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Gravitational Lensing



Lensing Modifies Galaxy Shapes

Illustration of the lensing effect caused by a massive  (invisible) 
object passing in front of galaxies in the Hubble Deep Field.

L. L. Christensen (ESA)



The Scientific Promise of Gravitational Lensing

I. Weak lensing by large-scale structure (‘Cosmic shear’) → evolution of 
the non-linear power spectrum & constraints on cosmological parameters 
ΩM, σ8, w, w’…complementing and breaking degeneracies present in 
other methods (Super Novae, Cosmic Microwave Background).

II. Direct mapping of the dark matter distribution

III. Weak shear around galaxy clusters → estimate of total cluster mass study 
of dark matter profiles

IV. The average weak lensing shear of distant galaxies and groups 
(‘galaxy-galaxy lensing’) → ensemble average properties of dark 
matter halos  → connecting mass and light. 

V. Measurements of the Hubble constant, H0.



Cosmic Acceleration Lensing Experiments

STAGE 2

CFHTLS : Canada / France / Hawaii, 170 deg2

KIDS : Europe, 1000 deg2,  VLT.

STAGE 3 (now)

Pan Starrs : USA, Haleakala, 15000 deg2

DES : USA, 5000 deg2

HSC : Japan, 1500 deg2, Subaru on Mauna Kea

STAGE 4 (~2020)

EUCLID : space mission, Europe, 15000 deg2

WFIRST : space mission, USA

LSST : USA, 20000 deg2

~100Mpc(~300M light year)@z~0.5⇒~5deg
γ~O(0.01)

HSC

SC

Other 8m Tels
 Mapping the dark matter distribution 

on cosmological distance scales

 Explore the nature of dark energy 
through the lensing observables 

Goals of HSC survey 

HST

Hyper SuprimeCam



Outline

What do we learn from gravitational lensing about :

1. Dark Energy 2. Dark Matter

3. Galaxy Formation



Dark Energy

 Peacock et al. 2006, ESA-ESO Working Group on "Fundamental Cosmology”

The acceleration of the Universe is, along with dark matter, the 
observed phenomenon that most directly demonstrates that our 

theories of fundamental particles and gravity are either 
incorrect or incomplete.



Dark Energy

1. Does acceleration arise from a breakdown of GR on 
cosmological scales or from a new energy component that 
exerts repulsive gravity within GR?

2. If acceleration is caused by a new energy component, is its 
energy density constant in space and time?



Four Probes of Dark Energy

BAO, Eisenstein et al. 2004
Amas Abell 2218 

J.P Kneib & E.Ellis
SN 1604, Chandra & Spitzer

1.  SNe Ia distance measurements

2.  Baryon Acoustic Oscillation (BAO)

3.  Abundance of galaxy clusters

4.  Weak gravitational lensing of large-scale structure



My Efforts in this Field

Traditional Methods

➡ Shear tomography - (Leauthaud et al. 2007, Massey et al. 2007)

➡ Shear ratio - constraints on Ωλ (Taylor et al. 2012)

➡ Clusters - calibration of mass-observable relations (Leauthaud et al. 2010)

➡ Clusters - mis-centering effects (George et al. 2011, George et al. 2012)

Less Traditional methods

➡ Probe combinations - galaxy-galaxy lensing, clustering, redshift-space 

distortions (Leauthaud et al. 2011, Leauthaud et al. in prep)

➡ Cross-correlations -  CMB lensing + shear (Das et al. in prep)



Lensing by a Diffuse Matter Distribution
‘Cosmic shear’ or  ‘Shear Tomography’

Shear field from dark 
matter simulation



Early Proof of Concept of Shear Tomography

Fig. 7.— The thin, solid line shows the redshift
distribution of source galaxies. The thick, solid
line shows their distribution after accounting for
the magnitude-dependent weighting scheme. In
both cases, the bin size is ∆z = 0.02. The dashed
lines show (artificially normalized) redshift sensi-
tivity curves obtained by slicing this distribution
into the discrete redshift bins indicated by the ar-
rows at the top.

for x < 2 and T+(x) = T−(x) = 0 for x ≥ 2. We
again estimate the constant of integration by ex-
trapolating our data with theoretical predictions
in cosmological model preferred by the rest of the
data.

