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SUSY Superpotential + Soft terms

contain first derivatives of fields, we have

∂µ

(
∂LMSSM

∂ (∂µΦi)
δΦi

)
= ∂µ

(
∂Lsusy

∂ (∂µΦi)
δΦi

)
= ∂µ [Sµ

MSSM + Kµ] (20)

where we recall that ∂µ Kµ is the variation of Lsusy under an infinitesimal supersymmetry
transformation. Therefore

∂µKµ = δLsusy = δLMSSM − δLsoft = δLMSSM −
∂Lsoft

∂Φi
δΦi. (21)

Inserting this equation in eq. (20), and the resulting expression in eq. (19), we obtain

δLMSSM =

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]
δΦi + ∂µ Sµ

MSSM + δLMSSM −
∂Lsoft

∂Φi
δΦi, (22)

or

∂µ Sµ
MSSM =

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi (23)

Inserting this expression in eq. (17), we rewrite the interaction lagrangian between the
MSSM and the light gravitino as

Lint, eff =
i√

3 m3/2 MP

χ̄

{
∂Lsoft

∂Φi
−

[
∂LMSSM

∂Φi
− ∂µ

∂LMSSM

∂ (∂µΦi)

]}
δΦi + h. c. (24)

As we prove in Appendix B, the part in square parenthesis does not contribute to the
amplitudes of physical processes having one light gravitino in the initial or final state (in
short, one can take the on shell expression for ∂µ Sµ

MSSM, since the term in square parenthesis
vanishes on shell; notice that the procedure just outlined provides the on-shell expression
of ∂µ Sµ

MSSM without the need to explicitly work out the equations of motion of the fields
entering in the supercurrent). Namely:

Lint, eff =
i√

3m3/2 MP

χ̄
∂Lsoft

∂Φi
δΦi + h. c. (25)

This is the effective theory for the MSSM-light gravitino interaction in non-derivative form.
To get an explicit expression, we recall the MSSM superpotential and soft supersymmetry
breaking Lagrangian:

W = huH2Quc + hdH1Qdc + heH1Lec + µH2H1 (26)

Lsoft = −
1

2
Mαλαλα − m2

ijφ
i∗φj (27)

−AuhuH2Quc − AdhdH1Qdc − AeheH1Lec − BµH2H1 + h.c.

where generation indices on the matter fields have been supressed. From this, we find

iLint, eff =
i m2

ij√
3MP m3/2

(
χ̄ χi

L φ∗j − χ̄i
L χ φj

)
−

i√
3MP m3/2

[
AjWj,i χ̄ χi

L − (AjWj,i)
∗ χ̄i

L χ
]

−
Mα

4
√

6MP m3/2

F (α)a
µν χ̄ [γµ, γν ] λ(α)a −

i gα Mα√
6MP m3/2

(
φ∗i T a

ij φj
)
χ̄ γ5 λ(α)a (28)
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where it is to be understood that in (84) that H1 refers to the scalar component of the Higgs
H1 and ψL and ψec represents the fermionic component of the left-handed lepton doublet and
right-handed singlet respectively. Gauge invariance requires that as defined in (82), H1 has
hypercharge YH1 = −1 (and YH2 = +1). Therefore if the two doublets obtain expectation
values of the form

〈H1〉 =
(

v1

0

)
〈H2〉 =

(
0
v2

)
(85)

then (84) contains a term which corresponds to an electron mass term with

me = yev1 (86)

Similar expressions are easily obtained for all of the other massive fermions in the standard
model. Clearly as there is no νc state in the minimal model, neutrinos remain massless.
Both Higgs doublets must obtain vacuum values and it is convenient to express their ratio
as a parameter of the model,

tan β =
v2

v1
(87)

3.1 The Higgs sector

Of course if the vevs for H1 and H2 exist, they must be derivable from the scalar potential
which in turn is derivable from the superpotential and any soft terms which are included.
The part of the scalar potential which involves only the Higgs bosons is

V = |µ|2(H∗
1H1 + H∗

2H2) +
1

8
g′2(H∗

2H2 − H∗
1H1)

2

+
1

8
g2

(
4|H∗

1H2|2 − 2(H∗
1H1)(H

∗
2H2) + (H∗

1H1)
2 + (H∗

2H2)
2
)

+m2
1H

∗
1H1 + m2

2H
∗
2H2 + (BµεijH

i
1H

j
2 + h.c.) (88)

In (88), the first term is a so-called F -term, derived from |(∂W/∂H1)|2 and |(∂W/∂H2)|2
setting all sfermion vevs equal to 0. The next two terms are D-terms, the first a U(1)-D-
term, recalling that the hypercharges for the Higgses are YH1 = −1 and YH2 = 1, and the
second is an SU(2)-D-term, taking T a = σa/2 where σa are the three Pauli matrices. Finally,
the last three terms are soft supersymmetry breaking masses m1 and m2, and the bilinear
term Bµ. The Higgs doublets can be written as

〈H1〉 =
(

H0
1

H−
1

)
〈H2〉 =

(
H+

2

H0
2

)
(89)

and by (H∗
1H1), we mean H0

1
∗
H0

1 + H−
1

∗
H−

1 etc.
The neutral portion of (88) can be expressed more simply as

V =
g2 + g′2

8

(
|H0

1 |2 − |H0
2 |2

)2
+ (m2

1 + |µ|2)|H0
1 |2

+(m2
2 + |µ|2)|H0

2 |2 + (BµH0
1H

0
2 + h.c.) (90)

21

where it is to be understood that in (84) that H1 refers to the scalar component of the Higgs
H1 and ψL and ψec represents the fermionic component of the left-handed lepton doublet and
right-handed singlet respectively. Gauge invariance requires that as defined in (82), H1 has
hypercharge YH1 = −1 (and YH2 = +1). Therefore if the two doublets obtain expectation
values of the form

〈H1〉 =
(

v1

0

)
〈H2〉 =

(
0
v2

)
(85)

then (84) contains a term which corresponds to an electron mass term with

me = yev1 (86)

Similar expressions are easily obtained for all of the other massive fermions in the standard
model. Clearly as there is no νc state in the minimal model, neutrinos remain massless.
Both Higgs doublets must obtain vacuum values and it is convenient to express their ratio
as a parameter of the model,

tan β =
v2

v1
(87)

3.1 The Higgs sector

Of course if the vevs for H1 and H2 exist, they must be derivable from the scalar potential
which in turn is derivable from the superpotential and any soft terms which are included.
The part of the scalar potential which involves only the Higgs bosons is

V = |µ|2(H∗
1H1 + H∗

2H2) +
1

8
g′2(H∗

2H2 − H∗
1H1)

2

+
1

8
g2

(
4|H∗

1H2|2 − 2(H∗
1H1)(H

∗
2H2) + (H∗

1H1)
2 + (H∗

2H2)
2
)

+m2
1H

∗
1H1 + m2

2H
∗
2H2 + (BµεijH

i
1H

j
2 + h.c.) (88)

In (88), the first term is a so-called F -term, derived from |(∂W/∂H1)|2 and |(∂W/∂H2)|2
setting all sfermion vevs equal to 0. The next two terms are D-terms, the first a U(1)-D-
term, recalling that the hypercharges for the Higgses are YH1 = −1 and YH2 = 1, and the
second is an SU(2)-D-term, taking T a = σa/2 where σa are the three Pauli matrices. Finally,
the last three terms are soft supersymmetry breaking masses m1 and m2, and the bilinear
term Bµ. The Higgs doublets can be written as

〈H1〉 =
(

H0
1

H−
1

)
〈H2〉 =

(
H+

2

H0
2

)
(89)

and by (H∗
1H1), we mean H0

1
∗
H0

1 + H−
1

∗
H−

1 etc.
The neutral portion of (88) can be expressed more simply as

V =
g2 + g′2

8

(
|H0

1 |2 − |H0
2 |2

)2
+ (m2

1 + |µ|2)|H0
1 |2

+(m2
2 + |µ|2)|H0

2 |2 + (BµH0
1H

0
2 + h.c.) (90)

21

R-parity conservation assumed 
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Which Supersymmetric Model?

Gaugino mass Unification

A-term Unification

Scalar mass unification 

MSSM with R-Parity (still more than 100 parameters)

CMSSM or mSUGRA
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The CMSSM

Parameters: m1/2, m0, A0, tan β, sgn(μ)       {m3/2}

Electroweak Symmetry Breaking conditions:

µ2 =
m2

1 �m2
2 tan2 � + 1

2M2
Z(1� tan2 �) + �(1)

µ

tan2 � � 1 + �(2)
µ

Bµ = �1
2
(m2

1 + m2
2 + 2µ2) sin 2� + �B
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m1/2 - m0 planes
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mSUGRA models

	
 G = ϕ ϕ∗ + z z∗ + ln |W|2;   W = f(z) + g(ϕ)
Scalar Potential (N=1):   

€ 

V = e(|z| 2 +|ϕ | 2 ) ∂f
∂z

+ z* f (z) + g(ϕ)( )
2⎡ 

⎣ 
⎢ 

€ 

+
∂g
∂ϕ

+ϕ* f (z) + g(ϕ)( )
2

− 3 f (z) + g(ϕ) 2
⎤ 

⎦ 
⎥ 
⎥ 

e.g. Barbieri, Ferrara, Savoy

In the low energy limit (MP → ∞),
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Abstract. While the constrained minimal supersymmetric standard model (CMSSM) with universal gaug-
ino masses, m1/2, scalar masses, m0, and A-terms, A0, defined at some high energy scale (usually taken
to be the GUT scale) is motivated by general features of supergravity models, it does not carry all of the
constraints imposed by minimal supergravity (mSUGRA). In particular, the CMSSM does not impose a
relation between the trilinear and bilinear soft supersymmetry breaking terms, B0 = A0 −m0, nor does it
impose the relation between the soft scalar masses and the gravitino mass, m0 = m3/2. As a consequence,
tan β is computed given values of the other CMSSM input parameters. By considering a Giudice-Masiero
(GM) extension to mSUGRA, one can introduce new parameters to the Kähler potential which are asso-
ciated with the Higgs sector and recover many of the standard CMSSM predictions. However, depending
on the value of A0, one may have a gravitino or a neutralino dark matter candidate. We also consider the
consequences of imposing the universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.

UMN–TH–3103/12, FTPI–MINN–12/17, LPT–Orsay-12-49

1 Introduction

One of the most commonly studied variants of the min-
imal supersymmetric standard model is the constrained
model (CMSSM) [1, 2]. This is in part due to its simplic-
ity (it is specified by four parameters), and its connection
to supergravity [3, 4]. The CMSSM also provides a nat-
ural dark matter candidate [5], the neutralino, for which
the relic density may be brought into the range specified
by WMAP [6] relatively easily. Furthermore, these models
generally predict a relatively light mass for the Higgs bo-
son (mh ! 130 GeV) [7]. Not only is the theory testable,
but is currently under scrutiny from the ongoing experi-
ments at the LHC [8], resulting in strong constraints on
the CMSSM parameter space, particularly when recent
constraints from Higgs searches [10] are applied [11].

The CMSSM is defined by choosing universal soft su-
persymmetry breaking parameters input at the grand uni-
fied (GUT) scale, i.e., the scale at which gauge coupling
unification occurs. These are the universal gaugino mass,
m1/2, scalar mass,m0, and trilinear term, A0. The motiva-
tion of this universality stems from minimal supergravity
(mSUGRA) and indeed the two theories are often con-
fused.

Minimal supergravity is defined by a Kähler potential
with minimal kinetic terms (in Planck units),

G = K(φi,φi
∗, zα, z∗α) + ln(|W |2) , (1)

with
K = K0 = φiφi

∗ + zαz∗α , (2)

where W = f(zα) + g(φi) is the superpotential, assumed
to be separable in hidden sector fields, zα, and standard
model fields, φi. The scalar potential can be derived once
the superpotential is specified. Assuming that the origin
of supersymmetry breaking lies in the hidden sector, the
low energy potential is derived from

V = eK
(
KIJ̄DIWD̄J̄W̄ − 3|W |2

)

= eG
(
GIG

IJ̄GJ̄ − 3
)
, (3)

with DIW ≡ ∂IW +KIW and dropping terms inversely
proportional to the Planck mass, we can write [4]

V =

∣∣∣∣
∂g

∂φi

∣∣∣∣
2

+
(
A0g

(3) +B0g
(2) + h.c.

)
+m2

3/2φ
iφ∗i ,(4)

where g(3) is the part of the superpotential cubic in fields,
and g(2) is the part of the superpotential quadratic inFriday, January 25, 13



  

For example,
Polonyi: f(z) = m0 (z + β) ; 

m0 = m3/2 ;	
A 0 = (3 - √3) m0;	
B 0 = A0 - m0

With <z> = b = √3 - 1  for β = 2 - √3	
     (a = 1) 
	
 and m3/2 = m0

For <f> = m0, 	
  <df/dz> = a m0,  and <z> = b   with (a+b)2 = 3

	
 A0 = (ab + b2) m0; 	
B 0 = A0 - m0
	
 e.g. Nilles, Srednicki, Wyler

A0g
(3) =

✓
�i @g(3)

@�i
� 3g(3)

◆
m3/2 + z⇤(zf⇤ +

@f⇤

@z⇤
)

where

Friday, January 25, 13



mSUGRA

Parameters: m1/2, m3/2, A0, sgn(μ)     

Electroweak Symmetry Breaking conditions used to solve for tanβ:

µ2 =
m2

1 �m2
2 tan2 � + 1

2M2
Z(1� tan2 �) + �(1)

µ

tan2 � � 1 + �(2)
µ

Bµ = �1
2
(m2

1 + m2
2 + 2µ2) sin 2� + �B
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Relating the CMSSM to mSUGRA through 
Giudici-Masiero

add non-minimal Kähler correction

Dudas et al.: Relating the CMSSM and SUGRA models 3

MGUT [20, 21]. We first demonstrate that in the context
of mSUGRA, the standard boundary conditions for the
B-term are very difficult to satisfy and generally require
that the coupling, λ between the Higgs five-plets and the
Higgs adjoint is small (close to 0). This is similar to what
was found for a no-scale supergravity GUT [22]. Gener-
ally the no-scale sparticle spectrum is problematic unless
one moves the input supersymmetry breaking scale above
MGUT [23]. As a consequence, strong constraints can be
derived on the coupling λ [24]. In section 3.2, we will show
the effect of turning on the coupling cH (now defined as a
coefficient of the five-plets, H1H2). In this case, CMSSM-
like planes can be defined, albeit with strong constraints
on the coupling λ. That is, while the boundary conditions
can be matched, the resulting solution for cH becomes
wildly non-perturbative. In section 3.3, we show that these
constraints can relaxed if we turn on an additional con-
tribution to the Kälher potential, namely cΣTrΣ2 + h.c.,
which can be associated with the µ and B terms of the
Higgs adjoint. This will in principle, lead to a family of so-
lutions relating cH and cΣ. Our conclusions will be given
in section 4.

2 GUT Scale Universality

We will begin by exploring the bridge between the CMSSM
and mSUGRA via an addition to the Kähler potential
when the input supersymmetry breaking scale is Min =
MGUT . The addition to the Kähler potential can be cho-
sen as given in Eq. (11). In the CMSSM, µ and B are
normally solved for in terms of mZ and tanβ:

µ2 =
m2

1 −m2
2 tan

2 β + 1
2m

2
Z
(1 − tan2 β) +∆(1)

µ

tan2 β − 1 +∆(2)
µ

,

Bµ = −
1

2
(m2

1 +m2
2 + 2µ2) sin 2β +∆B , (15)

where ∆B and ∆(1,2)
µ are loop corrections [25–27], and

m1,2 are the Higgs soft masses (here evaluated at the weak
scale). As a result, there is usually a one-to-one correspon-
dence between B and tanβ, so that there is perhaps a
single value for tanβ for which the GUT-scale1 boundary
condition, B0 = A0 −m0 is satisfied.

We show in Fig. 1 the allowed parameter space in a
(m1/2,m0) plane for mSUGRA with A0 = 0 (left) and
A0 = 2m0 (right) (updated from Ref. [13]). Here, and
in subsequent figures, the regions forbidden because the
lightest supersymmetric particle (LSP) is charged (either
τ̃1 or t̃1) are shaded brown, the regions excluded by b →
sγ [28] are shaded green, the regions favored by gµ−2 [29]
at the ±2 − σ level are shaded pale pink, with the ±1 −
σ region bordered by dashed curves. The near vertical
black dashed line is the chargino mass mχ±

1
= 104 GeV

contour and the red dot-dashed lines show contours of

1 The GUT scale, MGUT , is defined as the scale where SU(2)
and U(1) gauge couplings unify and is approfimately 1.5 ×
1016 GeV.

the Higgs mass, mh as labelled. Unlike the CMSSM, each
point on the plane corresponds to a value of tan β and
these are shown by the gray-colored curves for tan β = 3
and in increments of 5 (most are labeled on the figure).
For A0/m0 = 0, much of the plane at large m0 has small
tanβ ! 5 and a correspondingly small value of mh. For
A0/m0 = 2, higher values of tanβ are found and they
extend up to ∼ 39 in the region plotted.

The dark blue shading in Fig. 1 indicates the region
where the relic density falls within the WMAP range,
0.097 ≤ ΩCDMh2 ≤ 0.122. We also plotted the limit
MLSP = m3/2 shown as the light blue diagonal line under
which the gravitino is the LSP. It corresponds roughly to
the line m0 = 0.4m1/2. Another diagonal line (brown dot-
ted) shows the contour for which the lightest neutralino
mass mχ is equal to the mass of the lighter stau, mτ̃1 . For
A0/m0 = 0, the latter appears below the gravitino LSP
line, and as such, τ̃1 is never the LSP. As a consequence,
only the dark blue shaded region at low m1/2 above the
light blue line corresponds to neutralino dark matter at
the WMAP density. The dark blue shaded region below
the light blue line corresponds to the gravitino LSP at
the WMAP density assuming that there is no nonthermal
contribution to the gravitino density (valid for example in
models where the inflationary reheat temperature is rather
low). Here, the gravitino density is determined from the
relic annihilations of either the neutralino or stau (if below
the dotted line) andΩ3/2h

2 = (m3/2/mχ,τ̃1)Ωχ,τ̃1h
2. How-

ever, in regions with a gravitino LSP, there are additional
constraints from big bang nucleosynthesis (not considered
here) which may impact its viability [30].

