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Physical Origins of CFT

RG Flows:

CFTuy / CFTr

Fixed points = CFT

[Rough argument: T[L‘ = 5(9)(9 — 0 when £(g) — 0]
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3D Example CFTuyv = free scalar (8¢)2

Z>-preserving perturbation: m2¢2 + )\gb4 [+;§¢6] m, A < Ayvy

2 ) \°
mip = mgy + O (16772>

Phase diagram:

strong coupling
mip < 0 / mip > 0

| >

2
\ CFT m2

Z; spont. broken

massive theories in IR
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Universality

- Any same-symmetry Lagrangian (e.g. k#0) can flow to the same CFTr

- Can even start from a lattice model e.g. 3D Ising model:

1
Z = exp[—f Zai : O'j]
(i5)

Near T, the spin-spin correlation length §(T)— oo
= lattice artifacts go away

Continuum limit @ T=T. is the same CFTr as on the previous slide
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Beyond Lagrangians

Strongly coupled CFTs can usually be realized as endpoints of RG flows
from weakly coupled, Lagrangian theories

Exception: N=(2,0) 6D theory of multiple M5 branes

By itself,a CFT generically cannot be described by a Lagrangian
Strongly coupled Lagrangian = No Lagrangian

Exceptions:
a) Weakly coupled CFTs, like Ap* in D=4-& (WF fixed point) CFTuy &> CFTR

b) Theories a la N=4 SYM L = 91—2 o 0 B(g) =0 Vg

One parameter family of CFTs:

— > &
free weakly coupled strongly coupled,
defined by analytic continuation 5 /33
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Beyond AdS
For many people, CFT in D>=3 has become inseparable from AdS/CFT

Does any CFT has an AdS dual (string 0 -model with AdS factor in the
target space)!?

Is duality practical away from the large N limit?

Effective holography:
Put any field content in the AdS bulk, compute correlators on the boundary

Theory in the bulk is only effective (e.g. includes gravity)
—

defines only an "effective CFT’, to first order in |/N expansion

N ~ Raqs/Lpy
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CFT - intrinsic definition
l. Basis of local operators O; with scaling dimensions A,

[including stress tensor Ty of AT1=4; conserved currents |, of A=3]

O = Oat1 = Opta =
A A+l A+2 7 derivative operators (descendants)

Ky = special conformal transformation generator, |K [=-1
K, < 2z,(z-0)—2°0, cf P, <+ 0,
K

K K
OA<—OA+1<—OA+2<—...

In unitary theories dimensions have lower bounds:

A>{¢+D-2(>D/2—1for £=0)

So each multiplet must contain the lowest-dimension operator:

(primary)
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Atx+ 0. [K,, ¢(z)] = (—i22,A — 220*%y, — 21,270, + ix°0,)p()
Ward identities for correlation functions:

X-(.)=0 X=(DP,M

Nz

K,.)

For 2- and 3-point functions suffice to solve the x-dependence:
- normalization
éSij

(0i(2)0;(0)) =

(:CZ)AZ-

(Oz(xl)oj(x2)ok(x3)> = - Ai+Ak_Aj|x23|Aj+Ak_Ai

|z 12 13

2, “coupling constants”

= OPE coefficients
= structure constants of the operator algebra

8 /33

Friday, January 11, 2013



Operator Product Expansion

0;(2)0;(0) = Xijk|z| >+~ {Ok(0) + .. .}

Lo
2

Friday, January 11, 2013

can be determined by plugging OPE into 3-point
function and matching on the exact expression

8,0k

azr"z 0,0,0%

f

Bz20°0Oy,
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Four point function

Ward identity constrains it to have the form:

U. v 2 .2 2 .2
VU N o=

T3 (P
T 13124 13124
‘ 12

Using OPE can say more:

d(z1) P(z3)
&(2) d(z4) = 3702,y 26280 2542286 ({0, (wa) + -+ HOi(wa) + -+ })

B i (u v) -— conformal blocks
1 Y,
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gs(u,v)

Friday, Janua

Crossing symmetry

(o) = —Selw®) _ _ glv.w)
‘$12|2A|$34|2A |$14|2A|$23‘2A
— Z/\éd)iGAi,ei (u,v) Z)‘(MNGA i

But:  gy(v,u) = (v/u)>*gs(u,v)

This is a consistency condition for the CFT data

[Nontrivial because not satisfied term by term]

ry 11, 2013
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Conformal bOOtStl’aP Ferrara,Gatto,Grillo 1973
Polyakov 1974

1 4 1 4
0,
2 =) 0
2 3 0 3
‘s-channel’ ‘t-channel’

Z A12iA345]. - .| = Z A14iA23i].

Do solutions of this equation,
imposed on all four point
functions, provide a classification
of CFTs?

