2D galaxy clustering in SDSS-III BOSS: growth of structure, geometry, and small scale galaxy motions at z=0.57

Beth Reid Hubble Fellow Lawrence Berkeley National Lab

in collaboration with Martin White, Will Percival, Lado Samushia, Alexie Leauthaud, Jeremy Tinker, Hee-Jong Seo, BOSS collaboration

- Ross++: Systematics
 - Manera++: Mock catalogs
- Anderson++: BAO
 - Sanchez++: fits to monopole $\xi(s)$
 - Reid++: fits to anisotropic clustering arx
- Tojeiro: RSD with passive galaxies
 - Samushia, Reid++: ACDM, GR tests

arXiv:1203.6499

arXiv:1203.6609

arXiv:1203.6594

arXiv:1203.6616

arXiv:1203.6641

arXiv:1203.6565

arXiv:1206.5309

Beth Reid

Outline

- Hitchhiker's guide to galaxy redshift surveys
 - Galaxy clustering in 2d: $\xi(r_{\sigma}, r_{\pi})$
- Information in the spherical avg: $\xi_0(s)$
 - Information from anisotropy: $\xi_2(s)$
 - Cosmological Implications
- Brief note on DRIO work in progress...

SDSS The universe in perspective

LOAN DIGITAL SKY SURVEY II

Large scale structure initial conditions

CMB z=1091 comoving angular diameter distance: $(|+z)D_A(z) =_0 \int^z c dz'/H(z')$

z=0.7

Sound horizon scale = BAO standard ruler

Beth Reid

Physics of the Baryon Acoustic Oscillations: Evolution of a point-like adiabatic perturbation

$s_{\text{BAO}} = \int_{0}^{t_{\text{drag}}} c_{s}(1+z)dt = \int_{z_{\text{drag}}}^{\infty} \frac{c_{s}dz}{H(z)} \quad r_{s} = |53.2 \pm 1.7 \text{ Mpc (WMAP7)} \\ \pm 0.36 \text{ Mpc (Planck)}$

http://cmb.as.arizona.edu/~eisenste/acousticpeak/acoustic_physics.html

Beth Reid

5

SDSSIII CMB precisely predicts full P(k), not just BAO feature

photon-baryon fluid

dark matter dominated

Hlozek et al., 2012 ApJ, 749, 90

Beth Reid

SDSSIII CMB provides template P(k) / $\xi(r)$

• depends on $\Omega_m h^2$, $\Omega_b h^2$, n_s, NOT $D_A(z_{CMB})$

Kavli IPMU Jan 25 2012

SDSSIII CMB provides template P(k) / $\xi(r)$

- depends on $\Omega_m h^2$, $\Omega_b h^2$, n_s [marginalized over]
- Advantage: final anisotropic fits are simple 3x3 Gaussian likelihood
- Disadvantage: we require further cosmological model assumptions -- no running, N_{eff} = 3.04, ∑m_v negligible...

SDSS The universe in perspective

LOAN DIGITAL SKY SURVEY II

Large scale structure initial conditions

CMB z=1091 comoving angular diameter distance: $(|+z)D_A(z) =_0 \int^z c dz'/H(z')$

z=0.7

Sound horizon scale = BAO standard ruler

Beth Reid

SDSSIII Geometric constraints from galaxy surveys

We measure θ , ϕ , and z for each galaxy, and use a cosmological model to convert to comoving coordinates z_1

θ

comoving angular diameter distance = $(I+z) D_A(z)$

Kavli IPMU Jan 25 2012

I/H(z)

Z2

SDSSIII Alcock-Paczynski effect

 (\mathbf{z})

• Even without a standard ruler, comparing clustering along and perpendicular to the LOS allows us to measure $D_A * H$

comoving angular diameter distance = $(I+z) D_A(z)$

SLOAN DIGITAL SKY SURVEY I

What contributes to H(z)?