As shown previously [13], one observes that an ex-
tended region respecting the WMAP relic density with
a neutralino LSP appears for larger values of A0 as a re-
sult of stau coannihilation [31] as seen in the right panel
of Fig. 1. Indeed, for large values of the trilinear coupling,
the mass of the lighter stau, τ̃1, is lower which pushes the
coannihilation channel to regions of the parameter space
where mχ0

% mτ̃1 > m0 = m3/2 . In this case, it is even
possible to satisfy WMAP with a relatively heavy Higgs
(mh " 122 GeV for tanβ " 37). Notice in this case, be-
low the co-annihilation strip, there is a region (as in the
CMSSM) where τ̃1 is the LSP and hence shaded brown. At
still lower m0, the gravitino is once again the LSP with
a τ̃1 being the next to lightest supersymmetric particle
(NLSP). Note also, that the region excluded by b → sγ
(shaded green) is significantly more important than the
case with small A0. In fact, for A0/m0 = 2, we see that the
excluded region is split. This occurs because BR(b → sγ)
is too large at small m1/2, falls through the acceptable
range as m1/2 increases, becoming unacceptably small be-
cause of cancellations over a range of m1/2, before rising
towards the Standard Model value at large m1/2.

When the Giudice-Masiero term (11) is included [14],
one can deduce the (GUT) boundary conditions for µ and
B

µ = µ0 + cHm0 , (16)

B0 = A0 −m0 + 2cHm2
0/µ0 . (17)

produces shifts 
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fields. The trilinear term is given by

A0g
(3) =

(
φi
∂g(3)

∂φi
− 3g(3)

)
m3/2 +KαDαf(z̄)g

(3) . (5)

Note that for trilinears, the first term in Eq. (5) vanishes,
leaving

A0 = KαDαf(z̄) , (6)

while for bilinears (B-terms - defined in Eq. (5) with the
replacement g(3) → g(2)), it is −m3/2 yielding the famil-
iar supergravity relation B0 = A0 − m0. In Eq. (4), the
gravitino mass is given by

m2
3/2 = eG , (7)

and the superpotential has been rescaled by a factor e−〈zz∗〉/2.
Finally, gaugino mass universality stems from a choice of
a gauge kinetic term which is of the form hA

αβ = h(z)δαβ .
Soft terms for matter fields in supergravity have a nice

geometrical structure. For F-term SUSY breaking, they
are given by [12]

m2
ij̄ = m2

3/2 (Gij̄ −Rij̄αβ̄G
αGβ̄ ) ,

(B µ)ij = m2
3/2 (2∇iGj +Gα∇i∇jGα) ,

(A y)ijk = m2
3/2 (3∇i∇jGk +Gα∇i∇j∇kGα) ,

µij = m3/2 ∇iGj ,

mA
1/2 =

1

2
(Re hA)

−1m3/2 ∂αhA Gα , (8)

where yijk are Yukawa couplings, hA are the gauge kinetic
functions and ∇i denotes Kähler covariant derivatives

∇iGj = ∂iGj − Γ k
ijGk , (9)

where
Γ k
ij = Gkl̄∂iGjl̄ , (10)

is the Kähler connection. Rij̄αβ̄ is the Riemann tensor of
the Kähler space spanned by chiral (super)fields. Taking
into account the known string compactifications, there is
no reason to believe that they are given by very simple or
even flavor universal expressions. In order to make contact
with low-energy phenomenology and in the absence of a
complete viable string theory model, one is forced, how-
ever, to resort to simplifying assumptions, for example,
minimal supergravity as defined in Eq. (2).

In the CMSSM, however, it is customary to drop the
mSUGRA relation between B0 and A0. Instead, B0 and
the Higgs mass mixing term, µ, are solved using the low
energy electroweak symmetry breaking conditions, i.e., from
the minimization of the Higgs potential at Mweak. Fur-
thermore, in the CMSSM, the relation between m0 and
the gravitino mass is lost, though scalar mass universality
is maintained. As a results, phenomenological constraints
in the CMSSM can be displayed on a (m1/2,m0) plane,
for fixed A0 and tanβ. Note the sign of the µ parameter
must also be specified. In contrast, in mSUGRA models,
because of the relation between B0 and A0, tanβ is no

longer a free parameter [13], and we are left with three
free parameters (rather than four).

An interesting extension of minimal supergravity is one
where terms proportional g(2) are added to the Kähler
potential as in the Giudice-Masiero mechanism [14]. For
example, consider an additional contribution to K,

∆K = cHH1H2 + h.c. , (11)

where cH is a constant, and H1,2 are the usual MSSM
Higgs doublets. Notice that in string theory cH < 1 is
needed for the viability of the effective field theory limit
[15]. The effect of ∆K, is manifest on the boundary con-
ditions for both µ and the B term at the supersymmetry
breaking input scale, Min. The µ term is shifted to

µ+ cHm0 . (12)

Note that while in principle we can define an input value
for µ (µ0), it is not determined by supersymmetry break-
ing and furthermore, since we solve for µ at the weak scale,
its UV value is fixed by the low energy boundary condi-
tion. The boundary condition on µB shifts from µB0 to

µB0 + 2cHm2
0 . (13)

It is clear therefore, that using the GM mechanism, one
can avoid altogether a dimensionful quantity in the su-
perpotential (i.e., one can set g(2) = 0) and obtain a weak
scale µ proportional to cHm0. While the extension in Eq.
(11) is perhaps the simplest extension which affects the
B-term, it is by no means unique.

In principle, we can also use ∆K to better connect
the CMSSM to supergravity. Indeed, by allowing cH $= 0,
we can once again fix tanβ and derive µ and Bµ at the
weak scale. The presence of the extra term in the Kähler
potential allows one to match the supergravity boundary
conditions at MGUT . In particular, by running our derived
value of B(MW ) up to the GUT scale, we can write

B(MGUT ) = (A0 −m0) + 2cHm2
0/µ(MGUT ) . (14)

Indeed, we can use Eq. (14) to derive the necessary value of
cH . So long as cH ! O(1), we can associate the CMSSM
with this non-minimal version of supergravity which we
will refer to as GM supergravity.

For numerical computations we employed the program
SSARD [16], which uses 2-loop RGE evolution for the MSSM
and 1-loop evolution for minimal SU(5) to compute the
sparticle spectrum. These are passed to FeynHiggs [17] for
computation of the light Higgs boson mass, mh. Through-
out this paper we take the top quark massmt = 173.1 GeV
[18] and the running bottom quark mass mMS

b (mb) =
4.2 GeV [19].

In section 2, we consider this connection between the
CMSSM and GM supergravity. In particular, we will show
that for essentially all CMSSM models of interest, the
values of cH are small enough to remain in the pertur-
bative regime. We next consider a super-GUT version
of the CMSSM based on minimal SU(5) for which the
supersymmetry breaking input scale is increased above
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GM SUGRA planes

Dudas,Mambrini,Mustafayev,Olive
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Δχ2 map of m0 - m1/2 plane
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Effect of Results from LHC

jets + missing ET with/
without leptons

Heavy Higgs to ττ

B to μμ

~5fb-1 @ 7 TeV
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m1/2 - m0 planes incl. LHC
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Back to the Higgs Search
The LHC @ ~5/fb
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The Higgs Search
The LHC @ ~5/fb
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Limits at ~5 fb-1

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, Flacher, 
Heinemeyer, Isidori, Marrouche, Martinez Santos, Nakach, Olive, 
Rogerson, Ronga, de Vries, Weiglein

Δχ2 map of m0 - m1/2 plane
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Comparison of best fit 
points pre and post LHC

p-value of SM = 9% (32.7/23) - but note: does not include dark matter

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, 
Flacher, Heinemeyer, Isidori, Marrouche, Martinez Santos, 
Nakach, Olive, Rogerson, Ronga, de Vries, Weiglein

3

Model Data set Minimum Prob- m0 m1/2 A0 tanβ

χ2/d.o.f. ability (GeV) (GeV) (GeV)

CMSSM pre-LHC 21.5/20 37 % 90 360 -400 15

LHC1/fb 31.0/23 12% 1120 1870 1220 46

ATLAS5/fb (low) 32.8/23 8.5% 300 910 1320 16

ATLAS5/fb (high) 33.0/23 8.0% 1070 1890 1020 45

NUHM1 pre-LHC 20.8/18 29 % 110 340 520 13

LHC1/fb 28.9/22 15% 270 920 1730 27

ATLAS5/fb (low) 31.3/22 9.1% 240 970 1860 16

ATLAS5/fb (high) 31.8/22 8.1% 1010 2810 2080 39

Table 2. The best-fit points found in global CMSSM and NUHM1 fits using the ATLAS 5/fb jets + /ET

constraint [?], the combination of the ATLAS [?], CDF [?], CMS [?] and LHCb [?] BR(Bs → µ+µ−) [?]
constraints and the updated values of MW and mt, compared with those found previously in global fits
based on the LHC1/fb data set. In both cases, we include a measurement of Mh = 125 ± 1.0 ± 1.5 GeV
and the new XENON100 constraint [?]. In the case of the CMSSM, we list the parameters of the best-fit
points in both the low- and high-mass ‘islands’ in Fig. ??, and we quote results for a high-mass NUHM1
point as well as the low-mass best-fit point in this model. We note that the overall likelihood function is
quite flat in bot the CMSSM and the NUHM1, so that the precise locations of the best-fit points are not
very significant, and we do not quote uncertainties. For completeness, we note that in the best NUHM1
fit m2

H ≡ m2
Hu

= m2
Hd

= −6.5× 106 GeV2, compared with −5.5× 106 GeV2 previously.
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Elastic cross sections

Buchmueller, Cavanaugh, Citron, De Roeck, Dolan, Ellis, Flacher, 
Heinemeyer, Isidori, Marrouche, Martinez Santos, Nakach, Olive, 
Rogerson, Ronga, de Vries, Weiglein
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Higgs masses vs elastic cross sections
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Other Possibilities

NUHM1,2:  m12 = m22 ≠ m02, m12 ≠ m22 ≠ m02

μ and/or mA free

subGUT models: Min < MGUT

with or without mSUGRA

May require more general models
which are concordant with LHC MET; 
Higgs; and Bs →μ+μ-; and Dark Matter
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NUHM1 models with μ free

Friday, January 25, 13



0 1000 2000
100

1000

2000

0 1000 2000
100

1000

2000

m
A
 (G

eV
)

 µ  (GeV)

mh  = 124 GeV

= 122.5 GeV

tan β = 10, m1/2 = 1000 GeV, m0 = 1000 GeV
A0 = 2.5m0

1.3

1.65

1.0

0.85

0 1000 2000
100

1000

2000

0 1000 2000
100

1000

2000

m
A
 (G

eV
)

 µ  (GeV)

mh  = 125 GeV

124 GeV

tan β = 30, m1/2 = 1000 GeV, m0 = 1000 GeV
A0 = 2.5m0

1.3

1.5

1.65

1.0

0.85

125 GeV

Figure 8: The NUHM2 (µ,mA) planes for m1/2 = 1000 GeV, m0 = 1000 GeV, A0 = 2.5m0,
and tanβ = 10 (left) and tanβ = 30 (right). The interpretations of the shading and contour
colours are described in the text.

summarized earlier, the sparticle spectrum in such a scenario is in general more compressed
than in the conventional CMSSM with, e.g., smaller mass differences between squarks and
sleptons and between different types of inos. Models with similarly compressed spectra and
the prospects for their discovery have been studied in [42].

As presented in [21], this compression of the spectrum causes the relic cold dark matter
density to decrease at generic fixed values of (m1/2, m0) asMin decreases, and hence the strips
of parameter space with the appropriate dark matter density tend to move inwards from the
boundary of the region allowed by the neutral LSP and electroweak symmetry breaking
constraints. These features are visible in the upper panels of Fig. 9, which are (m1/2, m0)
planes for tanβ = 10 and 40, both with Min = 1011 GeV, A0 = 2.5m0, and µ > 0. In both
cases there are wedges of the (m1/2, m0) plane at small m1/2 and large m0 (and hence large
A0) that are excluded because the lighter stop, t̃1, is the LSP in addition to the common
wedge in the lower right of the planes where there is a τ̃1 LSP. We see that in both panels
there is a prominent funnel due to s-channel annihilations of LSPs through the heavy Higgs
scalar and pseudoscalar, where the relic cold dark matter density is suitable. There are
also other very thin strips running above and roughly parallel to the prominent funnels, due
to rapid s-channel coannihilation processes between the LSP and heavier neutralinos and
charginos. In both cases, we also see t̃1 coannihilation strips near the upper boundary of the
allowed χ LSP region, in the neighbourhood where focus-point strips appear in the CMSSM.

We now discuss how these sub-GUT models fare with the available LHC constraints. The
MET constraint (not shown) excludes only a small corner of the displayed triangle between
the τ̃1 and t̃1 LSP boundaries. As usual, Bs → µ+µ− does not impact the allowed parameter

14

NUHM2 models with μ and mA  free

Ellis, Luo, Olive, Sandick
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subGUT model with Min = 1011 GeV

Ellis, Luo, Olive, Sandick
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Figure 9: Sub-GUT CMSSM scenarios with tan β = 10 (left) and tanβ = 40 (right) in both
cases with A0 = 2.5m0, and for Min = 1011 GeV (upper) and 109 GeV (lower). Plotted
contours of Mh are 114, 119, 122.5, 124, 125, 126, and 127 GeV. The interpretations of the
shading and contour colours are described in the text.

space for tan β = 10, but does have significant impact for tan β = 40, requiring m1/2
>∼ 1500

to 2000 GeV along the prominent rapid-annihilation funnel, and m1/2
>∼ 1000 to 1500 GeV

along the stop coannihilation strip. The most novel feature of these sub-GUT models is
the relative ease with which they respect the Higgs mass constraint. Most of the funnel for

15
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subGUT mSUGRA models

Ellis, Luo, Olive, Sandick
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Lots of possibilities still exist!
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Moduli

Usually ignored in phenomenological studies of the 
MSSM

In general, many moduli:

Volume Modulus: destabilization

Polonyi-like fields: cosmological entropy production; 
gravitino production; LSP production....
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Volume modulus (ρ) - 
Stabilization - KKLT

2

quantum corrections. As a consequence, anomaly medi-
ation becomes the first source of breaking terms in the
gaugino sector of the theory. In an appendix, we show
that this result is not restricted to the KL model, but
is a general consequence of any model with a strongly
stabilized vacuum, such that m� � m3/2. Phenomeno-
logical implications of these results and our conclusions
are summarized in section IV.

II. THE KKLT AND KL MODELS

In this section, we will briefly review the KKLT and
KL models. We will couple the KKLT(KL) sector to the
SM through gravity and assume minimal N = 1 super-
gravity for the SM sector as a starting point. The KKLT
(KL) sector consists of a single chiral field: the modu-
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but negligibly small, about 10
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try breaking [19], an O’Raifeartaigh mechanism [9, 20]
or something else. However, this would make the mod-
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concentrate on the string theory based mechanism of su-
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ble so that
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that this result is not restricted to the KL model, but
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FIG. 1. Scalar potential of the KKLT model for the values
of the parameters A = 1, a = 1 and W0 = 10�12 before and
after uplifting. The potential has been multiplied by a factor
of 1029 for clarity.

gravitino mass m3/2 ⇠ 10

�15 ⇠ e�35 is to have a�0 � 1.
For example, for a ⇠ A ⇠ 1 and m3/2 ⇠ 10

�15, Eq. (12)
yields �0 ⇠ a�0 ⇡ 30.

It is useful to represent the expressions for m3/2 in a
different but equivalent way. Using (10), one finds, for
a�0 � 1,

m3/2 =

W0

(2�0)
3/2

. (13)

In the example considered above one finds W0 ⇠ 10

�12.
This is the same degree of fine-tuning as the one required
in the standard Polonyi model.

To find the relation between the mass of the volume
modulus and the gravitino mass, one can can use Eq. (7),
which yields

m2
� =

@�@�V

2K⇢,⇢̄
=

2

9

(D⇢W )�(�W⇢,⇢ � 2W⇢) (14)

at the supersymmetric minimum. In this case, one can
show that the mass of the volume modulus, as well as the
mass of its imaginary (axionic) component, is given by

m� =

p
2�0

3

W⇢,⇢ = 2a�0 m3/2 . (15)

As a result, the mass of the volume modulus is not much
greater than the gravitino mass. And this means that
the volume stabilization in the KKLT scenario is actually
very soft [16].

As mentioned above, the AdS minimum at ⇢ = �0

must be uplifted. We illustrate the uplifting effect in the
Fig. 1 in the phenomenologically reasonable case A = 1,
a = 1 and W0 = 10

�12 corresponding to a gravitino mass
m3/2 = 2 ⇥ 10

�15. The position of the minimum in this
case is �0 ⇡ 30.7.

Uplifting of the AdS minimum induces supersymmetry
breaking and is achieved by adding to the potential a

term

�V ⇡ |VAdS| �n
0

�n
. (16)

In the original KKLT construction it was assumed that
n = 3 [5], but according to [21] n = 2 in the uplifting
term, due to effects related to warping. One may have
n = 3 if the uplifting occurs due to a D-term [6, 7, 8].
The choice of n will not affect our qualitative conclusions;
for definiteness, we will choose n = 2.

Because of the dependence of the uplifting term on �,
the minimum after the uplifting shifts to greater values
of �. Let us denote the shift in � after uplifting by ��.
Once again, using Eq. (7), we can obtain �� from

(D⇢W )�(�0W⇢,⇢ � 2W⇢)�� = 6VAdS�0 . (17)

Then, for a�0 � 1, one can show that the relative value
of the shift is small,

��

�0
= (a�0)

�2 ⌧ 1. (18)

This shift does not change much the values of the super-
potential and the Kähler potential, which depend on �.
Therefore the gravitino mass after the uplifting is cor-
rectly represented by the expression (12). Similarly, the
mass of the volume modulus (15) practically does not
change during the uplifting.

In N = 1 supergravity, ignoring D-term and string
theory effects leading to the uplifting, one could use the
standard expression for the potential V = eK

(|D⇢W |2 �
3|W |2). Then the existence of the gravitino mass m2

3/2 =

eK |W |2 in a Minkowski vacuum with V = 0 would auto-
matically imply that |D⇢W |2 = 3e�Km2

3/2 6= 0.

However, because of uplifting, this relation is no longer
valid. Since D⇢W = 0 in the supersymmetric AdS vac-
uum, the value of D⇢W after uplifting is completely de-
termined by the small shift ��. For a�0 � 1, it is given
by

D⇢W = (D⇢W )��� 'W⇢,⇢�� =

3
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As we see, all of the important parameters, such as W ,
W⇢, D⇢W , m�, have their scale determined by the grav-
itino mass, up to some combination of parameters a and
�0. This fact will be important for us in the next section
when we will discuss consequences of the KKLT mecha-
nism for supersymmetry breaking in the observable sec-
tor.

The softness of the moduli stabilization in the simplest
versions of the KKLT construction leads to a rather un-
usual problem: the Hubble constant during inflation can-
not be much greater than the gravitino mass, H . m3/2

[16]. The reason is that in the simplest KKLT mod-
els, the barrier separating the stabilized dS vacuum from
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FIG. 1. Scalar potential of the KKLT model for the values
of the parameters A = 1, a = 1 and W0 = 10�12 before and
after uplifting. The potential has been multiplied by a factor
of 1029 for clarity.

gravitino mass m3/2 ⇠ 10

�15 ⇠ e�35 is to have a�0 � 1.
For example, for a ⇠ A ⇠ 1 and m3/2 ⇠ 10

�15, Eq. (12)
yields �0 ⇠ a�0 ⇡ 30.