A bit like classifying Lie algebras...
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D=2 success story

-In D=2 (P, ,Ky ,Myy ,D)— Virasoro algebra
= New lowering operators L.,, n=2,3,...

Virasoro multiplet = @, ; (Conformal multiplets)

- Central charge c<I + unitarity =

6

=] 0= B8 [Friedan,Qiu, Shenker]
m(m + 1)’ e

- Primary dimensions in these “minimal models” are also fixed:

(r+m(r—s))*—1
2m(m + 1)

A, s = I<s<r<m-—1

-Finally, knowing dimensions, OPE coefficients can be determined
by bootstrap

[Belavin, Polyakov, Zamolodchikov], ...
13/33
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D>=3 always looked a bit hopeless...

Z M2iA34iG (A, Degt|u, v) = Z)\14i)\237:G(Aj, Dozt 0)

- Infinite system for infinite # of unknowns

- # of primaries grows exponentially with dimension:

#(A < E) ~ exp(Const.E1~1/P)

Expansion parameter! Convergence!
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Convergence of OPE decomposition

[ )
l'\ ,': ( A
N e pe Qe Qe
. J
Qe Qe
. Yy é )
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Mapping to the cylinder (Radial quantization)
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~_ .
|t (0l¢peg|0) =) (0lpg|n)e ErT (n|pg|0)
N En

pe__ Qe v

States on the cylinder are in one-to-one correspondence with
CFT local operators (State-operator correspondence)

|IA) <> Oa o=dX+hy =012

(0|pppp|0) =D " [(0lp|A) e 27 (1+ D " cae™ ™)
JAN f n=1

OPE coefficient conformal block
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— 0l666610) = D (0168 A) 227 (1 + " cne ™)
\/ T A n=1
S
¢‘v¢‘ v
o 1 1
In the limit t—0: (0lppp|0) ~ 7. 28 204
A4A¢—1
= OPE coefficient asymptotics: 1(O]|pp|A) |2 ~ T(4A,)
¢

= At any finite T>0 the series converges exponentially fast:

" — AT
(0l699|0)[a>A. S T(dA, T e

[Pappadopulo, S.R., Espin, Rattazzi] 18/33
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[Pappadopulo, S.R., Espin, Rattazzi]

po.____ ¢

T =829 5017

small parameter!
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Still the full bootstrap system looks difficult...
Focus on the 4-point function of the lowest dimension scalar:

PXPp=1+"¢%"+... spin0
Ty, + ... spin2

+ spins 4,6,...

lowest dimension scalar in this OPE

Allowed spectrum:

> D/2—1

Friday, January 11, 2013
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Bootstrap equation:

R 4 Z Zngv *Ge.n,(u,v) = (u < v)

N\

unknowns

Ari 20 (square of a real OPE coefficient)

E.g. free scalar field is a solution:

Ag=1 (D=4

Ay=1+D—2 (one field per spin in the OPE)
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Upper bound on the dimension of “@2” Rattazzi, S.R., Tonni. Vichi 2008

S.R.,Vichi 2009
..., Poland,Simmons-Duffin,Vichi

An 2"
35T D=4 2011

5 |
45t
N A O B A
3.5 ¢
3

2.5 ¢

\
\
\
\
\
\
\
\
\
\
\
\
/ \
/‘ 1.2 1.4 1.6 1.8 Aqb

free scalar
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oo
voe 4 Z ZXM v Gen, (u,v) = (u & v)
1=0,2,... i=1

Expand the bootstrap equation around the square

configuration up to a fixed order:
oo

Z XE,?L‘?E,A?; — ‘7}) Xg,i >0
1 N

B nen = O(100) components

Ai: put an upper cutoff and discretize - get a finite system

No solutions without low-dimension scalars
in the spectrum Rattazzi, S.R., Tonni,Vichi 2008

Some methods avoid discretization and upper cutoff on A
(only on spin) Poland, Simmons-Duffin,Vichi 201 |
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Direction 1. “Carving out the space of CFTs”

- Bounds on the OPE scalar spectrum in presence of global

symmetry of supersymmetry Poland, Simmons-Duffin 2010,
Rattazzi, S.R.,Vichi 2010
Vichi 201 |
Poland, Simmons-Duffin,Vichi 201 |

- Bounds on the OPE coefficients and central charges (as

functions of operator dimensions) Caracciolo, S.R 2009,

Poland, Simmons-Duffin 2010,
Rattazzi, S.R.,Vichi 2010

- Bounds on the CFT data in presence of a boundary
Liendo, Rastelli, van Rees 2012

24/33
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Direction 2. “Looking for kinks”

S.R.,Vichi 2009
D=2 El-Showk, Paulos 2012
A” ¢2” 50l
- excluded
M(5.,4)

15+ 2d Ising
10 -

05

| | | | O‘.l | | | | O‘.2 | | | | O‘.3 | | | | O‘.4 | | | |
/ A¢
free scalar

It could be that some special theories saturate bounds
and/or live at corner points
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SUSY kink

A@T(I) 5.5¢

first scalar ..
superprimary in
®T x & OPE =
41
3.5+

3

2.5¢ g

Poland, Simmons-Duffin,Vichi 201 |

D=4 SCFT

What is this theory!?

