Gauge Transf), = (Gauge Transf)pp(a) o Lift



Boundary state from Ellwood invariants

The coefficients of the boundary state

8%

can be computed from OSFT solution via

Y . Y /[ - BCjFer ] ®BCjFrl1alux
ng = 2mi (I V*(1) |V — Upy ) ’
VG: _ C(—zva 62?,\/1—/10_ Y n
See: Kudrna,Maccaferri, M.S. (2012)

Alternative attempt:
Kiermaier, Okawa, Zwiebach (2008)



Tachyon condensation on the o-brane

The computation proceeds along the similar
line as for (Moeller, Sen, Zwiebach)

String field truncated to level 2:

1) = te1]0) 4+ acy|e) + ue—1|0) + ver L5 |0) + wey LE,|0)

The action is

1o 1, 1, 1.)122(2255211

( y ) ) — _ . . — - - g R 2 4
V(t,a, u, v, w) 2f 1 2(: 4+ — v + —w* 4+ ol va ol wa* + T ua
165+/3 841! l[ 49 256423563 66v3 .
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Tachyon condensation on the o-brane

Going to higher levels, we should properly take
care of the Ising model null-states
[t turns out that we can effectively remove them
by considering only Virasoro generators:
- in the Verma module of 1:

L oL g L 4L 5. L _11.L_195.L_13.L_14.L_ 18, L_19.L_90.L_91....
- in the Verma module of ¢ :

Ly L 4L gL+ L gL y0.L 150 150 17.L 5.L 2.L os....
The patterns repeats modulo 16!
- Had we needed Verma module of o only,

L,qa would be needed!



Tachyon condensation on the o-brane

Already in the lowest truncation levels we see two
solution corresponding to 1- and e-branes

Lovel 05 20 25 Level | 202V(¢) | nb, s ng
212V (1)) -0.16971 -0.24579 -0.26454 1 -0.169718 | 0.767289 -0.767289 0.643203
Percentage 57.9 % 83.9 % 90.3 % 2 -0.250828 | 0.733703 0.893387 0.739416
c1/0) 0.14815 0.20553 0.91454 3 -0.261047 | 0.725226 0.945626 0.76589
c1e) 10924348 | = 0.97818 | +0.29230 4 -0.273442 | 0.722133 0.487621 0.778236
c_1]0) 0.07382 0.07305 5 -0.276177 | 0.719333 0.500237 0.796483
r'1LI_2|(.}> -0.09006 -0.10418 6 -0.280671 | 0.715848 0.721123 0.801822
c1 L2, |0) 0.02750 0.02643 7 -0.281747 | 0.714764 0.730309 0.80727
c 1l€) +0.02764 8 -0.284039 | 0.714011 0.629844 0.810113
cr L1, e) +0.02178 9 -0.284577 | 0.713460 0.631591 0.814922
c1 LB, |e) +0.00015 10 -0.285964 | 0.712159 0.704802 (0.816787
00 -0.294334 | 0.705668 0.700167 0.839425
Expected | -0.292803 | 0.707106 0.707106 0.840896




Positive energy solutions

on the 1-brane

On the 1-brane we expect to find the usual
tachyon vacuum, but can we find also
something else 7?77



Positive energy solutions

on the 1-brane

On the 1-brane we expect to find the usual
tachyon vacuum, but can we find also
something else 7?77

Yes !



Positive energy solutions

on the 1-brane

Starting with a complex solution at level 2
we find a real solution at level 14 and
higher!

Energy -n._lu.! r'r.i, ny, Im/Re Its.  Time(s)
1.59267 + 0.7268781 1.06048 — 0.1845474 —9.73471 — 5.23904 —0.343579 — 0.9708194¢ 0.788398 3 0
1.41414 + 0.201521¢ 0.962899 — 0.142672i —0.66854 + 1.99191¢ —0.369755 — 0.5642271 0.438384 6 0

1.28579 4 0.0766818¢ 0.922618 — 0.1137834 —3.86207 — 0.3737574 —0.389334 — 0.3943621 0.307463 5 0
1.2116 + 0.0305389+ 0.904803 — 0.0868545:  —0.575138 + 0.8226627 —0.372165 — 0.28193517 0.221002 5 0
10 | 1.16345 4 0.0100715¢ 0.892563 — 0.0617353i —2.48552 + 0.002610687 —0.376292 — 0.1923234 0.152223 5 2
12 ] 1.12943 4+ 0.001225652  0.885097 — 0.03109417 —0.569512 4 0.2456097 —0.368913 — 0.0939861:  0.0748655 6 8
14 | 1.10568 0.914693 —1.93951 —0.266065 0 9 92

00 O W= D) [~

16 | 1.09045 0.930444 —0.950873 —0.206326 0 5 326
18 | 1.07936 0.939178 —1.69824 —0.174965 0 5 4037
20 | 1.07084 0.945354 —1.04849 —0.15003 0 5 33258

22 | 1.06405 0.949943 —1.55407 —0.13398 0 4 230589




Positive energy solutions

on the 1-brane

Cubic extrapolations of energy and Ellwood
invariant (boundary entropy) to infinite level

1.6 -
14+

1.2 -

1.0 2

0.8 -

0.6 -

1 I I I | I I I I | I 1 1 I | I I I I | I I I 1 |
0.0 0.1 0.2 0.3 0.4 0.5



Boundary states in (Ising)? from OSFT

In (Ising)? we have focused so far on the tachyon
condensation of the 0@ o -brane. To lowest level the string

field takes the form
) = ter]0) + act|e)) 4+ beq [€)) + ceq eV e

and the action to this order cf. Longton & Karczmarek

2 4

1

1
2 -3.3
1 b + —3 K=t +

3v/3

4 . 4
—K3a*t + —K3b%t +

3v3
There are four interesting solutions :