 $H^{2}(a) = H_{0}^{2} X$ [$\Omega_{r}a^{-4} + \Omega_{m}a^{-3} + \Omega_{k}a^{-2} + \Omega_{DE}\exp\{3\int_{a} da' [1+w(a')]/a'\}+..]$

photons relativistic species Dark Energy

baryons dark matter neutrinos today (T = 2 K!)

One more wonderful complication -line of sight is special!

Image Courtesy 2dFGRS

Kavli IPMU Jan 25 2012

SDSSIII Redshift Space Distortions (RSD)

real to redshift space separations: $\chi(z) = \chi_{true} + v_p/aH$

 $\nabla \cdot \mathbf{v_p} = -aHf \, \delta_m$

 $|v_P| \sim d \sigma_8/d \ln a = \sigma_8 * f$

squashed along line of sight

X

 $f = d \ln \sigma_8 / d \ln a \approx \Omega_m^{\gamma}$

Kavli IPMU Jan 25 2012

Beth Reid

isotropic

Sources a store of the store of

- Our strongest evidence for DE is from geometric measures: SNIa, BAO, H₀ + distance to CMB, AP, ...
 [probes homogeneous universe]
- We can distinguish modified gravity from exotic fluid in GR as the reason for cosmic acceleration by the growth of inhomogeneities

Kavli IPMU Jan 25 2012

growth in GR: $\frac{d^2 G}{d \ln a^2} + \left(2 + \frac{d \ln H}{d \ln a}\right) \frac{dG}{d \ln a} = \frac{3}{2} \Omega_{\rm m}(a)G$

Outline

Non-cosmologist guide to galaxy redshift surveys
Galaxy clustering in 2d: ξ(r_σ, r_π)
Information in the spherical avg: ξ₀(s)
Information from anisotropy: ξ₂(s)
Cosmological Implications

SDSSIII Sky Coverage of DR9: 3275 deg²

(DRI0: twice the area of DR9)

New BOSS Imaging

Kavli IPMU Jan 25 2012

LOAN DIGITAL SKY SURVEY

SDSSII

The BOSS CMASS sample

target selection color cuts designed for "constant stellar mass" sample

• $b \approx 2, \approx 10\%$ satellite fraction

• DR9V_{eff} = 2.2 Gpc^3

• $0.43 < z < 0.7; z_{eff} = 0.57$

White et al., 2011, arXiv:1010.4915

Kavli IPMU Jan 25 2012

SDSSIII Our Mission: Extract as much information as possible from $\xi(r_{\sigma}, r_{\pi})$

Kavli IPMU Jan 25 2012

Store Degree Store Stor

 $L_2 = (3\mu^2 - 1)/2$

 $\mu = r_{\pi} / (r_{\pi}^2 + r_{\sigma}^2)^{1/2}$

Kavli IPMU Jan 25 2012

SLOAN DIGITAL SKY, SURVEY I

Fitting $\xi_{\ell}(s)$

With strong CMB shape prior, we're just fitting two amplitudes $[\xi_{0,2}(s)]$ and a rescaling of the s axis:

$$D_{V} \equiv \left[cz(1+z)^{2} D_{A}^{2} H^{-1} \right]^{1/3}$$
$$D_{V}/r_{s} = \alpha \left(D_{V}/r_{s} \right)_{\text{fid}}$$

Kavli IPMU Jan 25 2012

Outline

Non-cosmologist guide to galaxy redshift surveys
Galaxy clustering in 2d: ξ(r_σ, r_π)
Information in the spherical avg: ξ₀(s)
Information from anisotropy: ξ₂(s)
Cosmological Implications

SDSSIII Anderson et al. recap: fits to α for "reconstructed" $\xi(s)$ and P(k)

Reid et al.: $\alpha = 1.023 \pm 0.019$

Beth Reid

Outline

Non-cosmologist guide to galaxy redshift surveys
Galaxy clustering in 2d: ξ(r_σ, r_π)
Information in the spherical avg: ξ₀(s)
Information from anisotropy: ξ₂(s)
Cosmological Implications