From figure 6, we can see that ξB(θ) is consis-
tent with zero on all scales. The noise is particu-
larly large on small scales, and the rather unstable
M2

⊥
(θ) is affected on scales up to ∼ 1′ by the first

bin.

4. 3D shear analysis

4.1. Correlation function tomography

We now split the catalog into three discrete red-
shift bins and, as before, calculate the correlation
functions using all pairs of galaxies within each
bin. The redshift bins are chosen in considera-
tion of the particular color information available.
Degeneracies in the photometric redshift estima-

Fig. 8.— Evolution of the cosmic shear two-point
correlation function signal with increasing red-
shift. The series of data points, from bottom to
top, show measurements from slices between red-
shifts 0.1, 1, 1.4, and 3. The black curves show pre-
dictions from a flat ΛCDM model with Ωm = 0.3
and σ8 = 0.85, for the same slices, increasing in
redshift from the bottom to the top. Open circles
depict negative values.

tion cause galaxies with a flat distribution in red-
shift to cluster artificially around z = 1.3, 1.6 and
2.2. An excess at these positions is evident in
figure 1. We therefore pick bins with boundaries
away from these values, and with widths similar to
the size of the local peaks in the resdshift distribu-
tion. For COSMOS, suitable bins are 0.1 ! z ! 1,
1 < z ! 1.4 and 1.4 < z ! 3. This scheme conve-
niently divides up the galaxies fairly evenly, with
the slices each containing 32%, 24% and 44% of
the galaxies. Unfortunately, the last bin can not
be further sub-divided without deeper IR or UV
data. The redshift slices and their resulting lens-
ing sensitivity functions are illustrated in figure 7.

Figure 8 shows the increasing two point cor-
relation function signal for pairs of source galax-
ies as a function of redshift, where both galaxies
are in the same redshift bin. Since the measure-
ments in the redshift bins are much more noisy
than those from the projected 2D analysis, we plot
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σ8(Ωm/0.3)0.44 = 0.866 +/- 0.075

Massey et al. 2007 Leauthaud et al. 2007, Rhodes et al. 2007 
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Fig. 1.— The thin, solid line shows the distribu-
tion of the best-fit redshifts returned by the COS-
MOS photometric redshift code (Mobasher et al.
2006) with a luminosity function prior. The thick,
solid line shows the distribution after accounting
for the different weights given to galaxies. In both
cases, the bin size is ∆z = 0.02. Peaks below
z ≈ 1.2 correspond to real structures in the field,
but the artificial clustering at higher redshift is
due to limitations in the finite number of observed
near-IR colors. The dashed curve shows the red-
shift sensitivity function, assuming a ΛCDM uni-
verse with WMAP parameters. The dotted line
shows the redshift distribution that would have
been expected, with knowledge of only the median
photometric redshift and a Smail et al. (1994) fit-
ting function.

Figure 1 also shows the lensing sensitivity func-
tion

g(χ) = 2

∫ χh

χ
η(χ′)

DA(χ)DA(χ′ − χ)

DA(χ′)
a−1(χ) dχ′ ,

(4)
of the observed source redshift distribution, where
χ is a distance in comoving coordinates (in which
the power spectrum is measured), χh is the dis-
tance to the horizon, DAs are angular diameter
distances, (with the extra factor of a−1 converting
these into comoving coordinates), and η(χ) is the
distribution function of source galaxies in redshift

space, normalized so that
∫ χh

0

η(χ) dχ = 1 . (5)

This represents the sensitivity of a projected lens-
ing analysis to mass overdensities, as a function of
their redshift, and peaks at z ∼ 0.4, about half-
way to the peak of the source galaxy redshift dis-
tribution in terms of angular diameter distance.

