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Overview Introduction

The purposes of this talk:

Main Themes of this work:

Resolution of “problem of time”

Where/What is physical time in Classical/Quantum Gravity?

Outlines of this talk:
1 What are the conceptual and technical problems of GR

2 Hints/Ingredients for a sensible theory of Quantum Gravity
3 Theory of gravity without full space-time covariance

General framework, and quantum theory
Emergence of classical space-time
Paradigm shift and resolution of “problem of time”
Gauge-invariant global time in superspace
Improvements to the quantum theory

4 Further discussions
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Overview Introduction

Conceptual and technical problems of GR

1 Why is Hubble constant H(t) physical within GR?

2 Pauli thm: No operator can associate with “time”; but in GR, time
arises from metric field components which are operators

3 To understand time, one has to understand energy

4 Dynamics of spacetime doesn’t make sense(requires 5d)!

5 GR Hamiltonian is a 1st class constraint and generates gauge
transformation but GR Hamiltonian is also the generator of time
translation. So, is time just a gauge or a real entity?

6 First class constraint can only be 1st-order in canonical momenta to
generate correct gauge symmetries

7 GR can’t enforce 4D spacetime cov. off-shell, need Paradigm shift:
Fundamental symmetry of GR (classical and quantum) has:
only 3D NOT 4D diffeomorphism invariance

8 Wheeler: Arena of GR is superspace not spacetime itself
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Overview Introduction

“See no time” “Hear no time” “Speak no time”
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Overview Introduction

Hints/Ingredients for a sensible theory of quantum gravity

1 QG wave functions are generically distributional; therefore, concept of
a particular spacetime cannot be fundamental ⇒ no point to insist on
4D covariance?

2 The local Hamiltonian should not be the generator of gauge
symmetry, but only determines dynamics

3 Gravitation Hamiltonian should be derived by generalizing dispersion
relation from E =

√
p̂2 + m2 for particle to H̄ =

√
Gππ + V

4 GR is only a special case of a more general potential and is also a
de-parametrizable theory

5 DeWitt supermetric has one -ive eigenvalue ⇒ intrinsic time mode

6 A theory of Quantum Gravity should be described by a Schrodinger
equation, 1st-order in intrinsic time with +ive semi-definite
probability density in superspace

7 Classical spacetime should be reconstructed from constructive
quantum interference in theories with only 3d spatial diff. inv.
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Overview Introduction

Men occasionally stumble over the truth, but most of them pick
themselves up and hurry off as if nothing had happened
–Winston Churchill
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Canonical construction ADM formalism

Hamiltonian Constraint in ADM formalism

1 ADM spacetime,

ds2 = −N2dt2 + qij [dx i + N i dt][dx j + N j dt]

2 The Hamiltonian Constraint in ADM:

−qR + πijπij −
1

2
π2 = 0

3 Momentum Constraint in ADM:

∇i π̃
ij = 0

4 The evolution in ADM time:

dqij

dt
=
{

qij ,

∫
NH + Ni H

i
}

= 2Nq−1/2(π̃ij −
1

2
qijπ) +∇i Nj +∇j Ni
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Theory of gravity without full space-time covariance General framework

General framework

1 Decomposition of the spatial metric qij = q
1
3 q̄ij ; symplectic 1-form:∫

π̃ijδqij =
∫
π̄ijδq̄ij + πδ ln q1/3 ⇒ (q̄ij , π̄

ij ) and (ln q1/3, π) form
conjugate pairs.

2 Generalization of the piδx i + p0δt of a relativistic particle; analogous
to δt and p0 = −E ; if one identifies, time as δ ln q1/3 (varies from
−∞ to +∞, instead of 0 to ∞), ⇒ π will be as energy.