It is useful to represent the expressions for m3/2 in a
different but equivalent way. Using (10), one finds, for
a�0 � 1,

m3/2 =

W0

(2�0)
3/2

. (13)

In the example considered above one finds W0 ⇠ 10

�12.
This is the same degree of fine-tuning as the one required
in the standard Polonyi model.

To find the relation between the mass of the volume
modulus and the gravitino mass, one can can use Eq. (7),
which yields
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at the supersymmetric minimum. In this case, one can
show that the mass of the volume modulus, as well as the
mass of its imaginary (axionic) component, is given by

m� =

p
2�0

3

W⇢,⇢ = 2a�0 m3/2 . (15)

As a result, the mass of the volume modulus is not much
greater than the gravitino mass. And this means that
the volume stabilization in the KKLT scenario is actually
very soft [16].

As mentioned above, the AdS minimum at ⇢ = �0

must be uplifted. We illustrate the uplifting effect in the
Fig. 1 in the phenomenologically reasonable case A = 1,
a = 1 and W0 = 10

�12 corresponding to a gravitino mass
m3/2 = 2 ⇥ 10

�15. The position of the minimum in this
case is �0 ⇡ 30.7.

Uplifting of the AdS minimum induces supersymmetry
breaking and is achieved by adding to the potential a

term

�V ⇡ |VAdS| �n
0

�n
. (16)

In the original KKLT construction it was assumed that
n = 3 [5], but according to [21] n = 2 in the uplifting
term, due to effects related to warping. One may have
n = 3 if the uplifting occurs due to a D-term [6, 7, 8].
The choice of n will not affect our qualitative conclusions;
for definiteness, we will choose n = 2.

Because of the dependence of the uplifting term on �,
the minimum after the uplifting shifts to greater values
of �. Let us denote the shift in � after uplifting by ��.
Once again, using Eq. (7), we can obtain �� from

(D⇢W )�(�0W⇢,⇢ � 2W⇢)�� = 6VAdS�0 . (17)

Then, for a�0 � 1, one can show that the relative value
of the shift is small,
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This shift does not change much the values of the super-
potential and the Kähler potential, which depend on �.
Therefore the gravitino mass after the uplifting is cor-
rectly represented by the expression (12). Similarly, the
mass of the volume modulus (15) practically does not
change during the uplifting.

In N = 1 supergravity, ignoring D-term and string
theory effects leading to the uplifting, one could use the
standard expression for the potential V = eK

(|D⇢W |2 �
3|W |2). Then the existence of the gravitino mass m2

3/2 =

eK |W |2 in a Minkowski vacuum with V = 0 would auto-
matically imply that |D⇢W |2 = 3e�Km2

3/2 6= 0.

However, because of uplifting, this relation is no longer
valid. Since D⇢W = 0 in the supersymmetric AdS vac-
uum, the value of D⇢W after uplifting is completely de-
termined by the small shift ��. For a�0 � 1, it is given
by

D⇢W = (D⇢W )��� 'W⇢,⇢�� =
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As we see, all of the important parameters, such as W ,
W⇢, D⇢W , m�, have their scale determined by the grav-
itino mass, up to some combination of parameters a and
�0. This fact will be important for us in the next section
when we will discuss consequences of the KKLT mecha-
nism for supersymmetry breaking in the observable sec-
tor.

The softness of the moduli stabilization in the simplest
versions of the KKLT construction leads to a rather un-
usual problem: the Hubble constant during inflation can-
not be much greater than the gravitino mass, H . m3/2

[16]. The reason is that in the simplest KKLT mod-
els, the barrier separating the stabilized dS vacuum from
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⇒ Dρ W ≡ ∂ρ W + Kρ W = 0
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FIG. 1. Scalar potential of the KKLT model for the values
of the parameters A = 1, a = 1 and W0 = 10�12 before and
after uplifting. The potential has been multiplied by a factor
of 1029 for clarity.

gravitino mass m3/2 ⇠ 10

�15 ⇠ e�35 is to have a�0 � 1.
For example, for a ⇠ A ⇠ 1 and m3/2 ⇠ 10

�15, Eq. (12)
yields �0 ⇠ a�0 ⇡ 30.

It is useful to represent the expressions for m3/2 in a
different but equivalent way. Using (10), one finds, for
a�0 � 1,

m3/2 =

W0

(2�0)
3/2

. (13)

In the example considered above one finds W0 ⇠ 10

�12.
This is the same degree of fine-tuning as the one required
in the standard Polonyi model.

To find the relation between the mass of the volume
modulus and the gravitino mass, one can can use Eq. (7),
which yields
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at the supersymmetric minimum. In this case, one can
show that the mass of the volume modulus, as well as the
mass of its imaginary (axionic) component, is given by

m� =

p
2�0

3

W⇢,⇢ = 2a�0 m3/2 . (15)

As a result, the mass of the volume modulus is not much
greater than the gravitino mass. And this means that
the volume stabilization in the KKLT scenario is actually
very soft [16].

As mentioned above, the AdS minimum at ⇢ = �0

must be uplifted. We illustrate the uplifting effect in the
Fig. 1 in the phenomenologically reasonable case A = 1,
a = 1 and W0 = 10

�12 corresponding to a gravitino mass
m3/2 = 2 ⇥ 10

�15. The position of the minimum in this
case is �0 ⇡ 30.7.

Uplifting of the AdS minimum induces supersymmetry
breaking and is achieved by adding to the potential a

term

�V ⇡ |VAdS| �n
0

�n
. (16)

In the original KKLT construction it was assumed that
n = 3 [5], but according to [21] n = 2 in the uplifting
term, due to effects related to warping. One may have
n = 3 if the uplifting occurs due to a D-term [6, 7, 8].
The choice of n will not affect our qualitative conclusions;
for definiteness, we will choose n = 2.

Because of the dependence of the uplifting term on �,
the minimum after the uplifting shifts to greater values
of �. Let us denote the shift in � after uplifting by ��.
Once again, using Eq. (7), we can obtain �� from

(D⇢W )�(�0W⇢,⇢ � 2W⇢)�� = 6VAdS�0 . (17)

Then, for a�0 � 1, one can show that the relative value
of the shift is small,
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�2 ⌧ 1. (18)

This shift does not change much the values of the super-
potential and the Kähler potential, which depend on �.
Therefore the gravitino mass after the uplifting is cor-
rectly represented by the expression (12). Similarly, the
mass of the volume modulus (15) practically does not
change during the uplifting.

In N = 1 supergravity, ignoring D-term and string
theory effects leading to the uplifting, one could use the
standard expression for the potential V = eK

(|D⇢W |2 �
3|W |2). Then the existence of the gravitino mass m2

3/2 =

eK |W |2 in a Minkowski vacuum with V = 0 would auto-
matically imply that |D⇢W |2 = 3e�Km2

3/2 6= 0.

However, because of uplifting, this relation is no longer
valid. Since D⇢W = 0 in the supersymmetric AdS vac-
uum, the value of D⇢W after uplifting is completely de-
termined by the small shift ��. For a�0 � 1, it is given
by

D⇢W = (D⇢W )��� 'W⇢,⇢�� =
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As we see, all of the important parameters, such as W ,
W⇢, D⇢W , m�, have their scale determined by the grav-
itino mass, up to some combination of parameters a and
�0. This fact will be important for us in the next section
when we will discuss consequences of the KKLT mecha-
nism for supersymmetry breaking in the observable sec-
tor.

The softness of the moduli stabilization in the simplest
versions of the KKLT construction leads to a rather un-
usual problem: the Hubble constant during inflation can-
not be much greater than the gravitino mass, H . m3/2

[16]. The reason is that in the simplest KKLT mod-
els, the barrier separating the stabilized dS vacuum from
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FIG. 1. Scalar potential of the KKLT model for the values
of the parameters A = 1, a = 1 and W0 = 10�12 before and
after uplifting. The potential has been multiplied by a factor
of 1029 for clarity.

gravitino mass m3/2 ⇠ 10

�15 ⇠ e�35 is to have a�0 � 1.
For example, for a ⇠ A ⇠ 1 and m3/2 ⇠ 10

�15, Eq. (12)
yields �0 ⇠ a�0 ⇡ 30.

It is useful to represent the expressions for m3/2 in a
different but equivalent way. Using (10), one finds, for
a�0 � 1,

m3/2 =

W0

(2�0)
3/2

. (13)

In the example considered above one finds W0 ⇠ 10

�12.
This is the same degree of fine-tuning as the one required
in the standard Polonyi model.

To find the relation between the mass of the volume
modulus and the gravitino mass, one can can use Eq. (7),
which yields
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at the supersymmetric minimum. In this case, one can
show that the mass of the volume modulus, as well as the
mass of its imaginary (axionic) component, is given by

m� =

p
2�0

3

W⇢,⇢ = 2a�0 m3/2 . (15)

As a result, the mass of the volume modulus is not much
greater than the gravitino mass. And this means that
the volume stabilization in the KKLT scenario is actually
very soft [16].

As mentioned above, the AdS minimum at ⇢ = �0

must be uplifted. We illustrate the uplifting effect in the
Fig. 1 in the phenomenologically reasonable case A = 1,
a = 1 and W0 = 10

�12 corresponding to a gravitino mass
m3/2 = 2 ⇥ 10

�15. The position of the minimum in this
case is �0 ⇡ 30.7.

Uplifting of the AdS minimum induces supersymmetry
breaking and is achieved by adding to the potential a

term

�V ⇡ |VAdS| �n
0
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. (16)

In the original KKLT construction it was assumed that
n = 3 [5], but according to [21] n = 2 in the uplifting
term, due to effects related to warping. One may have
n = 3 if the uplifting occurs due to a D-term [6, 7, 8].
The choice of n will not affect our qualitative conclusions;
for definiteness, we will choose n = 2.

Because of the dependence of the uplifting term on �,
the minimum after the uplifting shifts to greater values
of �. Let us denote the shift in � after uplifting by ��.
Once again, using Eq. (7), we can obtain �� from

(D⇢W )�(�0W⇢,⇢ � 2W⇢)�� = 6VAdS�0 . (17)

Then, for a�0 � 1, one can show that the relative value
of the shift is small,
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= (a�0)

�2 ⌧ 1. (18)

This shift does not change much the values of the super-
potential and the Kähler potential, which depend on �.
Therefore the gravitino mass after the uplifting is cor-
rectly represented by the expression (12). Similarly, the
mass of the volume modulus (15) practically does not
change during the uplifting.

In N = 1 supergravity, ignoring D-term and string
theory effects leading to the uplifting, one could use the
standard expression for the potential V = eK

(|D⇢W |2 �
3|W |2). Then the existence of the gravitino mass m2

3/2 =

eK |W |2 in a Minkowski vacuum with V = 0 would auto-
matically imply that |D⇢W |2 = 3e�Km2

3/2 6= 0.

However, because of uplifting, this relation is no longer
valid. Since D⇢W = 0 in the supersymmetric AdS vac-
uum, the value of D⇢W after uplifting is completely de-
termined by the small shift ��. For a�0 � 1, it is given
by

D⇢W = (D⇢W )��� 'W⇢,⇢�� =
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As we see, all of the important parameters, such as W ,
W⇢, D⇢W , m�, have their scale determined by the grav-
itino mass, up to some combination of parameters a and
�0. This fact will be important for us in the next section
when we will discuss consequences of the KKLT mecha-
nism for supersymmetry breaking in the observable sec-
tor.

The softness of the moduli stabilization in the simplest
versions of the KKLT construction leads to a rather un-
usual problem: the Hubble constant during inflation can-
not be much greater than the gravitino mass, H . m3/2

[16]. The reason is that in the simplest KKLT mod-
els, the barrier separating the stabilized dS vacuum from
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FIG. 1. Scalar potential of the KKLT model for the values
of the parameters A = 1, a = 1 and W0 = 10�12 before and
after uplifting. The potential has been multiplied by a factor
of 1029 for clarity.
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�15 ⇠ e�35 is to have a�0 � 1.
For example, for a ⇠ A ⇠ 1 and m3/2 ⇠ 10

�15, Eq. (12)
yields �0 ⇠ a�0 ⇡ 30.

It is useful to represent the expressions for m3/2 in a
different but equivalent way. Using (10), one finds, for
a�0 � 1,

m3/2 =

W0

(2�0)
3/2

. (13)

In the example considered above one finds W0 ⇠ 10

�12.
This is the same degree of fine-tuning as the one required
in the standard Polonyi model.

To find the relation between the mass of the volume
modulus and the gravitino mass, one can can use Eq. (7),
which yields

m2
� =

@�@�V

2K⇢,⇢̄
=

2

9

(D⇢W )�(�W⇢,⇢ � 2W⇢) (14)

at the supersymmetric minimum. In this case, one can
show that the mass of the volume modulus, as well as the
mass of its imaginary (axionic) component, is given by

m� =
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W⇢,⇢ = 2a�0 m3/2 . (15)

As a result, the mass of the volume modulus is not much
greater than the gravitino mass. And this means that
the volume stabilization in the KKLT scenario is actually
very soft [16].

As mentioned above, the AdS minimum at ⇢ = �0

must be uplifted. We illustrate the uplifting effect in the
Fig. 1 in the phenomenologically reasonable case A = 1,
a = 1 and W0 = 10

�12 corresponding to a gravitino mass
m3/2 = 2 ⇥ 10

�15. The position of the minimum in this
case is �0 ⇡ 30.7.

Uplifting of the AdS minimum induces supersymmetry
breaking and is achieved by adding to the potential a

term

�V ⇡ |VAdS| �n
0
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. (16)

In the original KKLT construction it was assumed that
n = 3 [5], but according to [21] n = 2 in the uplifting
term, due to effects related to warping. One may have
n = 3 if the uplifting occurs due to a D-term [6, 7, 8].
The choice of n will not affect our qualitative conclusions;
for definiteness, we will choose n = 2.

Because of the dependence of the uplifting term on �,
the minimum after the uplifting shifts to greater values
of �. Let us denote the shift in � after uplifting by ��.
Once again, using Eq. (7), we can obtain �� from

(D⇢W )�(�0W⇢,⇢ � 2W⇢)�� = 6VAdS�0 . (17)

Then, for a�0 � 1, one can show that the relative value
of the shift is small,
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�0
= (a�0)

�2 ⌧ 1. (18)

This shift does not change much the values of the super-
potential and the Kähler potential, which depend on �.
Therefore the gravitino mass after the uplifting is cor-
rectly represented by the expression (12). Similarly, the
mass of the volume modulus (15) practically does not
change during the uplifting.

In N = 1 supergravity, ignoring D-term and string
theory effects leading to the uplifting, one could use the
standard expression for the potential V = eK

(|D⇢W |2 �
3|W |2). Then the existence of the gravitino mass m2

3/2 =

eK |W |2 in a Minkowski vacuum with V = 0 would auto-
matically imply that |D⇢W |2 = 3e�Km2

3/2 6= 0.

However, because of uplifting, this relation is no longer
valid. Since D⇢W = 0 in the supersymmetric AdS vac-
uum, the value of D⇢W after uplifting is completely de-
termined by the small shift ��. For a�0 � 1, it is given
by

D⇢W = (D⇢W )��� 'W⇢,⇢�� =
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As we see, all of the important parameters, such as W ,
W⇢, D⇢W , m�, have their scale determined by the grav-
itino mass, up to some combination of parameters a and
�0. This fact will be important for us in the next section
when we will discuss consequences of the KKLT mecha-
nism for supersymmetry breaking in the observable sec-
tor.

The softness of the moduli stabilization in the simplest
versions of the KKLT construction leads to a rather un-
usual problem: the Hubble constant during inflation can-
not be much greater than the gravitino mass, H . m3/2

[16]. The reason is that in the simplest KKLT mod-
els, the barrier separating the stabilized dS vacuum from
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Volume modulus - KKLTit to a height greater than the height of the barrier, see Fig. 1. In typical KKLT-type

models this leads to vacuum destabilization if the added energy density V (φ)/σn, which is

responsible for inflation, is much greater than the height of the barrier Vbarrier ! 3m2
3/2M

2
P .

Since H2 ∼ ∆V (φ,σ)/3, this leads to the bound (1.1) (see [3] for a more detailed discussion

of this issue, while a similar problem in a slightly different context was also found in [4]).

100 150 200 250 Σ
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V

Figure 1: The lowest curve with dS minimum is the potential of the KKLT model. The second
one shows what happens to the volume modulus potential when the inflaton potential Vinfl = V (φ)

σ3

added to the KKLT potential. The top curve shows that when the inflaton potential becomes too
large, the barrier disappears, and the internal space decompactifies. This explains the constraint
H ! m3/2.

In KKLT-based models, it therefore seems that for a gravitino mass m3/2 ∼ 1TeV the

Hubble constant during the last stages of a string theory inflation model should be quite

low, H ! 1 TeV, which is ten orders of magnitude below the often discussed GUT inflation

scale. Therefore if one believes in standard SUSY phenomenology with m3/2 ! O(1) TeV,

one should find a realistic particle physics model where the nonperturbative string theory

dynamics occurs at the LHC scale or even lower (the mass of the volume modulus in the

KKLT scenario typically is not much greater than the gravitino mass), and inflation occurs

at a density at least 30 orders of magnitude below the Planck energy density [3]. For a

recent analysis of this issue see e.g. [5] and for a discussion in the context of the heterotic

string see [6].

This problem is quite generic. For example, recently a new interesting mechanism of

moduli stabilization was proposed, which is based on the models with compacification on Nil

manifolds with negative curvature [7]. This mechanism presents a significant modification

of the compactifications on flat Calabi-Yau spaces, as suggested by the assumption of the

low scale supersymmetry. And yet, the same constraint H ! m3/2 remains valid for the

inflationary models in this scenario [8].

The situation becomes even trickier in the large volume models of vacuum stabilization

[2]. In such models the height of the barrier is much smaller, Vbarrier ∼ m3
3/2MP . In this

case, the constraint that the inflaton potential should not be much greater than the height

– 2 –

All quantities (W, Wρ, DρW, mσ) 
are determined by m3/2

Leads to the destabilization of 
the compactification if HI > m3/2

Kallosh-Linde
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Volume modulus - KL
In the KL construction, there is a susy Minkowski 
minimum at ρ=σ0 ; with

and now obtain with DρW = W = V = 0 at the minimum.

4

the 10d Minkowski vacuum has a height proportional to
m2

3/2. When the inflationary potential is added to the
system, it may lift the dS minimum above the barrier. If
this happens, the universe decompactifies and becomes
10-dimensional. Thus, for m3/2 . 1 TeV, one must have
a very low value of the Hubble constant at the last stage
of inflation in the KKLT based inflationary models. Spe-
cial effort is required to build inflationary models of this
type.