3.2. 2D shear correlation functions

The 2D power spectrum of the projected shear
field is given by

Cγ
# =

9

16

(

H0

c

)4

Ω2
m

∫ χh

0

[

g(χ)

DA(χ)

]2

P (k, χ) dχ,

(6)
where χ is a comoving distance; χh is the horizon
distance; g(χ) is the lensing weight function; and
P (k, χ) is the underlying 3D distribution of mass
in the universe. The two-point shear correlations
functions can be expressed (Schneider et al. 2002)
in terms of the projected power spectrum as

C1(θ) =
1

4π

∫ ∞

0

Cγ
#

[

J0(%θ) + J4(%θ)
]

% d%(7)

C2(θ) =
1

4π

∫ ∞

0

Cγ
#

[

J0(%θ) − J4(%θ)
]

% d% .(8)

These can be measured by averaging over
galaxy pairs, as

C1(θ) =
〈

γr
1(r) γr

1(r + θ)
〉

(9)

C2(θ) =
〈

γr
2(r) γr

2(r + θ)
〉

, (10)

where θ is the separation between the galaxies and
the superscript r denotes components of shear ro-
tated so that γ̂r

1 (γ̂r
2) in each galaxy points along

(at 45◦ from) the vector between the pair. In prac-
tice, we compute this measurement in discrete bins
of varying angular scale. However, they will need
to be integrated later, so to keep this task man-
ageable, we use fine bins of 0.1′′throughout the
calculations, and only rebin for the sake of clarity
in the final plots.

A third shear-shear correlation function can be
formed,

C3(θ) =
〈

γr
1(r) γr

2(r+θ)
〉

+
〈

γr
2(r) γr

1(r+θ)
〉

,
(11)
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2d power spectrum of projected shear field :

Fig. 1.— The thin, solid line shows the distribu-
tion of the best-fit redshifts returned by the COS-
MOS photometric redshift code (Mobasher et al.
2006) with a luminosity function prior. The thick,
solid line shows the distribution after accounting
for the different weights given to galaxies. In both
cases, the bin size is ∆z = 0.02. Peaks below
z ≈ 1.2 correspond to real structures in the field,
but the artificial clustering at higher redshift is
due to limitations in the finite number of observed
near-IR colors. The dashed curve shows the red-
shift sensitivity function, assuming a ΛCDM uni-
verse with WMAP parameters. The dotted line
shows the redshift distribution that would have
been expected, with knowledge of only the median
photometric redshift and a Smail et al. (1994) fit-
ting function.

Figure 1 also shows the lensing sensitivity func-
tion

g(χ) = 2

∫ χh

χ
η(χ′)

DA(χ)DA(χ′ − χ)

DA(χ′)
a−1(χ) dχ′ ,

(4)
of the observed source redshift distribution, where
χ is a distance in comoving coordinates (in which
the power spectrum is measured), χh is the dis-
tance to the horizon, DAs are angular diameter
distances, (with the extra factor of a−1 converting
these into comoving coordinates), and η(χ) is the
distribution function of source galaxies in redshift

space, normalized so that
∫ χh

0

η(χ) dχ = 1 . (5)

This represents the sensitivity of a projected lens-
ing analysis to mass overdensities, as a function of
their redshift, and peaks at z ∼ 0.4, about half-
way to the peak of the source galaxy redshift dis-
tribution in terms of angular diameter distance.

3.2. 2D shear correlation functions
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where χ is a comoving distance; χh is the horizon
distance; g(χ) is the lensing weight function; and
P (k, χ) is the underlying 3D distribution of mass
in the universe. The two-point shear correlations
functions can be expressed (Schneider et al. 2002)
in terms of the projected power spectrum as

C1(θ) =
1

4π

∫ ∞

0
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〉

(9)

C2(θ) =
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where θ is the separation between the galaxies and
the superscript r denotes components of shear ro-
tated so that γ̂r

1 (γ̂r
2) in each galaxy points along

(at 45◦ from) the vector between the pair. In prac-
tice, we compute this measurement in discrete bins
of varying angular scale. However, they will need
to be integrated later, so to keep this task man-
ageable, we use fine bins of 0.1′′throughout the
calculations, and only rebin for the sake of clarity
in the final plots.