3 Variation of Intrinsic time function at same point δ ln q1/3 =< qev >x

is a scalar and bears invariant geometrical meaning
4 Non-trivial Poisson brackets are{

q̄kl (x), π̄ij (x ′)
}

= P ij
kl δ(x , x ′),

{
ln q

1
3 (x), π(x ′)

}
= δ(x , x ′)

P ij
kl := 1

2 (δi
kδ

j
l + δi

l δ
j
k )− 1

3 q̄ij q̄kl ; trace-free projector depends on q̄ij

5 Separation carries over to the quantum theory, the ln q
1
3 d.o.f

separate from others to be identified as temporal information carrier
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Canonical Construction Intrinsic Time Dynamics

Intrinsic Time formalism and Dynamical Hamiltonian

1 The ADM Hamiltonian constraint now reads,

H = −qR + q̄ik q̄jl π̄
ij π̄kl − β2π2 = 0

where β2 = 1
6 for GR, allows a factorization form;

(π − H̄/
√
β2)(π + H̄/

√
β2) = 0

2 The dynamical equation can be easily generalize:

−π = H̄/β =
1

β

√
q̄ik q̄jl π̄ij π̄kl − qR → 1

β

√
q̄ik q̄jl π̄ij π̄kl − V

3 With (ln q1/3, π) being intrinsic time and energy density function; the
analogue relativistic particle dispersion relation is

E = P0 = −P0 = H =

√
~P · ~P + m2
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Canonical Construction HJ equation

Hints for identifying δ ln q as Time function

1 Upon quantization, canonical momenta in metric representation are
realized by:

π̂ =
3~
i

δ

δ ln q
; and ˆ̄πij =

~
i
Pij
lk

δ

δq̄lk

The background independent Schrodinger equation and

Hamilton-Jacobi equation for semi-classical states Ce
iS
~ are

respectively,

i~ δ
δ ln q Ψ =

H̄(ˆ̄πij ,qij )
3β Ψ, δS

δ ln q = −
H̄(π̄ij =P ij

kl
δS
δq̄kl

;qij )

3β

2 ∇j
δΨ
δqij

= 0 enforces spatial differomorphism symmetry

3 One infers from Schrodinger/HJ equation the Time function is

actually δ ln q
1
3 and H̄ being the evolution Hamiltonian
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Initial data evolution Emergent Spacetime

Initial data evolves wrt intrinsic time δ ln q
1
3

1 H̄
β generates dynamics wrt intrinsic time δ ln q

1
3 subject to ∇i π̄

ij = 0

2 Dynamical equation π + H̄
β = 0 propagates correctly, π̇ +

˙̄H
β = 0

3 Evolution in emergent ADM spacetime and N can be constructed:

On shell; Heff can be inferred from the symplectic potential,∫ ∫
(π ∂ ln q1/3

∂t )d3xδt = −
∫

[
∫

H̄
β
∂ ln q1/3

∂t d3x ]dt

⇒
∫

H̄
β
∂ ln q1/3

∂t d3x is total Hamiltonian generating ADM-t-translations

Interpret limδt→0
δ ln q1/3−L~Nδt

ln q1/3

δt = ∂ ln q1/3

∂t − 2
3∇i N

i

being the rate of change of normal component of ln q in emergent
ADM spacetime; also, monotonicity guarantee causality

This is consistent wrt ADM-t evolution with Lorentz inv. if one

choose the lapse function, N, satisfies, Ndt :=
δ ln q

1
3−L~Ndt

δ ln q
1
3

(4βκH̄/
√

q)
;

however, becomes an identity for GR
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Initial data evolution Emergent Spacetime

Note several important features:

Only spatial diffeomorphism is intact

only (βπ + H̄) = 0 is all that is needed to recover the classical content
of H = 0. This is a breakthrough

(i) π is conjugate to ln q
1
3 , therefore semiclassical HJ equation is

1ST -order-in-intrinsic time with consequence of completeness
(ii) QG will now be dictated by a corresponding WDW equation which

is a Schrodinger equation 1st-order in intrinsic time ln q
1
3

The Emergent ADM spacetime is:

ds2 = −[
(∂t ln q

1
3 (x ,t)−L~N ln q

1
3 (x ,t))dt

[4βκH̄(x ,t)/
√

q(x ,t)]
]2+qij (x , t)(dx i +N i dt)(dx j +N j dt)
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Initial data evolution Emergence of classical spacetime

Emergence of classical spacetime

1 The first order HJ equation bridges quantum and classical regimes,
has complete solution S = S((3)G;α)

2 Constructive interference; S((3)G;α + δα) = S((3)G;α);
S((3)G + δ(3)G;α + δα) = S((3)G + δ(3)G;α)

⇒ δ
δα

[ ∫ δS((3)G;α)
δqij

δqij

]
= 0 subject to M = Hi = 0.