By | I)@[1) | )@l | [9@[L) | [§@]e)
c1]0) 0.23926 | 0.23926 | 0.23926 | 0.23926
cr|eM) || -0.16828 | 0.16828 | -0.16828 | 0.16828
cile®y | -0.16828 | -0.16828 | 0.16828 | 0.16828
creMe@y 2011836 | 0.11836 | 0.11836 | -0.11836

3v3 3vV/3
abe +

2
2 T




Boundary states in (Ising)? from OSFT

For example the 1g1brane solution has the
following invariants:

Level

22V ()

11
ny,

1e
H_u-}

1o
1y,

Hc]l

€E
ne

ne’

nol

noe

”(TU

1.0 -0.28149 | 0.62417 | -0.62417 | 0.44455 | -0.62417 | 0.62417 | -0.44455 | 0.44455 | -0.44455 | 0.52585
2.0 -0.39683 | 0.58024 | 0.28858 | 0.48785 | 0.28858 | -1.15741 | -0.48785 | 0.48785 | -0.48785 | 0.61593
2.5 -0.43040 | 0.54753 | 0.43339 | 0.53440 | 0.43339 | -1.41439 | 0.71872 | 0.53440 | 0.71872 | 0.64164
3.0 -0.43544 | 0.54367 | 0.48059 | 0.53102 | 0.48059 | -1.50484 | 0.74643 | 0.53103 | 0.74643 | 0.62219
4.0 -0.45553 | 0.53344 | 0.26231 | 0.53601 | 0.26231 | 1.54248 | 0.81851 | 0.53601 | 0.81851 | 0.63243
4.5 -0.46222 | 0.52735 | 0.27837 | 0.55040 | 0.27837 | 1.74282 | 0.29745 | 0.55040 | 0.29745 | 0.63174
5.0 -0.47130 | 0.52629 | 0.28106 | 0.54984 | 0.28106 | 1.80851 | 0.29662 | 0.54984 | 0.29662 | 0.65732
6.0 -0.47130 | 051879 | 0.41792 | 0.55168 | 0.41792 | -0.7563 | 0.29982 | 0.55168 | 0.29982 | 0.66158
6.5 -0.47397 | 0.51657 | 0.43234 | 0.55874 | 0.43234 | -0.84041 | 0.60779 | 0.55874 | 0.60779 | 0.66244
7.0 -0.47397 | 0.51614 | 0.43788 | 0.55856 | 0.43788 | -0.87424 | 0.61640 | 0.55856 | 0.61640 | 0.66078
8.0 -0.47476 | 0.51333 | 0.37867 | 0.55949 | 0.37867 | 1.25240 | 0.62768 | 0.55949 | 0.62768 | 0.66279
o0 -0.49473 | 0.49752 | 0.44967 | 0.58356 | 0.44967 | 0.50129 | 0.51008 | 0.58356 | 0.51098 | 0.72564
Expected -0.5 0.5 0.5 0.59460 0.5 0.5 0.59460 | 0.59460 | 0.59460 | 0.70711

Le. 23/4




Comments on double branes

Since we have developed quite an efficient
code for solving e.o.m. in level truncation, it
is natural to look for other solutions in the
universal basis besides the tachyon vacuum.

We start with a promising complex solution
found easily at level 2 and improve it via the
Newton’'s method to higher levels.



Comments on double branes

We found the following dependence on the level:

L Energy W

2 | —1.42791 — 3.40442: | 2.00934 — 0.0545341+¢
4 | 1.19625 — 2.259661 1.73651 + 0.117637i
6 | 1.84813 — 1.58507¢ 1.60634 + 0.195442i
8 | 2.04207 — 1.149714 1.53973 + 0.2179111
10 | 2.08908 — 0.866428; 1.48598 4+ 0.22801:
12 | 2.08515 — 0.6746021¢ 1.4521 + 0.227059:
14 | 2.06302 — 0.53887¢ 1.42232 + 0.224184
16 | 2.03499 — 0.439057: | 1.40194 + 0.2182661
18 | 2.00593 — 0.363272: | 1.38304 + 0.212332:
20 | 1.9778 —0.304197: 1.36942 + 0.205378:
22 | 1.95135 — 0.257139: | 1.35632 + 0.198765:
24 | 1.92679 — 0.218971: | 1.34654 + 0.191784.
26 | 1.90411 — 0.187545: | 1.33691 + 0.185169

Real part of energy and W-invariant
as a function of 1/L:

0.0 . P M P IR I
0.0 0.1 0.2 0.3 0.4 0.5

Should we dismiss the solution, or hope for a
oscillation or a cusp at higher levels?



Future of level truncation

Hopefully soon level 30 should be reached

Kishimoto

25

20

® Kishimoto&Takahashi Requll‘ed tools:

Gaiotto&Rastelli -universal basis

157 - conservation laws

- C++

Moeller&Taylor -SU(1,1) singlet basis
-Parallelism

Sen&Zwiebach =277

10 &

I I I 1 1 | I I I I | 1 I I I | I 1 I I |
2000 2005 2010 2015 2020

N.B.: Level 30 is interesting, as we should see the oscillation for the tachyon
vacuum energy predicted by Gaiotto and Rastelli.



Conclusions

High level numerical computations in OSFT have the
potential to discover new boundary states (e.g. they could
have predicted existence of fractional D-branes) .

The key tool for physical identification are the generalized
Ellwood invariants.

First well behaved positive energy solution discovered !
(describing o-brane on a 1-brane, or perhaps double
branes)

We are coming to an era of possible computer exploration
of the OSFT landscape - stay tuned!