SDSSIII Alcock-Paczynski Effect

 $\xi(r_P, \pi)$ appears anisotropic if you assume the wrong cosmology; constrains $F(z) \equiv (I+z) D_A(z) H(z)/c$

c/H(z)

Kavli IPMU Jan 25 2012

Geometric distortions can be modeled exactly*

 $\xi^{\text{fid}}(r_{\sigma},r_{\pi})$ $= \xi^{\rm true}(\alpha_{\perp}r_{\sigma},\alpha_{\parallel}r_{\pi}),$ $\alpha_{\perp} = \frac{D_A^{\rm fid}(z_{\rm eff})}{D_A^{\rm true}(z_{\rm eff})},$ $\alpha_{\parallel} = \frac{H^{\text{true}}(z_{\text{eff}})}{H^{\text{fid}}(z_{\text{eff}})},$

Kavli IPMU Jan 25 2012

SDSSIII Modeling the full shape of $\xi_{0,2}$ (Reid & White 2011)

• $b\sigma_8$, $f\sigma_8$ determine amplitude of $\xi_{0,2}$

σ₈: amplitude of matter fluctuations

b: unknown conversion factor between galaxy and matter fluctuations

 $f = d \ln \sigma_8/d \ln a;$ conversion factor between matter and velocity fluctuations

Kavli IPMU Jan 25 2012

SDSSII Theoretical foundation: The Halo Model

Gas accumulates in gravitationally-bound dark matter halos, forms galaxies

 Dark-matter only Nbody simulations of gravitational evolution used to calibrate/test galaxy clustering models

 "Fingers-of-God" are virial motions within halos Millennium Run 10.077.696.000 particles

SDSSIII Dominant systematic: Fingers-of-God

REAL SPACE: r ~ I Mpc/h

Central galaxies Satellite galaxies

REDSHIFT SPACE: r ~ 15 Mpc/h Finger-of-God features mix small and large scale power SDSS

SLOAN DIGITAL SKY, SURVEY I

Fingers-of-God in $\xi(r_{\sigma}, r_{\pi})$

Beth Reid

SDSS

SLOAN DIGITAL SKY, SURVEY I

Brief model description

• 2LPT (Matsubara et al. 2008) s > 100 Mpc

s < 100 Mpc: Gaussian streaming approximation

$$1 + \xi_{g}^{s}(r_{\sigma}, r_{\pi}) = \int \left[1 + \xi_{g}^{r}(r) \right] e^{-[r_{\pi} - y - \mu v_{12}(r)]^{2}/2\sigma_{12}^{2}(r,\mu)} \frac{dy}{\sqrt{2\pi\sigma_{12}^{2}(r,\mu)}}$$

2nd order bias Ist order bias only included * LPT in progress! * FOGs included with additive isotropic σ^2_{FOG}

2P

Beth Reid

SDSSIII Effect of intrahalo satellite velocities (aka "Fingers of God")

DR9 Battle plan: marginalize over nuisance parameter σ^2_{FOG} with hard prior informed by smallscale galaxy clustering

DRI0: derive FOG velocity distribution directly from observed small-scale clustering

Kavli IPMU Jan 25 2012

SDSSIII Alcock-Paczynski has different scaledependence, distinguishable from RSD

Beth Reid Dy stretches s axis

LOAN DIGITAL SKY, SURVEY

Final ingredient: Covariance matrix

 600 (L)PT halos mocks described in Manera et al.

SDSS

Neighboring points in ξ highly correlated -no χ^2 by eye!