0 =
δ

δα

[ ∫
(πijδqij + δNi H

i ) + δmM
]

=
δ

δα

[ ∫
(πδ ln q

1
3 + π̄ijδq̄ij +

qij

3
δNi∇jπ + q−

1
3 δNi∇j π̄

ij )
]

δq̄ij (x)− L~Ndt
q̄ij (x)

δ ln q
1
3 (y)− L~Ndt

ln q
1
3 (y)

= Pkl
ij

δ[H̄(y)/β]

δπ̄kl (x)
= Pkl

ij

Ḡklmnπ̄
mn

βH̄
δ(x − y)
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Initial data evolution Emergence of classical spacetime

4 EOM relates mom. to coord. time derivative of the metric which can
be interpreted as extrinsic curvature to allow emergence of spacetime

2κ
√

q
Gijkl π̃

kl =
1

2N
(

dqij

dt
− L~Nqij ), Ndt :=

δ ln q
1
3 − L~Ndt

ln q
1
3

(4βκH̄/
√

q)

In Einstein’s GR with arbitrary lapse function N, the EOM is,

dqij

dt
=
{

qij ,

∫
d3x [NH + Ni H

i ]
}

=
2N
√

q
(2κ)Gijkl π̃

kl + L~Nqij

This relates the extrinsic curvature to the momentum by

Kij := 1
2N (

dqij

dt − L~Nqij ) = 2κ√
q Gijkl π̃

kl⇒ 1
3 Tr(K ) = 2κ√

qβH̄

proves that the lapse function and intrinsic time are precisely related
(a posteriori by the EOM) by the same formula in the above for
reconstruction of spacetime

5 ds2 = −(
d ln q

1
3 (x ,t)−dtL~N ln q

1
3 (x ,t)

[4βκH̄(x ,t)/
√

q(x ,t)]
)2 +qij (x , t)(dx i +N i dt)(dx j +N j dt)

6 For full 4-d diff. inv. theories(i.e. GR), this relation is an identity
which does not compromise the arbitrariness of N
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Initial data evolution Gauge-invariant global time in superspace

Gauge-invariant global time in superspace

1 Hodge decomposition of the 0-form on compact space,

δ ln q
1
3 = δh +∇iδV i , wherein δh is harmonic, x independent and

gauge-invariant; δV i can be gauged away, LδN i ln q
1
3 = 2

3∇iδN i

2 i~ δΨ
δh =

∫
i~ δΨ

δ ln q
1
3 (x)

δ ln q
1
3 (x)

δh d3x =
[∫ H̄(x)

β d3x
]

Ψ

describes evolution wrt intrinsic superspace time interval δh

3 Physical Hamiltonian Hphys. :=
∫ H̄(x)

β d3x is spatial diffeomorphism
invariant as it is the integral of a tensor density of weight one

4 This remarkable Schrodinger equation dictates quantum
geometrodynamics in explicit superspace (3)G entities
(Ψ[[qij ] ∈ (3)G],Hphys., δh)

5 δh is “1-dimensional”, “time”-ordering, which underpins the notion of

causality, emerges U(h, h0) := T exp
[
− i

~
∫ h

h0
Hphys(h′)δh′

]
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Initial data evolution Paradigm shift and resolution of “problem of time”

Paradigm shift and resolution of “problem of time”
1 Starting with only spatial diff. invariance and constructive

interference, EOMs with physical evolution in intrinsic time generated
by H̄, can be obtained

2 Possible to interpret the emergent classical space-time from
constructive interference to possess extrinsic curvature which
corresponds precisely to the lapse function displayed in the above