One can try to solve this problem in several different
ways, see for example [16, 22, 23, 24, 25]. The simplest
mechanism involves a slightly generalized KKLT model,
which is sometimes called the KL model [16]. In this
model, instead of the standard KKLT superpotential (8),
one uses the racetrack superpotential

WKL = W0 + Ae�a⇢ �Be�b⇢ . (20)

In contrast to the KKLT case, the new degree of freedom
offered by Be�b⇢ allows the new model to have a super-
symmetric Minkowski solution. Indeed, for the particular
choice of W0,

W0 = �A

✓
a A

b B

◆ a
b�a

+ B

✓
a A

b B

◆ b
b�a

, (21)

the potential of the field � has a supersymmetric mini-
mum with W (�0) = 0, D⇢W (�0) = 0, and V (�0) = 0,
where �0 =

1
a�b ln

�
a A
b B

�
. In further contrast with the

KKLT model, in the KL model there exist another mini-
mum deeper than the supersymmetric one, implying that
the SUSY minimum is metastable.

The gravitino mass in the supersymmetric Minkowski
minimum vanishes, whereas the mass squared of the field
� at the minimum as well as the mass squared of the
imaginary component of the field ⇢, is given by [17]

m2
� =

2

9

W 2
⇢,⇢�0 =

2

9

a A b B (a�b)

✓
aA

bB

◆� a+b
a�b

ln

✓
aA

bB

◆
.

(22)
To understand the implications of this result, let us con-
sider a particular simple choice of parameters A = B =

1, a = 0.1, b = 0.05. For these parameters, one has
m� ⇠ 2 ⇥ 10

�3, in Planck units, so the field � is much
heavier than the inflaton field, which, in the simplest
model of chaotic inflation [26] has mass m� ⇠ 6⇥ 10

�6.
This hierarchy of mass scales is one of the necessary con-
ditions which is required to ignore the dynamics of the
volume modulus � during inflation. What is most im-
portant here is that the mass m�, as well as the height of
the barrier separating the Minkowski minimum from the
AdS minimum in this model, does not have any relation
to the gravitino mass. Therefore one can have inflation
in this model for H � m3/2 [16, 17, 22, 25].

In the KL model discussed so far, supersymmetry is
unbroken in the vacuum state corresponding to the min-
imum of the potential with V = 0. The scale of super-

symmetry breaking will be determined by a slight per-
turbation of the superpotential (20) by adding to it a
small constant �W proportional to the weak scale, µ.
Independent of the sign of �W , the constant shifts the
minimum of the potential V from zero to a slightly neg-
ative value VAdS < 0 at �0 + ��. Therefore VAdS in the
first approximation must be proportional to ��W 2. At
the shifted minimum, supersymmetry is preserved, and
D⇢W (� + ��) = 0. Since W⇢(�0) = 0, we can write
W⇢(�0+��) = W⇢,⇢(�0)��. After some algebra, one finds
that the position of the minimum shifts by �� =

3�W
2�0W⇢,⇢

,

and the potential at the minimum becomes [17]

VAdS(�W ) = �3(�W )

2

8�3
0

= �3
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a� b

ln

�
aA
bB

�
!3

(�W )

2 .

(23)
In this minimum, the value of the superpotential (includ-
ing the additional constant �W ), is equal to �W up to
small corrections O(�W )

2. Supersymmetry in the mini-
mum is still unbroken, D⇢W = 0, whereas W⇢ =

3
2�0

�W .
Note that the only “large" quantities here (in Planck
units) are �0 and W⇢,⇢. Therefore, �� / �W / m3/2.
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FIG. 2. Scalar potential of the KL model for the values of the
parameters A = B = 1, a = 0.1, b = 0.05. The potential has
been multiplied by a factor of 107 for clarity. The effect of
uplifting is so small as compared to the height of the barrier
in this model that one cannot distinguish an uplifted and non-
uplifted potential on the scale of this figure.

As in the case of the KKLT model, we must add an up-
lifting potential. After uplifting to the present state with
a nearly vanishing vacuum energy, the gravitino mass be-
comes

m3/2 =

p
|VAdS|/3 =

1

2

p
2

 
a� b

ln

�
aA
bB

�
!3/2

|�W | . (24)

In particular, for A = B = 1, a = 0.1, b = 0.05, one
has m3/2 ⇠ 7 ⇥ 10

�3|�W | ⇠ 3.5 m�|�W | ⌧ m�. Since
we assume �W to be very small (see below), we have
m3/2/m� ⌧ 1. The shape of the potential, V , for this
set of parameters is shown in Fig. 2. Note that the effect
of uplifting is so tiny as compared to the height of the

m3/2 = 0
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the 10d Minkowski vacuum has a height proportional to
m2

3/2. When the inflationary potential is added to the
system, it may lift the dS minimum above the barrier. If
this happens, the universe decompactifies and becomes
10-dimensional. Thus, for m3/2 . 1 TeV, one must have
a very low value of the Hubble constant at the last stage
of inflation in the KKLT based inflationary models. Spe-
cial effort is required to build inflationary models of this
type.

One can try to solve this problem in several different
ways, see for example [16, 22, 23, 24, 25]. The simplest
mechanism involves a slightly generalized KKLT model,
which is sometimes called the KL model [16]. In this
model, instead of the standard KKLT superpotential (8),
one uses the racetrack superpotential

WKL = W0 + Ae�a⇢ �Be�b⇢ . (20)

In contrast to the KKLT case, the new degree of freedom
offered by Be�b⇢ allows the new model to have a super-
symmetric Minkowski solution. Indeed, for the particular
choice of W0,

W0 = �A

✓
a A

b B

◆ a
b�a

+ B

✓
a A

b B

◆ b
b�a

, (21)

the potential of the field � has a supersymmetric mini-
mum with W (�0) = 0, D⇢W (�0) = 0, and V (�0) = 0,
where �0 =

1
a�b ln

�
a A
b B

�
. In further contrast with the

KKLT model, in the KL model there exist another mini-
mum deeper than the supersymmetric one, implying that
the SUSY minimum is metastable.

The gravitino mass in the supersymmetric Minkowski
minimum vanishes, whereas the mass squared of the field
� at the minimum as well as the mass squared of the
imaginary component of the field ⇢, is given by [17]

m2
� =

2

9

W 2
⇢,⇢�0 =

2

9

a A b B (a�b)
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◆
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(22)
To understand the implications of this result, let us con-
sider a particular simple choice of parameters A = B =

1, a = 0.1, b = 0.05. For these parameters, one has
m� ⇠ 2 ⇥ 10

�3, in Planck units, so the field � is much
heavier than the inflaton field, which, in the simplest
model of chaotic inflation [26] has mass m� ⇠ 6⇥ 10

�6.
This hierarchy of mass scales is one of the necessary con-
ditions which is required to ignore the dynamics of the
volume modulus � during inflation. What is most im-
portant here is that the mass m�, as well as the height of
the barrier separating the Minkowski minimum from the
AdS minimum in this model, does not have any relation
to the gravitino mass. Therefore one can have inflation
in this model for H � m3/2 [16, 17, 22, 25].

In the KL model discussed so far, supersymmetry is
unbroken in the vacuum state corresponding to the min-
imum of the potential with V = 0. The scale of super-

symmetry breaking will be determined by a slight per-
turbation of the superpotential (20) by adding to it a
small constant �W proportional to the weak scale, µ.
Independent of the sign of �W , the constant shifts the
minimum of the potential V from zero to a slightly neg-
ative value VAdS < 0 at �0 + ��. Therefore VAdS in the
first approximation must be proportional to ��W 2. At
the shifted minimum, supersymmetry is preserved, and
D⇢W (� + ��) = 0. Since W⇢(�0) = 0, we can write
W⇢(�0+��) = W⇢,⇢(�0)��. After some algebra, one finds
that the position of the minimum shifts by �� =

3�W
2�0W⇢,⇢

,

and the potential at the minimum becomes [17]

VAdS(�W ) = �3(�W )

2
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(23)
In this minimum, the value of the superpotential (includ-
ing the additional constant �W ), is equal to �W up to
small corrections O(�W )

2. Supersymmetry in the mini-
mum is still unbroken, D⇢W = 0, whereas W⇢ =

3
2�0

�W .
Note that the only “large" quantities here (in Planck
units) are �0 and W⇢,⇢. Therefore, �� / �W / m3/2.
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FIG. 2. Scalar potential of the KL model for the values of the
parameters A = B = 1, a = 0.1, b = 0.05. The potential has
been multiplied by a factor of 107 for clarity. The effect of
uplifting is so small as compared to the height of the barrier
in this model that one cannot distinguish an uplifted and non-
uplifted potential on the scale of this figure.

As in the case of the KKLT model, we must add an up-
lifting potential. After uplifting to the present state with
a nearly vanishing vacuum energy, the gravitino mass be-
comes

m3/2 =

p
|VAdS|/3 =

1

2

p
2

 
a� b

ln

�
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bB

�
!3/2

|�W | . (24)

In particular, for A = B = 1, a = 0.1, b = 0.05, one
has m3/2 ⇠ 7 ⇥ 10

�3|�W | ⇠ 3.5 m�|�W | ⌧ m�. Since
we assume �W to be very small (see below), we have
m3/2/m� ⌧ 1. The shape of the potential, V , for this
set of parameters is shown in Fig. 2. Note that the effect
of uplifting is so tiny as compared to the height of the
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Volume modulus - KL
Next, add a constant Δ to W which will break susy
and shift the minimum down slightly which requires 
uplifting as before.
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But now, 

and m3/2 ≪ mσ
5

barrier in the KL model that one cannot distinguish an
uplifted and non-uplifted potential on the scale of this
figure. This helps to understand why the moduli stabi-
lization in the KL model is so much stronger than in the
simplest versions of the KKLT construction.

To have m3/2 ⇠ 1 TeV ⇠ 0.4 ⇥ 10

�15 in Planck units
in the model with A = B = 1, a = 0.1, b = 0.05, one
should have |�W | ⇠ 6⇥10

�14. This means that to make
the gravitino mass comparable to the electroweak scale,
we must introduce a small parameter ⇠ 10

�13. This is
the same degree of fine-tuning as the one required in the
standard Polonyi model. Each of these models requires
the presence of one very small number. In the KKLT
model, it is W0 that must be tuned small. In the KL
model, we need approximately the same small number
added to a number of O(1) in the superpotential. In the
context of our paper, it is important that the required
accuracy of fine-tuning of the superpotential in the KL
model is the same as in the simplest KKLT model, and in
both cases the goal of fine-tuning is the same: to achieve
a very low level of supersymmetry breaking.

Thus it is hard to discriminate between the simplest
KKLT models with the superpotential (8) and the KL
models (20) on the basis of fine-tuning. It would be
interesting to check which one of these models is more
probable in the landscape, but this would go beyond the
scope of the present paper. The main advantage of the
KL model is that the mass of the volume modulus can
be many orders of magnitude greater than the gravitino
mass. This strongly stabilizes the size of the compacti-
fied space and allows inflation with very high values of
the Hubble constant, H � m3/2 [16, 17, 22, 25]. More-
over, in the KL model, the presence of the light Polonyi
moduli fields is not required, which solves the cosmolog-
ical moduli problem. In addition, as we will see in the
next section (see also [17]), this class of models provides
a natural solution of the cosmological gravitino problem.
Clearly, the KL model is not the only one where the
strong moduli stabilization can be achieved. One may
add some new terms to the racetrack superpotential of
the KL model, or one may find another, totally differ-
ent superpotential which allows strong stabilization with
m� � m3/2. All of these models share certain features
to be discussed below.

Uplifting in the KL model induces a shift in the mod-
ulus field, which we will denote as �� to distinguish it
from the shift �� induced by adding the constant �W
to the superpotential. Eq. (17) remains valid in the KL
model, and we can use it to find ��. The left hand side
of Eq. (17) should now be evaluated at �0 + ��. Then
since, (D⇢W )� ⇡W⇢,⇢, we can easily solve for the uplift-
ing shift �� =

6VAdS
W 2

⇢,⇢
. One can now show that for any

choice of the superpotential which leads to strong volume
modulus stabilization with the Kähler potential (4), the
supersymmetry breaking term D⇢W in the minimum of

the uplifted potential is given by

D⇢W = (D⇢W )��� 'W⇢,⇢�� = 6

p
2�0

m3/2

m�
m3/2.

(25)
We give the derivation of this general result in the Ap-
pendix.

The exact form of this equation will not be important
for us. What is important is the following qualitative
statement: In all models where the volume modulus can
be strongly stabilized, i.e. m� � m3/2, the supersymme-
try breaking term D⇢W is strongly suppressed. The va-
lidity of this statement is very easy to understand: If the
original AdS state is supersymmetric, the supersymme-
try breaking term D⇢W vanishes before the uplifting. If
the minimum is strongly stabilized (the potential sharply
rises in the vicinity of the minimum), then adding a soft
uplifting term �V ⇡ |VAdS| �n

0
�n barely affects the value of

the field � in the minimum. As a result, uplifting in the-
ories with strong volume modulus stabilization will keep
the term D⇢W vanishingly small. As we will see, this
conclusion may have important implications for particle
phenomenology in the context of models with strongly
stabilized moduli.

III. SOFT MASSES IN THE KKLT AND KL
MODELS

We now return to Eqs. (4) - (6) to consider the scalar
potential of SM matter fields. Inserting Eqs. (4) and (5)
into (6), we can write the scalar potential as

V =

ey2

8�3

⇣
�3|W (⇢) + W (y)|2 + |ȳ(W (⇢) + W (y)) + Wy|2

+

4�2

3

(D⇢W (⇢)� 3

2�
W (y))(

¯D⇢̄
¯W (⇢̄)� 3

2�
¯W (ȳ))

⌘
, (26)

assuming Im ⇢ = 0. If we note first that we can re-
move contributions from 4�2

3 D⇢W (⇢)

¯D⇢̄
¯W (⇢̄)�3|W (⇢)|2

as they will be cancelled by Vuplift and then expand the
remaining terms in (26) and take the low energy limit
(MP !1), we obtain,

V =

1

8�3

�|Wy|2 + |W (⇢)|2yȳ

+

�
(yWy � 3W (y))

¯W (⇢)

�2�W (y)

¯D⇢̄
¯W (⇢̄)) + h.c.

��
. (27)

If we rescale the superpotential by WSM !
2

p
2�3/2WSM (where � to be evaluated at the near-

Minkowski minimum), then we can write the potential
in a more standard form

VSM =

����
@WSM

@yi

����
2

+ m2
0y

iȳi + (A0WSM + h.c.) (28)
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2 Moduli stabilization and uplifting: a brief
review

2.1 KKLT versus KL

The KKLT (KL) sector consists of a single chiral field: the
modulus ρ. We will denote SM fields collectively as φ. The
scalar potential for uncharged chiral superfields in N = 1
supergravity is [15]

V = eK
(
Kab̄DaWDbW − 3|W |2

)
, (1)

where as usual we defined DaW = ∂aW + KaW . We de-
fine a Kähler potential with a no-scale [16] structure in the
moduli sector and kinetic terms in the matter sector de-
pending in some unspecified way on the modulus ρ. This
can be written as

K = −3 log(ρ+ρ̄)+hj
i (ρ, ρ̄)φ

iφ̄j+K(Si, S̄i)+∆K(φi, φ̄i)+· · · ,
(2)

where · · · denote terms of higher-order in matter fields φ,
irrelevant for our purposes. In a type IIB string theory
setup orientifolded by Ω′ = Ω I6(−1)FL , where I6 denotes
parity in the six internal dimensions and (−1)FL is the
left-handed fermion number [17], with D7 and D3 branes,
the function h(ρ, ρ̄) is a constant if matter fields originate
from D7-D7 sector, it is given by hj

i (ρ, ρ̄) = δj
i /(ρ + ρ̄)

for fields in the D3-D3 sector and has specific form for
fields living at the intersection of various branes. We will
discuss the fields Si which are associated with F -term up-
lifting below and we specify ∆K in section 4 in connection
with the Giudice-Masiero mechanism [18]. The important
assumption in what follows is that the uplift fields Si have
a separable Kähler potential, that can be justified, for ex-
ample, if the uplift fields arise as D7-D7 states. Indeed,
we will be assuming that the Si are not directly coupled
to matter through either the Kähler potential, the super-
potential, or gauge kinetic function. In each case we will
assume the superpotential is separable in the uplift fields

W = W (ρ) + WF (Si) + g(φi, ρ) , (3)

where W (ρ) is either the KKLT or KL superpotential,
WF is the superpotential associated with uplifting and
g(φi, ρ) is the superpotential for the Standard Model, with
g(0, ρ) = 0 . The possible ρ dependence of the matter
superpotential g is highly restricted by axionic symme-
tries and by the origin of matter fields (it is typically an
exponential or a modular form of various weight). Pro-
vided that the vev’s of matter fields are very small com-
pared to the Planck scale, the results of the present paper
are largely insensitive to the explicit form of the function
h(ρ, ρ̄) and the ρ dependence of g(φi, ρ).

The superpotential of the KKLT model is

WKKLT = W0 + Ae−aρ . (4)

where W0 and a > 0 are constants. In this theory, there
is a supersymmetry preserving AdS minimum found by

setting DρW = 0. It occurs at Im ρ = 0, and at a certain
value σ0 of the volume modulus σ = Re ρ.

After the uplifting to the (nearly Minkowski) dS vac-
uum state, the gravitino mass becomes

m3/2 ≈
√
|VAdS|/3 ≈ aA

3(2σ0)1/2
e−aσ0 . (5)

Furthermore, after uplifting

DρW =
3
√

2

a
√
σ0

m3/2 . (6)

The conditions of applicability of the KKLT construc-
tions are aσ0 > 1 and σ0 $ 1. If one takes aσ0 $ 1,
the gravitino mass becomes exponentially small. To have
m3/2 in the TeV range in the KKLT scenario, one should
take aσ0 ∼ 30.

The mass of the volume modulus σ in the minimum,
as well as the mass of its imaginary (axionic) component,
is given by mσ = 2aσ0 m3/2 [3]. For aσ0 ∼ 30, one finds
mσ ∼ 60 m3/2. As a result, the mass of the volume modu-
lus is somewhat greater than the gravitino mass, but not
by much. This means that the volume stabilization in the
KKLT scenario describing light gravitinos is very soft; the
mass of the volume modulus in this scenario is many or-
ders of magnitude below the string scale or the Planck
scale. It is this softness of the vacuum stabilization that
leads to the catastrophic decompactification of extra di-
mensions during inflation with H ! m3/2 [2, 3].