A third shear-shear correlation function can be
formed,

C3(θ) =
〈

γr
1(r) γr

2(r+θ)
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+
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2pt shear correlation function :

z=[0.1,1]
z=[1,1.4]
z=[1.4,3]

also see Schrabback et al. 2010



Improving Cluster Mass Estimates
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Lx-Mh relation down to Mh=1013 M⦿. 
Improved constraints on slope of this 

relation.
 (Leauthaud et al. 2010).

1.3 deg2

 ~150 groups/clusters detected via 
extended XMM emission in the 

COSMOS survey. 
One of the largest samples of it’s 

kind.  M200 ~ 5.1013  Msun.
(Finoguenov et al. 2007)
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cosmological constraints from RSD & AP 
demands precise modeling of :

• nonlinear evolution of matter density 

• velocity field

• how galaxies trace these fields

BOSS:  strongest statistical constraints from 
smaller scales where there are a large 
number of independent samples.
f.σ8 6% at 60 Mpc and 1% at 10 Mpc

Statistical precision ≲ theoretical errors

Satellites : Fingers of God, affect ξ2 at 10% 
level at 25 Mpc

Anisotropic clustering in CMASS galaxies 5

r
σ
 (Mpc/h)

r π
 (
Mp
c/
h)

−100 −50 0 50 100

−100

−50

0

50

100

r
σ
 (Mpc/h)

r π
 (

Mp
c/

h)

 

 

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

Figure 3. Left panel: Two-dimensional correlation function of CMASS galaxies (color) compared with the best fit model described in Section 6.1 (black lines).
Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right panel: Smaller-scale two-dimensional clustering. We show model contours at [0.14, 0.05,
0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 “finger-of-god” effects are small on the
scales we use in this analysis.

in Figure 4. The effective redshift of weighted pairs of galaxies in
our sample is z = 0.57, with negligible scale dependence for the
range of interest in this paper. For the purposes of constraining cos-
mological models, we will interpret our measurements as being at
z = 0.57.

3.2 Covariance Matrices

The matrix describing the expected covariance of our measure-
ments of ξ"(s) in bins of redshift space separation depends in linear
theory only on the underlying linear matter power spectrum, the
bias of the galaxies, the shot-noise (often assumed Poisson) and the
geometry of the survey. We use 600 mock galaxy catalogs, based
on Lagrangian perturbation theory (LPT) and described in detail in
Manera et al. (2012), to estimate the covariance matrix of our mea-
surements. We compute ξ"(si) for each mock in exactly the same
way as from the data (Sec. 3.1) and estimate the covariance matrix
as

C"1"2i j =
1

599

600∑

k=1

(
ξk"1 (si) −  ξ"1 (si)

) (
ξk"2 (s j) −  ξ"2 (s j)

)
, (7)

where ξk" (si) is the monopole (" = 0) or quadrupole (" = 2) correla-
tion function for pairs in the ith separation bin in the kth mock.  ξ"(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks is a good match to the measured correlation function
of the CMASS galaxies; see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons. The square roots of the di-
agonal elements of our covariance matrix are shown as the error-
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation

matrix, or “reduced covariance matrix”, defined as

C"1"2,red
i j = C"1"2i j /

√
C"1"1ii C"2"2j j , (8)

where the division sign denotes a term by term division.
In Figure 5 we compare selected slices of our mock covari-

ance matrix (points) to a simplified prediction from linear theory
(solid lines) that assumes a constant number density  n = 3 × 10−4

(h−1 Mpc)−3 and neglects the effects of survey geometry (see, e.g.,
Tegmark 1997). Xu et al. (2012) performed a detailed compari-
son of linear theory predictions with measurements from the Las
Damas SDSS-II LRG mock catalogs (McBride et al. prep), and
showed that a modified version of the linear theory covariance with
a few extra parameters provides a good description of the N-body
based covariances for ξ0(s). The same seems to be true here as
well. The mock catalogs show a deviation from the naive linear
theory prediction for ξ2(s) on small scales; a direct consequence is
that our errors on quantities dependent on the quadrupole are larger
than a simple Fisher analysis would indicate. We verify that the
same qualitative behavior is seen for the diagonal elements of the
quadrupole covariance matrix in our smaller set of N-body simu-
lations used to calibrate the model correlation function. This com-
parison suggests that the LPT-based mocks are not underestimating
the errors on ξ2, though more N-body simulations (and an account-
ing of survey geometry) would be required for a detailed check of
the LPT-based mocks.