SDSSII

Results: Fitting to 2d clustering

- Use full model of $\xi_{0,2}$ (s $\geq 25 \text{ h}^{-1} \text{ Mpc}$) to constrain:
 - $D_V = [(I+z)^2 D_A^2 cz/H]^{1/3}$
 - growth of structure ($f\sigma_8$)
 - Alcock-Paczynski $F(z) \equiv (1+z) D_A(z) H(z)/c$
 - marginalizing over shape of underlying linear P(k), $b\sigma_8$, σ^2_{FOG}

SDSS Best fit model: $\chi^2 = 39$ (41 DOF)

growth: $f\sigma_8 = 0.437$

- geometry: $D_A = 2184 \text{ Mpc}$, $H = 91.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$
- nuisance: $b\sigma_8 = 1.235$, $\sigma_{FOG}^2 = 40 \text{ Mpc}^2$
- shape: $\Omega_m h^2 = 0.1364$, $\Omega_b h^2 = 0.02271$, n_s = 0.967

Kavli IPMU Jan 25 2012

SDSS

Outline

Non-cosmologist guide to galaxy redshift surveys
Galaxy clustering in 2d: ξ(r_σ, r_π)
Information in the spherical avg: ξ₀(s)
Information from anisotropy: ξ₂(s)
Cosmological Implications

SDSSIII BAO Hubble Diagram: Comparison with, CMB, H₀, and SN

+ I σ in $\Omega_m h^2$ -(WMAP7), ~2 σ (WMAP7+SPT)

Kavli IPMU Jan 25 2012

SDSS $\xi_0 BAO + \xi_2: D_A, H, f\sigma_8 \text{ at } z=0.57$

 $f\sigma_8(0.57) = 0.43 \pm 0.069$ $H(0.57) = 92.4 \pm 4.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $D_A(0.57) = 2190 \pm 61 \text{ Mpc}$ WMAP ACDM prediction $f\sigma_8(0.57) = 0.451 \pm 0.025$ H(0.57) = 94.2 ± 1.4 km s⁻¹ Mpc⁻¹ $D_A(0.57) = 2113 \pm 53 Mpc$

Kavli IPMU Jan 25 2012

SDSSII

Breaking the degeneracy between $f\sigma_8$ and F

Compute eigenvectors in F-f σ_8 plane, project back onto $\xi_{0,2}$; minimize χ^2 wrt D_V, b σ_8 , σ^2_{FOG}

Kavli IPMU Jan 25 2012

SDSSIII Cosmological implications: flat wdcm (Samushia, BR et al.)

Anisotropic clustering allows huge improvement on dark energy parameters!

 $w = -0.95 \pm 0.25$ (WMAP + D_V(0.57)/r_s)

w = -0.88 ± 0.055 (WMAP + anisotropic) Same precision as WMAP +SN!

SDSSIII Cosmological implications: flat wdcm (Samushia, BR et al.)

- Anisotropic clustering allows huge improvement on w!
- Thanks to fortuitous degeneracy direction between F_{AP} and $f\sigma_8$

Samushia, BR, et al., 2012

SDSSIII Cosmological implications: flat wdcm (Samushia, BR et al.)

Both SN, H₀ push back towards w = -I

Kavli IPMU Jan 25 2012

SDSSIII Dark Energy or modified gravity?

- CMASS geometric constraints tighten ΛCDM fσ₈ prediction, shift it up
 - CMASS fσ₈ is low by
 ~ 1.5σ
- Same story -- other measurements pull towards GR

Beth Reid

Samushia, BR, et al., 2012

SDSSIII DRIOWork in Progress

We can find a std HOD that fits the projected mass and galaxy distributions around CMASS galaxies:

Beth Reid

SLOAN DIGITAL SKY SURVEY II

DRIOWork in Progress

- But's it's a terrible fit to small-scale ξ_{0,2} (at fixed WMAP7 cosmology)
- Need to explore more complicated velocity structure in HOD, allow relevant cosmological parameters to float, ...

SLOAN DIGITAL SKY, SURVEY I

SDSSIII DRIOWork in Progress

... in order to infer the distribution of small-scale galaxy velocities.

Kavli IPMU Jan 25 2012

Summary

• 1.7% BAO distance constraint at z=0.57

 (First?) Best measurement of H(z) using BAO + Alcock-Paczynski effect

 7% growth rate measurement, I.5σ low compared to ΛCDM+GR

 WMAP+BOSS constraining power on dark energy substantially improved (~factor of 4 in flat wcdm!) when including anisotropic clustering