The simplest way to avoid this problem is to strongly
stabilize the vacuum by making mσ greater than m3/2 by
many orders of magnitude. This was achieved in the KL
scenario by using the racetrack superpotential

WKL = W0 + Ae−aρ − Be−bρ . (7)

In contrast to the KKLT case, the new degree of freedom
offered by Be−bρ allows the new model to have a super-
symmetric Minkowski solution. Indeed, for the particular
choice of W0,

W0 = −A

(
a A

b B

) a
b−a

+ B

(
a A

b B

) b
b−a

, (8)

the potential of the field σ has a supersymmetric minimum
with WKL(σ0) = 0, DρWKL(σ0) = 0, and V (σ0) = 0.

One may add an additional constant ∆ (either positive
or negative) to the superpotential (7). This will shift the
minimum of the potential down to the AdS minimum with
VAdS = −3m2

3/2 = − 3∆2

8σ3
0

[3, 7], after which one may use

uplifting (as in KKLT) to make the cosmological constant

as small as ∼ 10−120. Thus one has m2
3/2 = ∆2

8σ3
0

& 1,

which is the only weak-scale fine-tuning required in the
KL model. Interestingly, exactly the same level of fine-
tuning of the parameter W0 is required in the simplest
version of the KKLT scenario. This is the standard price

Thus, W = Δ and DρW ≪ Δ, m3/2
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A terms

6

where we have now defined the universal scalar mass as

m2
0 =

1

8�3
|W (⇢)|2 ⌘ m2

3/2, (29)

and a universal A-term

A0WSM = (yWy � 3W (y))m3/2 � 1p
2�

¯D⇢̄
¯W (⇢̄)WSM .

(30)
Note that for tri-linears, the first term in Eq. (30) van-
ishes, leaving

A0 = � 1p
2�

¯D⇢̄
¯W (⇢̄) (31)

while for bilinears (B-terms), it is �m3/2 yielding the
familiar supergravity relation B0 = A0 �m0.

Gaugino masses require in addition a non-trivial de-
pendence of the gauge kinetic function on the modulus,
⇢. This dependence is generic in most of the models of
N = 1 supergravity derived from extended supergrav-
ity and string theory [28]. The supergravity Lagrangian
terms of interest include

� 1
4 (Re h↵�)F↵

µ⌫F �µ⌫
+

i
4 (Im h↵�)✏µ⌫⇢�F↵

µ⌫F �⇢�

+

⇣
1
4eG/2h⇤↵� n̄

Gkn̄Gk�↵��
+ h.c.

⌘
. (32)

For a suitable choice h↵� = h(⇢)�↵� , one can generate
universal gaugino masses

m1/2 =

p
2�

6

D⇢W (⇢) ln(Re h⇤)⇢ . (33)

In addition to the above expressions, loop contributions
may also play a role (vital in the case of the KL model).
These expressions have been derived in greater generality,
e.g. when SM Yukawa couplings are also allowed to be
moduli dependent, in [10, 11].

Next, we will compare the resulting soft supersymme-
try breaking terms found in the KKLT and KL models.
We note first that independent of our choice of super-
potential, the soft scalar masses are always m2

0 = m2
3/2.

That is, the chiral multiplets will always be split by the
gravitino mass independent of the magnitude of D⇢W .

In contrast, both A0 and m1/2 are proportional to
D⇢W (⇢) and this differs greatly between the two classes
of models:

D⇢W (⇢) =

3

p
2

a
p

�0

m3/2 KKLT

D⇢W (⇢) = 6

p
2�0

m3/2

m�
m3/2 KL (34)

While the KKLT model could produce a pattern of soft
scalar and gaugino masses all of order m3/2 with ac-
ceptable phenomenologies [10, 11, 12, 13, 14, 15], in all

models with strong volume modulus stabilization, such
as KL models, at the tree-level one finds that the gaug-
ino masses and A-terms are suppressed by m3/2/m� and
as such effectively vanish.

Recall that with A = B = 1, a = 0.1, b = 0.05, we
have m3/2/m� ⇠ 10

�13. As a result, in the strongly sta-
bilized models, we are driven towards models resembling
those mediated by anomalies [27], where the dominant
contributions to gaugino masses and A-terms arise from
loop corrections and give [11]

m1/2 =

bag2
a

16⇡2

FC

C0
(35)

and

Aijk = ��i + �j + �k

16⇡2

FC

C0
. (36)

Here ba = 11, 1,�3 for a = 1, 2, 3 are the one-loop beta
function coefficients, �i are the anomalous dimensions of
the matter fields yi and

FC

C0
= �1

3

(ln(⇢ + ⇢̄)

p
(⇢ + ⇢̄)D⇢W )⇢ + m3/2 (37)

is related to the conformal compensator. This is clearly of
order m3/2. Note that unlike the case of mixed modulus-
anomaly mediation, there is no mirage unification in the
KL model [13].

Because of the loop suppression factor in Eq. (35),
in order to have a phenomenologically viable model in
the context of KL stabilization, we are forced to con-
sider relatively large (O(100) TeV) gravitino masses in
order to have suitably large gaugino masses. Thus we
are led to a rather unique pattern of sparticle masses.
While anomaly mediation plays an important role in the
pattern for gaugino masses, the large soft scalar masses
generated from Eq. (29) yield a spectrum more reminis-
cent of split supersymmetry [18]. Indeed, the problem
of tachyonic scalars normally associated with anomaly
mediated models is absent here. While this problem is
normally alleviated by adding a constant mass squared
to the anomaly contribution, here we have a direct source
and explanation of the this term. We also note that if
the gravitino and scalar masses were pushed to very high
values (& 10

10 GeV) as in some models of split super-
symmetry, anomaly mediation would be unnecessary.

Gravitinos in the mass range O(100) TeV usually do
not pose significant cosmological problems because they
decay early. In general, they could be harmful if their
decays produce many light supersymmetric particles [29],
but even this problem can be avoided in the simplest
models of chaotic inflation based on the KL construction,
where the reheating temperature is small, which strongly
suppresses the gravitino production [17].

The heavy sparticle spectrum associated with split su-
persymmetry presents a challenge for detection of super-
symmetry at the LHC. Nevertheless there is an upper
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where we have now defined the universal scalar mass as
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and a universal A-term

A0WSM = (yWy � 3W (y))m3/2 � 1p
2�

¯D⇢̄
¯W (⇢̄)WSM .

(30)
Note that for tri-linears, the first term in Eq. (30) van-
ishes, leaving

A0 = � 1p
2�

¯D⇢̄
¯W (⇢̄) (31)

while for bilinears (B-terms), it is �m3/2 yielding the
familiar supergravity relation B0 = A0 �m0.

Gaugino masses require in addition a non-trivial de-
pendence of the gauge kinetic function on the modulus,
⇢. This dependence is generic in most of the models of
N = 1 supergravity derived from extended supergrav-
ity and string theory [28]. The supergravity Lagrangian
terms of interest include
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µ⌫F �µ⌫
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For a suitable choice h↵� = h(⇢)�↵� , one can generate
universal gaugino masses

m1/2 =

p
2�

6

D⇢W (⇢) ln(Re h⇤)⇢ . (33)

In addition to the above expressions, loop contributions
may also play a role (vital in the case of the KL model).
These expressions have been derived in greater generality,
e.g. when SM Yukawa couplings are also allowed to be
moduli dependent, in [10, 11].

Next, we will compare the resulting soft supersymme-
try breaking terms found in the KKLT and KL models.
We note first that independent of our choice of super-
potential, the soft scalar masses are always m2

0 = m2
3/2.

That is, the chiral multiplets will always be split by the
gravitino mass independent of the magnitude of D⇢W .

In contrast, both A0 and m1/2 are proportional to
D⇢W (⇢) and this differs greatly between the two classes
of models:
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While the KKLT model could produce a pattern of soft
scalar and gaugino masses all of order m3/2 with ac-
ceptable phenomenologies [10, 11, 12, 13, 14, 15], in all

models with strong volume modulus stabilization, such
as KL models, at the tree-level one finds that the gaug-
ino masses and A-terms are suppressed by m3/2/m� and
as such effectively vanish.

Recall that with A = B = 1, a = 0.1, b = 0.05, we
have m3/2/m� ⇠ 10

�13. As a result, in the strongly sta-
bilized models, we are driven towards models resembling
those mediated by anomalies [27], where the dominant
contributions to gaugino masses and A-terms arise from
loop corrections and give [11]

m1/2 =
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C0
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and

Aijk = ��i + �j + �k
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C0
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Here ba = 11, 1,�3 for a = 1, 2, 3 are the one-loop beta
function coefficients, �i are the anomalous dimensions of
the matter fields yi and
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= �1

3

(ln(⇢ + ⇢̄)

p
(⇢ + ⇢̄)D⇢W )⇢ + m3/2 (37)

is related to the conformal compensator. This is clearly of
order m3/2. Note that unlike the case of mixed modulus-
anomaly mediation, there is no mirage unification in the
KL model [13].

Because of the loop suppression factor in Eq. (35),
in order to have a phenomenologically viable model in
the context of KL stabilization, we are forced to con-
sider relatively large (O(100) TeV) gravitino masses in
order to have suitably large gaugino masses. Thus we
are led to a rather unique pattern of sparticle masses.
While anomaly mediation plays an important role in the
pattern for gaugino masses, the large soft scalar masses
generated from Eq. (29) yield a spectrum more reminis-
cent of split supersymmetry [18]. Indeed, the problem
of tachyonic scalars normally associated with anomaly
mediated models is absent here. While this problem is
normally alleviated by adding a constant mass squared
to the anomaly contribution, here we have a direct source
and explanation of the this term. We also note that if
the gravitino and scalar masses were pushed to very high
values (& 10

10 GeV) as in some models of split super-
symmetry, anomaly mediation would be unnecessary.

Gravitinos in the mass range O(100) TeV usually do
not pose significant cosmological problems because they
decay early. In general, they could be harmful if their
decays produce many light supersymmetric particles [29],
but even this problem can be avoided in the simplest
models of chaotic inflation based on the KL construction,
where the reheating temperature is small, which strongly
suppresses the gravitino production [17].

The heavy sparticle spectrum associated with split su-
persymmetry presents a challenge for detection of super-
symmetry at the LHC. Nevertheless there is an upper
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while for bilinears (B-terms), it is �m3/2 yielding the
familiar supergravity relation B0 = A0 �m0.

Gaugino masses require in addition a non-trivial de-
pendence of the gauge kinetic function on the modulus,
⇢. This dependence is generic in most of the models of
N = 1 supergravity derived from extended supergrav-
ity and string theory [28]. The supergravity Lagrangian
terms of interest include
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µ⌫F �µ⌫
+

i
4 (Im h↵�)✏µ⌫⇢�F↵

µ⌫F �⇢�

+

⇣
1
4eG/2h⇤↵� n̄

Gkn̄Gk�↵��
+ h.c.

⌘
. (32)

For a suitable choice h↵� = h(⇢)�↵� , one can generate
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In addition to the above expressions, loop contributions
may also play a role (vital in the case of the KL model).
These expressions have been derived in greater generality,
e.g. when SM Yukawa couplings are also allowed to be
moduli dependent, in [10, 11].

Next, we will compare the resulting soft supersymme-
try breaking terms found in the KKLT and KL models.
We note first that independent of our choice of super-
potential, the soft scalar masses are always m2
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3/2.
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gravitino mass independent of the magnitude of D⇢W .
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While the KKLT model could produce a pattern of soft
scalar and gaugino masses all of order m3/2 with ac-
ceptable phenomenologies [10, 11, 12, 13, 14, 15], in all

models with strong volume modulus stabilization, such
as KL models, at the tree-level one finds that the gaug-
ino masses and A-terms are suppressed by m3/2/m� and
as such effectively vanish.

Recall that with A = B = 1, a = 0.1, b = 0.05, we
have m3/2/m� ⇠ 10

�13. As a result, in the strongly sta-
bilized models, we are driven towards models resembling
those mediated by anomalies [27], where the dominant
contributions to gaugino masses and A-terms arise from
loop corrections and give [11]
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Here ba = 11, 1,�3 for a = 1, 2, 3 are the one-loop beta
function coefficients, �i are the anomalous dimensions of
the matter fields yi and
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is related to the conformal compensator. This is clearly of
order m3/2. Note that unlike the case of mixed modulus-
anomaly mediation, there is no mirage unification in the
KL model [13].

Because of the loop suppression factor in Eq. (35),
in order to have a phenomenologically viable model in
the context of KL stabilization, we are forced to con-
sider relatively large (O(100) TeV) gravitino masses in
order to have suitably large gaugino masses. Thus we
are led to a rather unique pattern of sparticle masses.
While anomaly mediation plays an important role in the
pattern for gaugino masses, the large soft scalar masses
generated from Eq. (29) yield a spectrum more reminis-
cent of split supersymmetry [18]. Indeed, the problem
of tachyonic scalars normally associated with anomaly
mediated models is absent here. While this problem is
normally alleviated by adding a constant mass squared
to the anomaly contribution, here we have a direct source
and explanation of the this term. We also note that if
the gravitino and scalar masses were pushed to very high
values (& 10

10 GeV) as in some models of split super-
symmetry, anomaly mediation would be unnecessary.

Gravitinos in the mass range O(100) TeV usually do
not pose significant cosmological problems because they
decay early. In general, they could be harmful if their
decays produce many light supersymmetric particles [29],
but even this problem can be avoided in the simplest
models of chaotic inflation based on the KL construction,
where the reheating temperature is small, which strongly
suppresses the gravitino production [17].

The heavy sparticle spectrum associated with split su-
persymmetry presents a challenge for detection of super-
symmetry at the LHC. Nevertheless there is an upper

6

where we have now defined the universal scalar mass as

m2
0 =

1

8�3
|W (⇢)|2 ⌘ m2

3/2, (29)

and a universal A-term

A0WSM = (yWy � 3W (y))m3/2 � 1p
2�

¯D⇢̄
¯W (⇢̄)WSM .

(30)
Note that for tri-linears, the first term in Eq. (30) van-
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while for bilinears (B-terms), it is �m3/2 yielding the
familiar supergravity relation B0 = A0 �m0.

Gaugino masses require in addition a non-trivial de-
pendence of the gauge kinetic function on the modulus,
⇢. This dependence is generic in most of the models of
N = 1 supergravity derived from extended supergrav-
ity and string theory [28]. The supergravity Lagrangian
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For a suitable choice h↵� = h(⇢)�↵� , one can generate
universal gaugino masses
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In addition to the above expressions, loop contributions
may also play a role (vital in the case of the KL model).
These expressions have been derived in greater generality,
e.g. when SM Yukawa couplings are also allowed to be
moduli dependent, in [10, 11].

Next, we will compare the resulting soft supersymme-
try breaking terms found in the KKLT and KL models.
We note first that independent of our choice of super-
potential, the soft scalar masses are always m2

0 = m2
3/2.

That is, the chiral multiplets will always be split by the
gravitino mass independent of the magnitude of D⇢W .

In contrast, both A0 and m1/2 are proportional to
D⇢W (⇢) and this differs greatly between the two classes
of models:
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While the KKLT model could produce a pattern of soft
scalar and gaugino masses all of order m3/2 with ac-
ceptable phenomenologies [10, 11, 12, 13, 14, 15], in all

models with strong volume modulus stabilization, such
as KL models, at the tree-level one finds that the gaug-
ino masses and A-terms are suppressed by m3/2/m� and
as such effectively vanish.

Recall that with A = B = 1, a = 0.1, b = 0.05, we
have m3/2/m� ⇠ 10

�13. As a result, in the strongly sta-
bilized models, we are driven towards models resembling
those mediated by anomalies [27], where the dominant
contributions to gaugino masses and A-terms arise from
loop corrections and give [11]
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Here ba = 11, 1,�3 for a = 1, 2, 3 are the one-loop beta
function coefficients, �i are the anomalous dimensions of
the matter fields yi and
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is related to the conformal compensator. This is clearly of
order m3/2. Note that unlike the case of mixed modulus-
anomaly mediation, there is no mirage unification in the
KL model [13].

Because of the loop suppression factor in Eq. (35),
in order to have a phenomenologically viable model in
the context of KL stabilization, we are forced to con-
sider relatively large (O(100) TeV) gravitino masses in
order to have suitably large gaugino masses. Thus we
are led to a rather unique pattern of sparticle masses.
While anomaly mediation plays an important role in the
pattern for gaugino masses, the large soft scalar masses
generated from Eq. (29) yield a spectrum more reminis-
cent of split supersymmetry [18]. Indeed, the problem
of tachyonic scalars normally associated with anomaly
mediated models is absent here. While this problem is
normally alleviated by adding a constant mass squared
to the anomaly contribution, here we have a direct source
and explanation of the this term. We also note that if
the gravitino and scalar masses were pushed to very high
values (& 10

10 GeV) as in some models of split super-
symmetry, anomaly mediation would be unnecessary.

Gravitinos in the mass range O(100) TeV usually do
not pose significant cosmological problems because they
decay early. In general, they could be harmful if their
decays produce many light supersymmetric particles [29],
but even this problem can be avoided in the simplest
models of chaotic inflation based on the KL construction,
where the reheating temperature is small, which strongly
suppresses the gravitino production [17].

The heavy sparticle spectrum associated with split su-
persymmetry presents a challenge for detection of super-
symmetry at the LHC. Nevertheless there is an upper
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while for bilinears (B-terms), it is �m3/2 yielding the
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Gaugino masses require in addition a non-trivial de-
pendence of the gauge kinetic function on the modulus,
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For a suitable choice h↵� = h(⇢)�↵� , one can generate
universal gaugino masses
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In addition to the above expressions, loop contributions
may also play a role (vital in the case of the KL model).
These expressions have been derived in greater generality,
e.g. when SM Yukawa couplings are also allowed to be
moduli dependent, in [10, 11].

Next, we will compare the resulting soft supersymme-
try breaking terms found in the KKLT and KL models.
We note first that independent of our choice of super-
potential, the soft scalar masses are always m2
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That is, the chiral multiplets will always be split by the
gravitino mass independent of the magnitude of D⇢W .

In contrast, both A0 and m1/2 are proportional to
D⇢W (⇢) and this differs greatly between the two classes
of models:
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While the KKLT model could produce a pattern of soft
scalar and gaugino masses all of order m3/2 with ac-
ceptable phenomenologies [10, 11, 12, 13, 14, 15], in all

models with strong volume modulus stabilization, such
as KL models, at the tree-level one finds that the gaug-
ino masses and A-terms are suppressed by m3/2/m� and
as such effectively vanish.

Recall that with A = B = 1, a = 0.1, b = 0.05, we
have m3/2/m� ⇠ 10

�13. As a result, in the strongly sta-
bilized models, we are driven towards models resembling
those mediated by anomalies [27], where the dominant
contributions to gaugino masses and A-terms arise from
loop corrections and give [11]
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Here ba = 11, 1,�3 for a = 1, 2, 3 are the one-loop beta
function coefficients, �i are the anomalous dimensions of
the matter fields yi and
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is related to the conformal compensator. This is clearly of
order m3/2. Note that unlike the case of mixed modulus-
anomaly mediation, there is no mirage unification in the
KL model [13].