3 Only the freedom of spatial diff. invariance is realized, the lapse is

now completely described by the intrinsic time ln q
1
3 and ~N

4 All EOM w.r.t coordinate time t generated by
∫

NH + N i Hi in

Einstein’s GR can be recovered from evolution w.r.t. ln q
1
3 and

generated by H̄ iff N assumes the form in the above
5 Full 4-dimensional space-time covariance is a red herring which

obfuscates the physical reality of time, all that is necessary to
consistently capture the classical physical content of even Einstein’s
GR is a theory invariant only w.r.t. spatial diff. accompanied by a
master constraint which enforces the dynamical content
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Initial data evolution Paradigm shift and resolution of “problem of time”

6 ADM metric,

ds2 = −(
δh−L~Nδh

ln q
1
3 (x ,t)

[4βκH̄(x ,t)/
√

q(x ,t)]
)2 + qij (x , t)(dx i + N iδh)(dx j + N jδh)

emerges from constructive interference of a spatial diff. invariant
quantum theory with Schrodinger and HJ equations first order in
intrinsic time development

7 Correlation (for vanishing shifts) between classical proper time dτ and

quantum intrinsic time ln q
1
3 through dτ2 = [ δh

(4βκH̄/
√

q)
]2, gives correct

energy dependence.
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Initial data evolution Improvements to the quantum theory

Improvements to the quantum theory
1 Real physical Hamiltonian H̄ compatible with spatial diff. symmetry

suggests supplementing the kinetic term with a quadratic form, i.e.

H̄ =

√
Ḡijkl π̄ij π̄kl + [

1

2
(qik qjl + qjk qil ) + γqij qkl ]

δW

δqij

δW

δqkl

=

√
[q̄ik q̄jl + γq̄ij q̄kl ]Q

ij
+Qkl
−

2 H̄ is then real if γ > −1
3

3 W =
∫ √

q(aR − Λ) + CS and Q ij
± := π̄ij ± iq

1
3
δW
δqij

and Einstein’s

theory with cosmological constant is recovered at low curvatures

κ = 8πG
c3 =

√
1

2π2aΛ(1+3γ)
and Λeff = 3

2κ
2Λ2(1 + 3γ) = 3Λ

4aπ2

4 New parameter γ in the potential, positivity of H̄ (with γ > −1
3 ) is

correlated with real κ and positive Λeff

5 Zero modes in H̄ occurs i.e. γ → −1
3 , for fixed κ⇒ Λeff → 0
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Further Discussions Further Discussions

Further Discussions

1 Although there is only spatial diff. invariance, Lorentz symmetry of
the tangent space is intact, the ADM metric:
ds2 = ηABeA

µ eB
ν dxµdxν = −N2dt2 + qij (x , t)(dx i + N i dt)(dx j + N j dt)

is invariant under local Lorentz transformations e ′Aµ = ΛA
B(x)eB

µ

which do not affect metric components gµν = ηABeA
µ eB

ν

2 2 physical canonical degrees of freedom in (q̄phys.
ij , π̄ij

T ), and an extra

pair ((ln q
1
3 )phys., πT ) to play the role of time and Hamiltonian (which,

remarkably, is consistently tied to πT by the dynamical equations)

3 Inverting, π̄ij in terms of
δq̄ij

δ ln q from the EOM, yield the action,

S = −
∫ √

V

√
(δ ln q

1
3β − L

δ~N
ln q

1
3β )2 − Ḡ ijkl (δq̄ij − Lδ~N q̄ij )δ(q̄kl − Lδ~N q̄kl )

Just the superspace proper time with
√

V playing the role of “mass”
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Further Discussions Summary

Summary

1 Paradigm shift from full space-time covariance to spatial diff. invar.

2 Master constraint + Clean decomposition of the canonical structure
⇒ physical dynamics + resolution of the problem of time free from
arbitrary lapse and gauged histories

3 Intrinsic time provide a simultaneity instant for quantum mechanics

4 Difficulties with Klein-Gordon type WDW equations is overcome with
a S-eqt with positive semi-definite probability density at any instant

5 Gauge invariant observables can be constructed from integrations
constants of the first order HJ equation which is also complete

6 Classical space-time with direct correlation between its proper times
and intrinsic time intervals emerges from constructive interference

7 Framework not only yields a physical Hamiltonian for GR, but also
prompts natural extensions and improvements towards a well-behaved
quantum theory of gravity
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