‘Conjecturally,
®2=0 in its
chiral ring]

Friday, January 11, 2013

1.4 1.6 1.8

T

chiral primary;
uncharged under global symmetry
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In D=3 the kink is still there:

[EI-Showk, Paulos, Poland, Simmons-Duffin, S.R,,Vichi2012]

A”¢2” Z excluded
1.8
- Ising?
1.6}
14f .
| 144
1.2y b A= 0.5182@/
' A, =1.413 1)
1 Q————4 142}
'50 0.9 |
141F
free scalar 1_40;
139}
139b v v o
0.510 0.515 0.520 0.525 0.530
) d 27/33
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Interesting things happen near 3D Ising kink:
[ElI-Showk, Paulos, Poland, Simmons-Duffin, S.R,,Vichi2012]

oxo=1+e+¢€ +... Ao = 3.84(4)

/ Ael

45¢

fix to maximally § /
401
allowed |

3.5}

30}

+Tu + T, + ... 59|

30
050 052 054 056 058 060 28/33
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Future Directions & Open problems

|. Extend the crossing symmetry analysis to different external states
- stress tensor and currents
- fermions

2. Look at several correlation functions simultaneously, e.g.

(cooo) (eeco) (ee€e)
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3. Full spectrum extraction at the boundary and the kinks

1.8}

X In the bulk of allowed region

1.6F : :
- many solutions to crossing

1.4:— when moving to the boundary

| spectrum & OPE coeffs become uniquely determined
1.2}

10""l|
050 055 060 065 070 075 0.80
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200+
15.;
Exact 2D Ising spectrum:
5|
‘ L
5 10 15 20
A
20
Input exact Ag and A¢and ;| ¥ - v
allow all integer dimensions .. *~ .. oL T
for others: ol o ol )0t
- X )'$ -
e X w
5X ve
T w L
5 10 15 20
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For 2D Ising done systematically by El-Showk & Paulos2012

Trying to do the same for 3D Ising (+Ag determination using kinks)

Friday, January 11, 2013

L Agppu A | Erra (%) OPEgpy OPE Errgpg (%) | Err. Est. (%)
1.000003 | 1 0.00025 0.4999997 0.5 6.98E-05 1.1087E-05
4.0003 4 0.0076 1.56241E-02 | 0.015625 0.0059 0.003

’ 8.0817 8 1.0 2.17003E-04 | 0.00021973 1.2 2.8
30.2000 | 29 4.1 2.46649E-07 | 0.0017688 100.0 N/A
2.0000 2 0 1.76777E-01 | 0.176777 0.0001 0.00070
5.9979 6 0.035 2.61754E-03 | 0.00262039 0.1 0.02

2 7.8600 6 31 8.66110E-05 | 0.00262039 96.7 N/A
10.6200 | 11 3.9 4.11441E-05 | 9.6505E-06 326.3 N/A
14.3267 | 14 2.3 8.60258E-07 | 1.9167E-06 55.1 N/A
4.0000 4 0 2.09627E-02 | 0.0209631 0.0021 0.005
5.0003 5 0.0063 5.52411E-03 | 0.00552427 0.0030 0.04

4 7.9920 8 0.1 4.63914E-04 | 0.00046138 0.5 0.8
11.4067 | 12 4.9 1.26831E-05 | 1.0886E-05 16.5 21.9
15.2600 | 16 4.6 2.07807E-06 | 4.0479E-07 413.4 N/A
6.0000 6 0 3.69140E-03 | 0.00369106 0.0092 0.0006

6 | 6.9978 7 0.031 1.23528E-03 | 0.00123526 0.0013 0.2
10.0009 | 10 0.0089 9.15865E-05 | 9.1798E-05 0.2 2.3

[El-Showk, Paulos, Poland, Simmons-Duffin, S.R,,Vichi ‘work in progress]
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So far numerical approach was most successful in getting concrete results...

Can one get an analytic understanding of the resurrected
bootstrap!?

See e.g. [Fitzpatrick, Kaplan, Poland, Simmons-Duffin ’12]
[Komargodski, Zhiboedov’|2] for analytic bootstrap
results on large spin spectrum

If you want to learn more about CTFs in D>=3 and bootstrap:
See recent lecture notes at my homepage.
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