Because of the loop suppression factor in Eq. (35),
in order to have a phenomenologically viable model in
the context of KL stabilization, we are forced to con-
sider relatively large (O(100) TeV) gravitino masses in
order to have suitably large gaugino masses. Thus we
are led to a rather unique pattern of sparticle masses.
While anomaly mediation plays an important role in the
pattern for gaugino masses, the large soft scalar masses
generated from Eq. (29) yield a spectrum more reminis-
cent of split supersymmetry [18]. Indeed, the problem
of tachyonic scalars normally associated with anomaly
mediated models is absent here. While this problem is
normally alleviated by adding a constant mass squared
to the anomaly contribution, here we have a direct source
and explanation of the this term. We also note that if
the gravitino and scalar masses were pushed to very high
values (& 10

10 GeV) as in some models of split super-
symmetry, anomaly mediation would be unnecessary.

Gravitinos in the mass range O(100) TeV usually do
not pose significant cosmological problems because they
decay early. In general, they could be harmful if their
decays produce many light supersymmetric particles [29],
but even this problem can be avoided in the simplest
models of chaotic inflation based on the KL construction,
where the reheating temperature is small, which strongly
suppresses the gravitino production [17].

The heavy sparticle spectrum associated with split su-
persymmetry presents a challenge for detection of super-
symmetry at the LHC. Nevertheless there is an upper

*
Linde, Mambrini, Olive

Friday, January 25, 13



Impact on Phenomenology
Scalar masses require F-term uplift 
or pure anomaly mediation

*

So add a Polonyi-like field

Dudas et al.: Strong moduli stabilization and phenomenology 3

2 Moduli stabilization and uplifting: a brief
review

2.1 KKLT versus KL

The KKLT (KL) sector consists of a single chiral field: the
modulus ρ. We will denote SM fields collectively as φ. The
scalar potential for uncharged chiral superfields in N = 1
supergravity is [15]

V = eK
(
Kab̄DaWDbW − 3|W |2

)
, (1)

where as usual we defined DaW = ∂aW + KaW . We de-
fine a Kähler potential with a no-scale [16] structure in the
moduli sector and kinetic terms in the matter sector de-
pending in some unspecified way on the modulus ρ. This
can be written as

K = −3 log(ρ+ρ̄)+hj
i (ρ, ρ̄)φ

iφ̄j+K(Si, S̄i)+∆K(φi, φ̄i)+· · · ,
(2)

where · · · denote terms of higher-order in matter fields φ,
irrelevant for our purposes. In a type IIB string theory
setup orientifolded by Ω′ = Ω I6(−1)FL , where I6 denotes
parity in the six internal dimensions and (−1)FL is the
left-handed fermion number [17], with D7 and D3 branes,
the function h(ρ, ρ̄) is a constant if matter fields originate
from D7-D7 sector, it is given by hj

i (ρ, ρ̄) = δj
i /(ρ + ρ̄)

for fields in the D3-D3 sector and has specific form for
fields living at the intersection of various branes. We will
discuss the fields Si which are associated with F -term up-
lifting below and we specify ∆K in section 4 in connection
with the Giudice-Masiero mechanism [18]. The important
assumption in what follows is that the uplift fields Si have
a separable Kähler potential, that can be justified, for ex-
ample, if the uplift fields arise as D7-D7 states. Indeed,
we will be assuming that the Si are not directly coupled
to matter through either the Kähler potential, the super-
potential, or gauge kinetic function. In each case we will
assume the superpotential is separable in the uplift fields

W = W (ρ) + WF (Si) + g(φi, ρ) , (3)

where W (ρ) is either the KKLT or KL superpotential,
WF is the superpotential associated with uplifting and
g(φi, ρ) is the superpotential for the Standard Model, with
g(0, ρ) = 0 . The possible ρ dependence of the matter
superpotential g is highly restricted by axionic symme-
tries and by the origin of matter fields (it is typically an
exponential or a modular form of various weight). Pro-
vided that the vev’s of matter fields are very small com-
pared to the Planck scale, the results of the present paper
are largely insensitive to the explicit form of the function
h(ρ, ρ̄) and the ρ dependence of g(φi, ρ).

The superpotential of the KKLT model is

WKKLT = W0 + Ae−aρ . (4)

where W0 and a > 0 are constants. In this theory, there
is a supersymmetry preserving AdS minimum found by

setting DρW = 0. It occurs at Im ρ = 0, and at a certain
value σ0 of the volume modulus σ = Re ρ.

After the uplifting to the (nearly Minkowski) dS vac-
uum state, the gravitino mass becomes

m3/2 ≈
√
|VAdS|/3 ≈ aA

3(2σ0)1/2
e−aσ0 . (5)

Furthermore, after uplifting

DρW =
3
√

2

a
√
σ0

m3/2 . (6)

The conditions of applicability of the KKLT construc-
tions are aσ0 > 1 and σ0 $ 1. If one takes aσ0 $ 1,
the gravitino mass becomes exponentially small. To have
m3/2 in the TeV range in the KKLT scenario, one should
take aσ0 ∼ 30.

The mass of the volume modulus σ in the minimum,
as well as the mass of its imaginary (axionic) component,
is given by mσ = 2aσ0 m3/2 [3]. For aσ0 ∼ 30, one finds
mσ ∼ 60 m3/2. As a result, the mass of the volume modu-
lus is somewhat greater than the gravitino mass, but not
by much. This means that the volume stabilization in the
KKLT scenario describing light gravitinos is very soft; the
mass of the volume modulus in this scenario is many or-
ders of magnitude below the string scale or the Planck
scale. It is this softness of the vacuum stabilization that
leads to the catastrophic decompactification of extra di-
mensions during inflation with H ! m3/2 [2, 3].

The simplest way to avoid this problem is to strongly
stabilize the vacuum by making mσ greater than m3/2 by
many orders of magnitude. This was achieved in the KL
scenario by using the racetrack superpotential

WKL = W0 + Ae−aρ − Be−bρ . (7)

In contrast to the KKLT case, the new degree of freedom
offered by Be−bρ allows the new model to have a super-
symmetric Minkowski solution. Indeed, for the particular
choice of W0,

W0 = −A

(
a A

b B

) a
b−a

+ B

(
a A

b B

) b
b−a

, (8)

the potential of the field σ has a supersymmetric minimum
with WKL(σ0) = 0, DρWKL(σ0) = 0, and V (σ0) = 0.

One may add an additional constant ∆ (either positive
or negative) to the superpotential (7). This will shift the
minimum of the potential down to the AdS minimum with
VAdS = −3m2

3/2 = − 3∆2

8σ3
0

[3, 7], after which one may use

uplifting (as in KKLT) to make the cosmological constant

as small as ∼ 10−120. Thus one has m2
3/2 = ∆2

8σ3
0

& 1,

which is the only weak-scale fine-tuning required in the
KL model. Interestingly, exactly the same level of fine-
tuning of the parameter W0 is required in the simplest
version of the KKLT scenario. This is the standard price
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used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ" 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) = M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term − (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivative Wρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
S, the phenomenological results discussed below will be
unchanged.

These calculations, for strongly stabilized theories, show
that the field S uplifts the AdS minimum to the nearly
Minkowski minimum for

M4 = 3∆2 = 24σ3
0m

2
3/2 , (15)

which determines the choice of the parameter M in (14).

The field S at the minimum of its potential is real, and
its value is given by

〈S〉 =

√
3Λ2

6
. (16)

The mass squared of the field S in both directions (real
and imaginary) is given by

m2
S =

3∆2

2σ3
0Λ

2
=

12m2
3/2

Λ2
& m2

3/2 , (17)

so it too is strongly stabilized. This is quite important.
Indeed, the cosmological moduli problem appears because
in the minimal Polonyi field model, the mass of the Polonyi
field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
model, m2

S & m2
3/2 and the field is constrained to lie close

to its minimum near S = 0 (for small Λ). Moreover, as
we will soon see, in the models of this class one typically
has m3/2 & 1 TeV. Therefore for sufficiently large m3/2

and sufficiently small Λ" 1, the cosmological moduli and
gravitino problems will disappear.

Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
before, and calculate the soft breaking terms in the stan-
dard model. The only additional parameters that we need
for these calculations are the values of WF and W ′

F at
the minimum of the potential for the field S, ignoring the
standard model fields:

WF =
|∆|Λ2

2
(18)

and

∂SWF =
√

3 |∆| . (19)

As a result,

W = W (ρ) + WF = ∆+
∆Λ2

2
' ∆ ,

DSW = ∂SWF + KS (W (ρ) + WF )

=
√

3|∆| +
√

3

6
Λ2(1 +

1

2
Λ2)|∆| '

√
3|∆|. (20)

Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
same as in the Polonyi model.
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2 Moduli stabilization and uplifting: a brief
review

2.1 KKLT versus KL

The KKLT (KL) sector consists of a single chiral field: the
modulus ρ. We will denote SM fields collectively as φ. The
scalar potential for uncharged chiral superfields in N = 1
supergravity is [15]

V = eK
(
Kab̄DaWDbW − 3|W |2

)
, (1)

where as usual we defined DaW = ∂aW + KaW . We de-
fine a Kähler potential with a no-scale [16] structure in the
moduli sector and kinetic terms in the matter sector de-
pending in some unspecified way on the modulus ρ. This
can be written as

K = −3 log(ρ+ρ̄)+hj
i (ρ, ρ̄)φ

iφ̄j+K(Si, S̄i)+∆K(φi, φ̄i)+· · · ,
(2)

where · · · denote terms of higher-order in matter fields φ,
irrelevant for our purposes. In a type IIB string theory
setup orientifolded by Ω′ = Ω I6(−1)FL , where I6 denotes
parity in the six internal dimensions and (−1)FL is the
left-handed fermion number [17], with D7 and D3 branes,
the function h(ρ, ρ̄) is a constant if matter fields originate
from D7-D7 sector, it is given by hj

i (ρ, ρ̄) = δj
i /(ρ + ρ̄)

for fields in the D3-D3 sector and has specific form for
fields living at the intersection of various branes. We will
discuss the fields Si which are associated with F -term up-
lifting below and we specify ∆K in section 4 in connection
with the Giudice-Masiero mechanism [18]. The important
assumption in what follows is that the uplift fields Si have
a separable Kähler potential, that can be justified, for ex-
ample, if the uplift fields arise as D7-D7 states. Indeed,
we will be assuming that the Si are not directly coupled
to matter through either the Kähler potential, the super-
potential, or gauge kinetic function. In each case we will
assume the superpotential is separable in the uplift fields

W = W (ρ) + WF (Si) + g(φi, ρ) , (3)

where W (ρ) is either the KKLT or KL superpotential,
WF is the superpotential associated with uplifting and
g(φi, ρ) is the superpotential for the Standard Model, with
g(0, ρ) = 0 . The possible ρ dependence of the matter
superpotential g is highly restricted by axionic symme-
tries and by the origin of matter fields (it is typically an
exponential or a modular form of various weight). Pro-
vided that the vev’s of matter fields are very small com-
pared to the Planck scale, the results of the present paper
are largely insensitive to the explicit form of the function
h(ρ, ρ̄) and the ρ dependence of g(φi, ρ).

The superpotential of the KKLT model is

WKKLT = W0 + Ae−aρ . (4)

where W0 and a > 0 are constants. In this theory, there
is a supersymmetry preserving AdS minimum found by

setting DρW = 0. It occurs at Im ρ = 0, and at a certain
value σ0 of the volume modulus σ = Re ρ.

After the uplifting to the (nearly Minkowski) dS vac-
uum state, the gravitino mass becomes

m3/2 ≈
√
|VAdS|/3 ≈ aA

3(2σ0)1/2
e−aσ0 . (5)

Furthermore, after uplifting

DρW =
3
√

2

a
√
σ0

m3/2 . (6)

The conditions of applicability of the KKLT construc-
tions are aσ0 > 1 and σ0 $ 1. If one takes aσ0 $ 1,
the gravitino mass becomes exponentially small. To have
m3/2 in the TeV range in the KKLT scenario, one should
take aσ0 ∼ 30.

The mass of the volume modulus σ in the minimum,
as well as the mass of its imaginary (axionic) component,
is given by mσ = 2aσ0 m3/2 [3]. For aσ0 ∼ 30, one finds
mσ ∼ 60 m3/2. As a result, the mass of the volume modu-
lus is somewhat greater than the gravitino mass, but not
by much. This means that the volume stabilization in the
KKLT scenario describing light gravitinos is very soft; the
mass of the volume modulus in this scenario is many or-
ders of magnitude below the string scale or the Planck
scale. It is this softness of the vacuum stabilization that
leads to the catastrophic decompactification of extra di-
mensions during inflation with H ! m3/2 [2, 3].

The simplest way to avoid this problem is to strongly
stabilize the vacuum by making mσ greater than m3/2 by
many orders of magnitude. This was achieved in the KL
scenario by using the racetrack superpotential

WKL = W0 + Ae−aρ − Be−bρ . (7)

In contrast to the KKLT case, the new degree of freedom
offered by Be−bρ allows the new model to have a super-
symmetric Minkowski solution. Indeed, for the particular
choice of W0,

W0 = −A

(
a A

b B

) a
b−a

+ B

(
a A

b B

) b
b−a

, (8)

the potential of the field σ has a supersymmetric minimum
with WKL(σ0) = 0, DρWKL(σ0) = 0, and V (σ0) = 0.

One may add an additional constant ∆ (either positive
or negative) to the superpotential (7). This will shift the
minimum of the potential down to the AdS minimum with
VAdS = −3m2

3/2 = − 3∆2

8σ3
0

[3, 7], after which one may use

uplifting (as in KKLT) to make the cosmological constant

as small as ∼ 10−120. Thus one has m2
3/2 = ∆2

8σ3
0

& 1,

which is the only weak-scale fine-tuning required in the
KL model. Interestingly, exactly the same level of fine-
tuning of the parameter W0 is required in the simplest
version of the KKLT scenario. This is the standard price
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used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ" 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) = M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term − (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivative Wρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
S, the phenomenological results discussed below will be
unchanged.

These calculations, for strongly stabilized theories, show
that the field S uplifts the AdS minimum to the nearly
Minkowski minimum for

M4 = 3∆2 = 24σ3
0m

2
3/2 , (15)

which determines the choice of the parameter M in (14).

The field S at the minimum of its potential is real, and
its value is given by

〈S〉 =

√
3Λ2

6
. (16)

The mass squared of the field S in both directions (real
and imaginary) is given by

m2
S =

3∆2

2σ3
0Λ

2
=

12m2
3/2

Λ2
& m2

3/2 , (17)

so it too is strongly stabilized. This is quite important.
Indeed, the cosmological moduli problem appears because
in the minimal Polonyi field model, the mass of the Polonyi
field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
model, m2

S & m2
3/2 and the field is constrained to lie close

to its minimum near S = 0 (for small Λ). Moreover, as
we will soon see, in the models of this class one typically
has m3/2 & 1 TeV. Therefore for sufficiently large m3/2

and sufficiently small Λ" 1, the cosmological moduli and
gravitino problems will disappear.

Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
before, and calculate the soft breaking terms in the stan-
dard model. The only additional parameters that we need
for these calculations are the values of WF and W ′

F at
the minimum of the potential for the field S, ignoring the
standard model fields:

WF =
|∆|Λ2

2
(18)

and

∂SWF =
√

3 |∆| . (19)

As a result,

W = W (ρ) + WF = ∆+
∆Λ2

2
' ∆ ,

DSW = ∂SWF + KS (W (ρ) + WF )

=
√

3|∆| +
√

3

6
Λ2(1 +

1

2
Λ2)|∆| '

√
3|∆|. (20)

Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
same as in the Polonyi model.

(constant already in W(ρ))

Kitano
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The Polonyi Sector
For Δ ≪ 1, S will also be strongly stabilized
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used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ" 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) = M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term − (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivative Wρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
S, the phenomenological results discussed below will be
unchanged.

These calculations, for strongly stabilized theories, show
that the field S uplifts the AdS minimum to the nearly
Minkowski minimum for

M4 = 3∆2 = 24σ3
0m

2
3/2 , (15)

which determines the choice of the parameter M in (14).

The field S at the minimum of its potential is real, and
its value is given by

〈S〉 =

√
3Λ2

6
. (16)

The mass squared of the field S in both directions (real
and imaginary) is given by

m2
S =

3∆2

2σ3
0Λ

2
=

12m2
3/2

Λ2
& m2

3/2 , (17)

so it too is strongly stabilized. This is quite important.
Indeed, the cosmological moduli problem appears because
in the minimal Polonyi field model, the mass of the Polonyi
field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
model, m2

S & m2
3/2 and the field is constrained to lie close

to its minimum near S = 0 (for small Λ). Moreover, as
we will soon see, in the models of this class one typically
has m3/2 & 1 TeV. Therefore for sufficiently large m3/2

and sufficiently small Λ" 1, the cosmological moduli and
gravitino problems will disappear.

Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
before, and calculate the soft breaking terms in the stan-
dard model. The only additional parameters that we need
for these calculations are the values of WF and W ′

F at
the minimum of the potential for the field S, ignoring the
standard model fields:

WF =
|∆|Λ2

2
(18)

and

∂SWF =
√

3 |∆| . (19)

As a result,

W = W (ρ) + WF = ∆+
∆Λ2

2
' ∆ ,

DSW = ∂SWF + KS (W (ρ) + WF )

=
√

3|∆| +
√

3

6
Λ2(1 +

1

2
Λ2)|∆| '

√
3|∆|. (20)

Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
same as in the Polonyi model.

Uplifting to Minkowski with
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used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ" 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) = M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term − (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivative Wρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
S, the phenomenological results discussed below will be
unchanged.

These calculations, for strongly stabilized theories, show
that the field S uplifts the AdS minimum to the nearly
Minkowski minimum for

M4 = 3∆2 = 24σ3
0m

2
3/2 , (15)

which determines the choice of the parameter M in (14).

The field S at the minimum of its potential is real, and
its value is given by

〈S〉 =

√
3Λ2

6
. (16)

The mass squared of the field S in both directions (real
and imaginary) is given by

m2
S =

3∆2

2σ3
0Λ

2
=

12m2
3/2

Λ2
& m2

3/2 , (17)

so it too is strongly stabilized. This is quite important.
Indeed, the cosmological moduli problem appears because
in the minimal Polonyi field model, the mass of the Polonyi
field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
model, m2

S & m2
3/2 and the field is constrained to lie close

to its minimum near S = 0 (for small Λ). Moreover, as
we will soon see, in the models of this class one typically
has m3/2 & 1 TeV. Therefore for sufficiently large m3/2

and sufficiently small Λ" 1, the cosmological moduli and
gravitino problems will disappear.

Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
before, and calculate the soft breaking terms in the stan-
dard model. The only additional parameters that we need
for these calculations are the values of WF and W ′

F at
the minimum of the potential for the field S, ignoring the
standard model fields:

WF =
|∆|Λ2

2
(18)

and

∂SWF =
√

3 |∆| . (19)

As a result,

W = W (ρ) + WF = ∆+
∆Λ2

2
' ∆ ,

DSW = ∂SWF + KS (W (ρ) + WF )

=
√

3|∆| +
√

3

6
Λ2(1 +

1

2
Λ2)|∆| '

√
3|∆|. (20)

Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
same as in the Polonyi model.

and
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used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ" 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) = M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term − (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivative Wρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
S, the phenomenological results discussed below will be
unchanged.

These calculations, for strongly stabilized theories, show
that the field S uplifts the AdS minimum to the nearly
Minkowski minimum for

M4 = 3∆2 = 24σ3
0m

2
3/2 , (15)

which determines the choice of the parameter M in (14).

The field S at the minimum of its potential is real, and
its value is given by

〈S〉 =

√
3Λ2

6
. (16)

The mass squared of the field S in both directions (real
and imaginary) is given by

m2
S =

3∆2

2σ3
0Λ

2
=

12m2
3/2

Λ2
& m2

3/2 , (17)

so it too is strongly stabilized. This is quite important.
Indeed, the cosmological moduli problem appears because
in the minimal Polonyi field model, the mass of the Polonyi
field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
model, m2

S & m2
3/2 and the field is constrained to lie close

to its minimum near S = 0 (for small Λ). Moreover, as
we will soon see, in the models of this class one typically
has m3/2 & 1 TeV. Therefore for sufficiently large m3/2

and sufficiently small Λ" 1, the cosmological moduli and
gravitino problems will disappear.

Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
before, and calculate the soft breaking terms in the stan-
dard model. The only additional parameters that we need
for these calculations are the values of WF and W ′

F at
the minimum of the potential for the field S, ignoring the
standard model fields:

WF =
|∆|Λ2

2
(18)

and

∂SWF =
√

3 |∆| . (19)

As a result,

W = W (ρ) + WF = ∆+
∆Λ2

2
' ∆ ,

DSW = ∂SWF + KS (W (ρ) + WF )

=
√

3|∆| +
√

3

6
Λ2(1 +

1

2
Λ2)|∆| '

√
3|∆|. (20)

Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
same as in the Polonyi model.

Dudas et al.: Strong moduli stabilization and phenomenology 5

used in eqs. (2) and (3) for a single Polonyi-like field S.
We take

K(S, S̄) = SS̄ − (SS̄)2

Λ2
, (13)

where we assume that Λ" 1 (in Planck units). As we will
see, the second term in (13) provides strong stabilization
for the field S. For the superpotential, we can take simply,

WF (S) = M2S , (14)

as in the Polonyi model, but without an additional con-
stant which is necessary for the fine-tuning of the vanish-
ingly small value of the cosmological constant. This con-
stant is already provided by the KKLT/KL superpoten-
tial.

In the original O’KKLT model, it was assumed that

the term − (SS̄)2

Λ2 appears after integrating out some heavy
degrees of freedom in the O’Raifeartaigh model. A con-
sistency of this assumption required careful investigation
[24]. However, assuming that this interpretation of the

term − (SS̄)2

Λ2 is available, one can simply consider this term
as a part of a modified Polonyi model (13), (14) without
further discussion of its origin [24, 26].

The simplest way to understand the main idea of this
scenario is to consider it in the context of the KL model,
or any other strongly stabilized model of that type. In this
case, the position of the AdS minimum of the potential is
strongly fixed. Therefore it is not affected by adding the
Polonyi field to the theory. In order to find the value of
the Polonyi field and its superpotential, it is sufficient to
calculate the values of the superpotential W (ρ) of the KL
model and its derivative Wρ(ρ) at the minimum of the KL
potential ignoring the Polonyi fields. The results of these
calculations are given in (11) and (12). These results are
then used in the calculation of the F-term potential of the
field S.

Alternatively, one may wish to abandon any connec-
tion to string theory and simply consider the supersym-
metry breaking sector of the Polonyi field S with strong
stabilization provided by the Kähler potential and super-
potential given by Eqs. (13) and (superpol). For the super-
potential, however, we must add back the constant term.
For small Λ, we have strong stabilization and the mass
of S can be large, as discussed below and its expectation
value close to 0. So long as we continue to assume that
the gauge kinetic function does not linearly depend on
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unchanged.
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so it too is strongly stabilized. This is quite important.
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field S is of the same order as the gravitino mass, which
was supposed to be in the range of 1 TeV or below. In our
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to its minimum near S = 0 (for small Λ). Moreover, as
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Strong stabilization of the field S is important in an-
other respect as well. Since the field S is strongly sta-
bilized, we can repeat the same procedure that we used
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for these calculations are the values of WF and W ′
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rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
potential (8) and ∆P to the Polonyi superpotential (14).
The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
gree of fine-tuning required in the KL model is exactly the
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Finally, we should note that in the context of this
model, one can attribute the supersymmetry breaking pa-
rameter ∆ either to the KL model, as we did earlier, or
to the Polonyi model, by adding it to the superpotential
(14). Alternatively, one may add ∆KL to the KL super-
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The final results and the standard model phenomenology
will depend only on the sum of these two parameters,
∆ = ∆KL + ∆P. This is another way to see that the de-
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same as in the Polonyi model.
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fields of the ISS model. As explained in more general terms
in [28], these corrections are subleading with respect to
masses arising from the one-loop Coleman-Weinberg ef-
fective potential in the global supersymmetric limit. This
can be explicitly checked starting from the supergravity
scalar potential (24) and expanding in small fluctuations
around the vacuum (23) to the quadratic order.

Similarly to the previous O’KKLT example, there is no
moduli problem in the present setup: both the ρ modulus
and the ISS fields are much heavier than the gravitino
mass.

3 Soft masses for matter fields

While the particular form of the KL superpotential was
instrumental in our analysis, the relation DρW (ρ) ! W ,
which we use in this section for computing soft terms for
matter fields has a much more general validity. It follows
directly from our requirement of strong vacuum stabiliza-
tion, which solves the problem of decompactification dur-
ing inflation with H ! m3/2, as well as the cosmological
moduli problem.

An additional assumption we will make in what follows
is that there is no direct coupling in the Kähler potential,
superpotential and gauge kinetic function between matter
fields and the uplift fields. The absence of linear couplings
to the SUSY breaking uplift fields in the gauge kinetic
function and superpotential for matter fields can be ar-
gued at various levels:
- At the level of symmetries in the second uplift exam-
ple based on ISS model, the meson fields Sj

i there trans-
form under chiral symmetries SU(Nf)L × SU(Nf)R, bro-
ken only by mass terms. It is expected that couplings to
MSSM fields respect chiral symmetries of the uplift sector,
therefore linear couplings to S should be absent.
- The uplift Polonyi or ISS sector does break SUSY in the
rigid limit in the absence of additional couplings to mat-
ter and moduli fields. When these additional couplings
are present, supersymmetry tends to be restored, espe-
cially for those couplings which break the R-symmetry
of the uplift sector. It is possible that the vacuum we
are discussing will still be a local miminum with a very
long lifetime, however the absence of new couplings helps
in avoiding new supersymmetric minima (this argument,
however, does not pertain to the gauge kinetic function).
- From a string theory viewpoint, the linear terms in su-
perpotentials present in both of our examples do not arise
at tree-level in string perturbation theory. They can arise
nonperturbatively by D-brane instanton effects. In this
case S is actually a field charged under an “anomalous”
U(1)X . This U(1)X is broken close to the string scale
by field-dependent Fayet-Iliopoulos terms, depending on
some modulus field called T in what follows. The axionic
field in the T multiplet is shifted nonlinearly under U(1)X ,
T → T + i δGS α, where α is the gauge transformation pa-
rameter, and is eaten up by the U(1)X gauge field. At
the perturbative level, couplings of S are very restricted

by the U(1)X symmetry. The gauge kinetic function hA

must clearly be invariant, and therefore S cannot appear
there perturbatively. Instantonic effects are proportional
to the D-instanton action Sinst = e−2πT , which has a spe-
cific U(1)X charge. Linear terms in S can arise nonper-
turbatively in hA and W via the gauge invariant combi-
nation e−2aT S, where the U(1)X charge of e−2aT com-
pensates that of S [29]. In our uplift examples, it would
mean that S couplings in hA and the S-dependence of
Yukawas are suppressed by the mass parameter M2 ∼
e−2aT . For example hA = h0

A(1 + βAe−2aT S) or yijk =
y0

ijk(1+cijke−2aT S). However, the “anomalous” symmetry
does not forbid couplings in the Kähler potential, which
we have argued against earlier.

Under the assumptions above we now show that strong
moduli stabilization with any F-term uplifts leads to small
A-terms which are dominated by anomaly contributions.
As we will see, this fact alone forces one to large scalar
masses and hence a large gravitino mass. This is accept-
able if the symmetry preventing a linear coupling of S to
matter is operative, and hence we are restricted to small
gaugino masses also dominated by anomaly contributions.
Couplings in the Kähler potential of the type S†Sφ†φ, on
the other hand, are invariant under all symmetries and,
if present, they can change scalar masses in what follows.
We will comment on their possible effects below.

Soft terms for matter fields generated in supergravity
in the limit MP → ∞ with fixed gravitino mass m3/2

[30] have a nice geometrical structure. For F-term SUSY
breaking, they are given by [31]

m2
ij̄ = m2

3/2 (Gij̄ − Rij̄αβ̄GαGβ̄ ) ,

(B µ)ij = m2
3/2 (2∇iGj + Gα∇i∇jGα) ,

(A y)ijk = m2
3/2 (3∇i∇jGk + Gα∇i∇j∇kGα) ,

µij = m3/2 ∇iGj ,

ma
1/2 =

1

2
(Re hA)−1m3/2 ∂αhA Gα , (29)

where G = K + ln |W |2, yijk are Yukawa couplings, hA

are the gauge kinetic functions and ∇i denotes Kähler
covariant derivatives

∇iGj = ∂iGj − Γ k
ijGk , (30)

where Γ k
ij = Gkl̄∂iGjl̄ is the Kähler connection. Greek

indices α,β in (29) refer to SUSY breaking fields S and
ρ, latin indices refer to matter fields, whereas Rij̄αβ̄ is the
Riemann tensor of the Kähler space spanned by chiral (su-
per)fields. In our models with strong moduli stabilization
and decoupling between uplift fields and matter fields, the
curvature terms in the scalar masses of matter fields are
negligible and we find to great accuracy

m2
0 = m2

3/2 , (31)

where the gravitino mass is given by

m2
3/2 = eG =

1

8σ3
0

|W (ρ) + WF (S)|2 , (32)

m2
3/2 =

1
8�3

0

|W (⇢) + WF (S)|2 =
1

8�3
0

|� +
�⇤2

2
|2 ⇡ 1

8�3
0

|�|2
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and fixes the universal mass scale for scalars. For the
O’KKLT model described above, so long as Λ2 ! 1, the
dominant contribution to the gravitino mass comes from
W (ρ) = ∆ at the minimum (see eq. (11)). The trilinear
terms are given by

(Ay)ijk = eKKαβ̄DβW (Kα + ∇α)Wijk , (33)

where Wijk = ∂i∂j∂kg, where g(φi, ρ) is the superpotential
for matter fields (3). In our case, more explicitly they equal

(Ay)ijk = eK
[
Kρρ̄DρW (Kρ + ∇ρ) + KSS̄DSWKS

]
Wijk ,

(34)
where we used, according to the arguments given above,
our hypothesis that Yukawas depend very weakly on S.
For bilinears B-terms, keeping also Giudice-Masiero like
terms, we find

(Bµ)ij = eKKαβ̄DβW (Kα + ∇α)Wij − m3/2e
K/2Wij +

m2
3/2(2 + Gα∇α)Kij − m2

3/2Γ
α
ij(2Gα + GβGαβ) . (35)

Notice that in our case, since DρW and KS ∼ S̄ are very
small, we find negligibly small A-terms. More precisely,
we find that the dominant contribution to A0 is given by
S̄D̄S̄W̄ so that at the tree-level one finds that the A-terms
are given by

A0 % − 1

(2σ0)3/2

|∆|Λ2

2
=

1

2
m3/2Λ

2 (36)

and are extremely small if Λ ! 1. This expression for
A0 is valid so long as m3/2/mσ ! Λ2 ! 1. For Λ2 !
m3/2/mσ ! 1 the parameter A0 is proportional to m2

3/2/mσ,
so in both cases A0 ! m3/2. Thus we are driven to small
values of A0 as a direct consequence of strong stabiliza-
tion. On the other hand, the µ and Bµ parameters in the
Higgs sector are given by

µ = m3/2G12 = eK/2W12 + m3/2K12 = µ0 + m3/2K12 ,

Bµ = (A0 − m3/2)µ0 + 2m2
3/2K12 . (37)

where W12 = ∂H1
∂H2

W , K12 = ∂H1
∂H2

K, and µ0 =
eK/2W12 is the µ-term in the absence of Giudice-Masiero
terms. By combining eqs. (37), we find

B = (A0 − m3/2)
µ0

µ
+

2m2
3/2

µ
K12 , (38)

that will be used in the next section for phenomenology.
If K12 = 0, we get µ = µ0 and B = A0 − m3/2, which is
just the familiar mSUGRA relation B0 = A0 − m0.

For a suitable choice of gauge kinetic functions hαβ =
h(ρ)δαβ , one generates universal gaugino masses

m1/2 =

√
2σ0

6
DρW (ρ) ∂ρ ln Re h , (39)

where, according to our decoupling hypothesis, we have
assumed that h does not explicitly depend on S 2. In con-
trast to the universal scalar masses which are equal to
the gravitino mass, m1/2 is proportional to DρW and is
suppressed by m3/2/mσ.

As a result, we obtain models resembling those medi-
ated by anomalies [13], where the dominant contributions
to gaugino masses and A-terms arise from loop corrections
and give [19]

ma
1/2 =

bag2
a

16π2

FC

C0
(40)

and

Aijk = −γi + γj + γk

16π2

FC

C0
. (41)

Here ba = 11, 1,−3 for a = 1, 2, 3 are the one-loop beta
function coefficients, γi are the anomalous dimensions of
the matter fields yi and

FC

C0
= −1

3
eK/2Kαβ̄KαD̄β̄W̄ + m3/2 % m3/2 (42)

is related to the conformal compensator and equals to very
high accuracy m3/2 in the models we consider.

Because of the loop suppression factor in Eq. (40), we
are forced to relatively large (O(10-1000) TeV) gravitino
masses in order to have acceptably large gaugino masses3

Thus, the sparticle spectrum consists of relatively light
gauginos whose masses are determined from anomaly me-
diation and large soft scalar masses fixed by the gravitino
mass yielding a spectrum reminiscent of split supersym-
metry [12]. The problem of tachyonic scalars normally as-
sociated with anomaly mediated models is absent here.

In what follows, we will examine the phenomenolog-
ical consequences of the above model. In particular, we
will see that it is difficult to construct consistent models
if one wants to maintain the possibility of radiative elec-
troweak symmetry breaking. If the input supersymmetry
breaking scale is chosen to be the GUT scale (i.e. the scale
at which gauge coupling unification occurs), one can not
choose arbitrarily large universal scalar masses and insist
on a well defined electroweak symmetry breaking vacuum
(i.e., µ2 > 0). This difficulty can be alleviated in at least
two ways:
- increasing the supersymmetry breaking scale, Min >
MGUT . This is the case that we study in detail in the
next section.
- Allow for direct couplings between the uplift field(s) S
and the Higgs in the Kahler potential, by terms of the
type S†SH†

i Hi. In this case, Higgs soft scalar masses ac-
quire additional corrections proportional to |FS |2, where

2 If we allow a coupling of the form hA = h0
A(1+βAe−2aT S),

we would find a suppression m1/2 ∝ m2

3/2/MP .
3 A posteriori, we know that for very small A0/m0 the re-

quirement for relatively large Higgs masses would lead us to
the same conclusion regarding large scalar masses, which to
control the relic density would also require anomaly mediation
for gaugino masses.

⇒ A0 '
1
2
m3/2⇤2

Dudas, Linde, Mambrini, 
Mustafayev, Olive
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where we used, according to the arguments given above,
our hypothesis that Yukawas depend very weakly on S.
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terms, we find

(Bµ)ij = eKKαβ̄DβW (Kα + ∇α)Wij − m3/2e
K/2Wij +

m2
3/2(2 + Gα∇α)Kij − m2

3/2Γ
α
ij(2Gα + GβGαβ) . (35)

Notice that in our case, since DρW and KS ∼ S̄ are very
small, we find negligibly small A-terms. More precisely,
we find that the dominant contribution to A0 is given by
S̄D̄S̄W̄ so that at the tree-level one finds that the A-terms
are given by

A0 % − 1

(2σ0)3/2

|∆|Λ2

2
=

1

2
m3/2Λ

2 (36)

and are extremely small if Λ ! 1. This expression for
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that will be used in the next section for phenomenology.
If K12 = 0, we get µ = µ0 and B = A0 − m3/2, which is
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assumed that h does not explicitly depend on S 2. In con-
trast to the universal scalar masses which are equal to
the gravitino mass, m1/2 is proportional to DρW and is
suppressed by m3/2/mσ.

As a result, we obtain models resembling those medi-
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is related to the conformal compensator and equals to very
high accuracy m3/2 in the models we consider.

Because of the loop suppression factor in Eq. (40), we
are forced to relatively large (O(10-1000) TeV) gravitino
masses in order to have acceptably large gaugino masses3

Thus, the sparticle spectrum consists of relatively light
gauginos whose masses are determined from anomaly me-
diation and large soft scalar masses fixed by the gravitino
mass yielding a spectrum reminiscent of split supersym-
metry [12]. The problem of tachyonic scalars normally as-
sociated with anomaly mediated models is absent here.

In what follows, we will examine the phenomenolog-
ical consequences of the above model. In particular, we
will see that it is difficult to construct consistent models
if one wants to maintain the possibility of radiative elec-
troweak symmetry breaking. If the input supersymmetry
breaking scale is chosen to be the GUT scale (i.e. the scale
at which gauge coupling unification occurs), one can not
choose arbitrarily large universal scalar masses and insist
on a well defined electroweak symmetry breaking vacuum
(i.e., µ2 > 0). This difficulty can be alleviated in at least
two ways:
- increasing the supersymmetry breaking scale, Min >
MGUT . This is the case that we study in detail in the
next section.
- Allow for direct couplings between the uplift field(s) S
and the Higgs in the Kahler potential, by terms of the
type S†SH†

i Hi. In this case, Higgs soft scalar masses ac-
quire additional corrections proportional to |FS |2, where

2 If we allow a coupling of the form hA = h0
A(1+βAe−2aT S),

we would find a suppression m1/2 ∝ m2

3/2/MP .
3 A posteriori, we know that for very small A0/m0 the re-

quirement for relatively large Higgs masses would lead us to
the same conclusion regarding large scalar masses, which to
control the relic density would also require anomaly mediation
for gaugino masses.
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and fixes the universal mass scale for scalars. For the
O’KKLT model described above, so long as Λ2 ! 1, the
dominant contribution to the gravitino mass comes from
W (ρ) = ∆ at the minimum (see eq. (11)). The trilinear
terms are given by

(Ay)ijk = eKKαβ̄DβW (Kα + ∇α)Wijk , (33)

where Wijk = ∂i∂j∂kg, where g(φi, ρ) is the superpotential
for matter fields (3). In our case, more explicitly they equal

(Ay)ijk = eK
[
Kρρ̄DρW (Kρ + ∇ρ) + KSS̄DSWKS

]
Wijk ,

(34)
where we used, according to the arguments given above,
our hypothesis that Yukawas depend very weakly on S.
For bilinears B-terms, keeping also Giudice-Masiero like
terms, we find

(Bµ)ij = eKKαβ̄DβW (Kα + ∇α)Wij − m3/2e
K/2Wij +

m2
3/2(2 + Gα∇α)Kij − m2

3/2Γ
α
ij(2Gα + GβGαβ) . (35)

Notice that in our case, since DρW and KS ∼ S̄ are very
small, we find negligibly small A-terms. More precisely,
we find that the dominant contribution to A0 is given by
S̄D̄S̄W̄ so that at the tree-level one finds that the A-terms
are given by

A0 % − 1

(2σ0)3/2

|∆|Λ2

2
=

1

2
m3/2Λ

2 (36)

and are extremely small if Λ ! 1. This expression for
A0 is valid so long as m3/2/mσ ! Λ2 ! 1. For Λ2 !
m3/2/mσ ! 1 the parameter A0 is proportional to m2

3/2/mσ,
so in both cases A0 ! m3/2. Thus we are driven to small
values of A0 as a direct consequence of strong stabiliza-
tion. On the other hand, the µ and Bµ parameters in the
Higgs sector are given by

µ = m3/2G12 = eK/2W12 + m3/2K12 = µ0 + m3/2K12 ,

Bµ = (A0 − m3/2)µ0 + 2m2
3/2K12 . (37)

where W12 = ∂H1
∂H2

W , K12 = ∂H1
∂H2

K, and µ0 =
eK/2W12 is the µ-term in the absence of Giudice-Masiero
terms. By combining eqs. (37), we find

B = (A0 − m3/2)
µ0

µ
+

2m2
3/2

µ
K12 , (38)

that will be used in the next section for phenomenology.
If K12 = 0, we get µ = µ0 and B = A0 − m3/2, which is
just the familiar mSUGRA relation B0 = A0 − m0.

For a suitable choice of gauge kinetic functions hαβ =
h(ρ)δαβ , one generates universal gaugino masses

m1/2 =

√
2σ0

6
DρW (ρ) ∂ρ ln Re h , (39)

where, according to our decoupling hypothesis, we have
assumed that h does not explicitly depend on S 2. In con-
trast to the universal scalar masses which are equal to
the gravitino mass, m1/2 is proportional to DρW and is
suppressed by m3/2/mσ.

As a result, we obtain models resembling those medi-
ated by anomalies [13], where the dominant contributions
to gaugino masses and A-terms arise from loop corrections
and give [19]

ma
1/2 =

bag2
a

16π2

FC

C0
(40)

and

Aijk = −γi + γj + γk

16π2

FC

C0
. (41)

Here ba = 11, 1,−3 for a = 1, 2, 3 are the one-loop beta
function coefficients, γi are the anomalous dimensions of
the matter fields yi and

FC

C0
= −1

3
eK/2Kαβ̄KαD̄β̄W̄ + m3/2 % m3/2 (42)

is related to the conformal compensator and equals to very
high accuracy m3/2 in the models we consider.

Because of the loop suppression factor in Eq. (40), we
are forced to relatively large (O(10-1000) TeV) gravitino
masses in order to have acceptably large gaugino masses3

Thus, the sparticle spectrum consists of relatively light
gauginos whose masses are determined from anomaly me-
diation and large soft scalar masses fixed by the gravitino
mass yielding a spectrum reminiscent of split supersym-
metry [12]. The problem of tachyonic scalars normally as-
sociated with anomaly mediated models is absent here.

In what follows, we will examine the phenomenolog-
ical consequences of the above model. In particular, we
will see that it is difficult to construct consistent models
if one wants to maintain the possibility of radiative elec-
troweak symmetry breaking. If the input supersymmetry
breaking scale is chosen to be the GUT scale (i.e. the scale
at which gauge coupling unification occurs), one can not
choose arbitrarily large universal scalar masses and insist
on a well defined electroweak symmetry breaking vacuum
(i.e., µ2 > 0). This difficulty can be alleviated in at least
two ways:
- increasing the supersymmetry breaking scale, Min >
MGUT . This is the case that we study in detail in the
next section.
- Allow for direct couplings between the uplift field(s) S
and the Higgs in the Kahler potential, by terms of the
type S†SH†

i Hi. In this case, Higgs soft scalar masses ac-
quire additional corrections proportional to |FS |2, where

2 If we allow a coupling of the form hA = h0
A(1+βAe−2aT S),

we would find a suppression m1/2 ∝ m2

3/2/MP .
3 A posteriori, we know that for very small A0/m0 the re-

quirement for relatively large Higgs masses would lead us to
the same conclusion regarding large scalar masses, which to
control the relic density would also require anomaly mediation
for gaugino masses.

gaugino masses

6

where we have now defined the universal scalar mass as

m2
0 =

1

8�3
|W (⇢)|2 ⌘ m2

3/2, (29)

and a universal A-term

A0WSM = (yWy � 3W (y))m3/2 � 1p
2�

¯D⇢̄
¯W (⇢̄)WSM .

(30)
Note that for tri-linears, the first term in Eq. (30) van-
ishes, leaving

A0 = � 1p
2�

¯D⇢̄
¯W (⇢̄) (31)

while for bilinears (B-terms), it is �m3/2 yielding the
familiar supergravity relation B0 = A0 �m0.

Gaugino masses require in addition a non-trivial de-
pendence of the gauge kinetic function on the modulus,
⇢. This dependence is generic in most of the models of
N = 1 supergravity derived from extended supergrav-
ity and string theory [28]. The supergravity Lagrangian
terms of interest include

� 1
4 (Re h↵�)F↵

µ⌫F �µ⌫
+

i
4 (Im h↵�)✏µ⌫⇢�F↵

µ⌫F �⇢�

+

⇣
1
4eG/2h⇤↵� n̄

Gkn̄Gk�↵��
+ h.c.

⌘
. (32)

For a suitable choice h↵� = h(⇢)�↵� , one can generate
universal gaugino masses

m1/2 =

p
2�

6

D⇢W (⇢) ln(Re h⇤)⇢ . (33)

In addition to the above expressions, loop contributions
may also play a role (vital in the case of the KL model).
These expressions have been derived in greater generality,
e.g. when SM Yukawa couplings are also allowed to be
moduli dependent, in [10, 11].

Next, we will compare the resulting soft supersymme-
try breaking terms found in the KKLT and KL models.
We note first that independent of our choice of super-
potential, the soft scalar masses are always m2

0 = m2
3/2.

That is, the chiral multiplets will always be split by the
gravitino mass independent of the magnitude of D⇢W .

In contrast, both A0 and m1/2 are proportional to
D⇢W (⇢) and this differs greatly between the two classes
of models:

D⇢W (⇢) =

3

p
2

a
p

�0

m3/2 KKLT

D⇢W (⇢) = 6

p
2�0

m3/2

m�
m3/2 KL (34)

While the KKLT model could produce a pattern of soft
scalar and gaugino masses all of order m3/2 with ac-
ceptable phenomenologies [10, 11, 12, 13, 14, 15], in all

models with strong volume modulus stabilization, such
as KL models, at the tree-level one finds that the gaug-
ino masses and A-terms are suppressed by m3/2/m� and
as such effectively vanish.

Recall that with A = B = 1, a = 0.1, b = 0.05, we
have m3/2/m� ⇠ 10

�13. As a result, in the strongly sta-
bilized models, we are driven towards models resembling
those mediated by anomalies [27], where the dominant
contributions to gaugino masses and A-terms arise from
loop corrections and give [11]

m1/2 =

bag2
a

16⇡2

FC

C0
(35)

and

Aijk = ��i + �j + �k

16⇡2

FC

C0
. (36)

Here ba = 11, 1,�3 for a = 1, 2, 3 are the one-loop beta
function coefficients, �i are the anomalous dimensions of
the matter fields yi and

FC

C0
= �1

3

(ln(⇢ + ⇢̄)

p
(⇢ + ⇢̄)D⇢W )⇢ + m3/2 (37)

is related to the conformal compensator. This is clearly of
order m3/2. Note that unlike the case of mixed modulus-
anomaly mediation, there is no mirage unification in the
KL model [13].

Because of the loop suppression factor in Eq. (35),
in order to have a phenomenologically viable model in
the context of KL stabilization, we are forced to con-
sider relatively large (O(100) TeV) gravitino masses in
order to have suitably large gaugino masses. Thus we
are led to a rather unique pattern of sparticle masses.
While anomaly mediation plays an important role in the
pattern for gaugino masses, the large soft scalar masses
generated from Eq. (29) yield a spectrum more reminis-
cent of split supersymmetry [18]. Indeed, the problem
of tachyonic scalars normally associated with anomaly
mediated models is absent here. While this problem is
normally alleviated by adding a constant mass squared
to the anomaly contribution, here we have a direct source
and explanation of the this term. We also note that if
the gravitino and scalar masses were pushed to very high
values (& 10

10 GeV) as in some models of split super-
symmetry, anomaly mediation would be unnecessary.

Gravitinos in the mass range O(100) TeV usually do
not pose significant cosmological problems because they
decay early. In general, they could be harmful if their
decays produce many light supersymmetric particles [29],
but even this problem can be avoided in the simplest
models of chaotic inflation based on the KL construction,
where the reheating temperature is small, which strongly
suppresses the gravitino production [17].

The heavy sparticle spectrum associated with split su-
persymmetry presents a challenge for detection of super-
symmetry at the LHC. Nevertheless there is an upper
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Problems constructing a 
phenomenologically viable theory

1.No guarantee that there are solutions for 
tanβ, while requiring B0 = A0 - m0. Solutions 
exist in limited domains of m1/2, m0, A0. 

2.No guarantee that solutions exist with μ2 > 0 
when m0 is very large (past the focus point) 
- particularly when A0 is small.
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Possible resolutions

1.Add GM term �K = cHH1H2 + h.c.

µ0B0 + 2cHm2
0

More importantly, 
boundary condition on 

μB becomes 

Now boundary 
condition on μ 

becomes, 
don’t care

µ0B0 + cHm0
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Possible resolutions

2. a) Take Min > MGUT

Extra running between Min and MGUT allows 
EWSB solutions with very large m0

b) Add source of non-universality to Higgs masses
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Constructions
W5 = µ⌃Tr⌃̂2 +

1
6
�0Tr⌃̂3 + µHĤ1Ĥ2 + �Ĥ1⌃̂Ĥ2

+(h10)ij ̂i ̂jĤ2 + (h5)ij ̂i�̂jĤ1 ,
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However, since we solve for µ at the weak scale, its UV
value is fixed by the low energy boundary condition. In
contrast, the boundary condition on µB shifts from µ0B0

to

µ0B0 + 2cHm2
0 . (46)

We can add the GM term to better connect the solution of
the minimization conditions to a supergravity boundary
condition at Min. Indeed, by allowing cH != 0, we can fix
tanβ and derive µ and Bµ at the weak scale. By running
our derived values of B(MW ) and µ(MW ) up to the GUT
scale, we can write

Bµ(MGUT ) = (A0 − m0)µ0(MGUT ) + 2cHm2
0 , (47)

which is precisely eq. (37) of the previous section. Strictly
speaking, (47) is valid at tree-level in SUGRA and does
not include anomaly contributions. However, the latter
are small compared to tree-level values of m0, B and µ,
so (47) is an excellent approximation. In what follows, we
use Eq. (47) to derive the necessary value of cH .

Of course, one must still check, whether the solution
for cH is reasonable (i.e., perturbative). In [38], it was in-
deed shown that over much of the mSUGRA parameter
space cH ! O(1). For fixed tanβ and A0/m0, cH is rea-
sonably small for most choices of m1/2 and m0. Exceptions
lying in the region where m1/2 # m0 and the lightest su-
persymmetric particle (LSP) is the gravitino. When A0

is large, these offending regions are further compressed to
small m0. Thus by allowing non-zero cH , we can always
satisfy the mSUGRA boundary condition for B0 and check
a posteriori that cH is small.

As noted above, in the CMSSM and mSUGRA, there
is generally an upper limit to m0 for fixed m1/2, A0, and
tanβ determined by µ2 = 0 in Eq. (43). While it is com-
mon to assume that the input supersymmetry breaking
scale is equal to the GUT scale, it is quite plausible that
Min may be either below [40] (as in models with mirage
mediation [19,27,41]) or above [38,42–46] the GUT scale.
Increasing Min increases the renormalization of the soft
masses which tends in turn to increase the splittings be-
tween the physical sparticle masses [44]. As a consequence,
the focus-point solution for µ2 = 0 often moves out to very
large values of m0. This feature of super-GUT models is
essential for KL model described here. Note that while the
introduction of Min adds a free parameter to the model,
as we will see, our results are very insensitive to the choice
of Min. For consistency with the KL paradigm, we should
also only consider values of Min < mσ.

To realize Min > MGUT , we need to work in the con-
text of a specific GUT. Here, we use the particle content
and the renormalization-group equations (RGEs) of min-
imal SU(5) [44, 47], primarily for simplicity: for a recent
review of this sample model and its compatibility with ex-
periment, see [48]. As this specific super-GUT extension
of the CMSSM was studied extensively in Refs. [42, 49],
we refer the reader there for details of the model.

The model is defined by the superpotential

W5 = µΣ Tr Σ̂2 +
1

6
λ′ Tr Σ̂3 + µHĤ1Ĥ2 + λĤ1Σ̂Ĥ2

+(h10)ij ψ̂iψ̂jĤ2 + (h
5
)ij ψ̂iφ̂jĤ1 , (48)

where φ̂i (ψ̂i) correspond to the 5 (10) representations of
superfields, Σ̂(24), Ĥ1(5) and Ĥ2(5) represent the Higgs
adjoint and five-plets. Here i, j = 1..3 are generation in-
dices and we suppress the SU(5) index structure for brevity.
There are now two µ-parameters, µH and µΣ , as well as
two new couplings, λ and λ′. Results are mainly sensitive
to λ and the ratio of the two couplings. In what follows,
we will fix λ′ = 0.1.

To generalize the GM solution for the B0 boundary
condition, we write

∆K = cHH1H2 +
1

2
cΣ TrΣ2 + h.c. , (49)

where H1,2 are scalar components of the Higgs five-plets
and Σ is the scalar component of the adjoint Higgs. Thus
in principle, we have two extra parameters which can be
adjusted to relate the CMSSM and supergravity boundary
conditions for Min > MGUT . Nevertheless, these parame-
ters have virtually no effect on the sparticle mass spectrum
other than allowing us to fix tanβ in a consistent manner.

For Min > MGUT , scalar mass universality is defined
in terms of the scalar components of the Higgses and mat-
ter fields in the 5 and 10 representations. At the GUT
scale, these must be matched to their Standard Model
counterparts. More importantly is the matching of the µ
and B-terms from SU(5) to Standard Model parameters.
These have been discussed extensively in Ref. [38,50] and
we do not repeat that analysis here.

There is one aspect of the matching of soft terms at
MGUT that is specific to the present model. Dominant
contributions to gaugino masses and A-terms are provided
by the conformal anomaly (40,41), with beta functions and
anomalous dimensions computed with the spectrum at the
given energy scale E. For the MSSM for example, gaugino
masses at scale E are given by

ma
1/2(E) =

bag2
a(E)

16π2

FC

C0
. (50)

Above MGUT , on the other hand, we have a unified (SU(5)
in our case) theory, with a unified gauge coupling gGUT

and a unified beta function bGUT . The unified gaugino
mass is then given by

mGUT
1/2 (E) =

bGUT g2
GUT (E)

16π2

FC

C0
(51)

and its value has to be taken into account for the running
of soft terms between Min and MGUT . However, there is
no matching at MGUT between (50) and (51). The mis-
match is to be interpreted as a threshold effect, due to the
decoupling of heavy GUT particles at MGUT . The argu-
ment is completely similar for the A-terms.

Boundary conditions now set at Min, with m0 = m3/2 
and A0 and m1/2 set by anomalies
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Canonical example, 

m0 = m3/2 = 32 TeV

tan� = 25

Min = 5⇥ 10

17
GeV

� = 1.35

�0
= 0.1 almost arbitrary

c⌃ = �.85 set to get

cH = 0

mf̃1,2
' 32 TeV

m⌧̃1 ' 29.6 TeV
mt̃1 ' 24.2 TeV
mb̃1

' 26.9 TeV
µ ' 20.4 TeV
Higgsinos, and
heavy Higgs ' 22 TeV
mg̃ ' 1 TeV
mB̃ ' 314 GeV
mW̃ ' 107 GeV
mh ' 125 GeV
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Light masses and Higgs mass
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Other Phenomenological Aspects

1. Gluinos

forbidden

mg̃ ⌧ mq̃

g̃ ! q̃q

3 body g̃ ! q̃⇤q ! qq�

or 2 body through loops g̃ ! q�

2. Charginos m�+ ⇡ m�

Slow decay
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Other Phenomenological Aspects

3.Dark Matter
(a) LSP is a wino
(b) Ωh^2 = 2.8 x 10-4 @ m3/2 = 32 TeV 
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More on Dark Matter

•Dark matter is something else (axion) 

•LSPs from gravitino or moduli (S) decay*

•m3/2 ~ 650 TeV, and Ωh2 ~ 0.11

*Strong moduli stabilization is expected 
to limit the role of moduli in this context

⌦�h2 =
m�

m3/2
⌦3/2h

2 = 0.4(
m�

TeV
)(

TR

1010GeV
)
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Direct and Indirect detection
(a) Elastic cross sections for direct detction low

(b) cross section to gamma rays large: constraint from 
Fermi could be significant. 
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Summary

LHC susy and Higgs searchs have pushed CMSSM-like 
models to “corners”

Though many phenomenological solutions are viable, they 
typically ignore the role of moduli

Models with strong moduli stabilization:

easier for inflation, 

no cosmological problems

interesting phenomenology

Heavy scalar spectrum with anomaly mediated gaugino 
masses

Challenge lies in detection strategies
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