The lower panels of Figure 5 compare the reduced covari-
ance matrix to linear theory, where we have scaled the Cred

i j pre-
diction from linear theory down by a constant, ci. This compar-
ison demonstrates that the scale dependences of the off-diagonal
terms in the covariance matrix are described well by linear the-
ory, but that the nonlinear evolution captured by the LPT mocks
can be parametrized simply as an additional diagonal term. Finally,

c© 0000 RAS, MNRAS 000, 1–1

Two dimensional correlation function 
of BOSS galaxies, z=0.57

DA, H(z), growth rate of structure
Reid et al. 2012

Redshift-Space Distortions



Lensing, Clustering, & Redshift-Space Distortions

Galaxy-galaxy lensing of BOSS 
galaxies. From the CS82 survey of 

Stripe 82 .
1/10th HSC area

(Leauthaud et al. in prep)

➡ Lensing & clustering = cosmological probe (e.g, Cacciato et al. 2012)

➡ & redshift-space distortions = modified gravity (e.g, Reyes et al. 2012)

➡ Tremendous S/N gain at small scales. Modeling is more complicated.

➡ WFIRST SDT report : lensing FOM 200 ⇒ 580 when using smaller scales

 IN PREP:
➡  Lensing + Clustering + RSD at 

R<40 Mpc. 
Use N-body simulations directly 

for the theoretical model (by-pass 
analytical modeling).

AL, Beth Reid, Martin White, Jeremy Tinker



Lensing & Clustering of Boss Galaxies
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• Reid et al 2013: small-scale redshift space clustering of CMASS

• Leauthaud et al. 2013: lensing + redshift space clustering

AL, Beth Reid, Martin White, Jeremy Tinker

Preliminary



0.1 1.0 10.0
R [Mpc]

0.1

1.0

10.0

100.0

6
Y

   
 [ 

   
M

O •  
 p

c -2
  ]

0.1 1.0 10.0
R [Mpc]

10

100

w
p(r

p)

Lensing & Clustering of Boss Galaxies

R [Mpc]

ΔΣ
   

  [
M
⊙
 p

c-2
]

w
p(

r p
)
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CFHTLS

 Note: this is just a ‘by eye’ HOD fit 
 Also plan to fit monopole ξ0 and quadrupole ξ2

 Divide by stellar mass



CMB-Lensing Galaxy Cross Correlations
Das, Leauthaud, Hand et al. in prep

• Amplitude of power 
spectrum at zL

• R=(DL-CMB DG)/(DLG DCMB)

κ=Σ/Σcrit

Σ=surface mass density

Σcrit~DS/DLDLS
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Dark Matter



λCDM Predictions for Dark Matter Halos

All three predictions can be tested using weak lensing.

➡ Universal profile for DM halos (Navarro et al. 1997, 2012)

➡ Correlation between halo mass & concentration C ~ Mhα 

(Bullock et al. 2001, Wechsler et al. 2002, Maccio et al. 2007) 

➡ Triaxial shapes with b/a~0.7 (Jing & Suto 2002)

‣ HSC = 7000 

‣ DES = 24,000

‣ EUCLID = 70,000 

Tremendous statistics using stacked lensing.

Clusters at Mh>1014 & z<0.8

➠



Finding the Centers of Dark Matter Halos

Cluster 1 Cluster 2

1. Determine centers
2. Measure shapes of background sources
3. Stack on centers

Cluster 3

George, AL, et al. 2012



George, AL, et al. 2012

1. Determine centers
2. Measure shapes of background sources
3. Stack on centers

Finding the Centers of Dark Matter Halos



George, AL, et al. 2012

Good center Bad center

1. Determine centers
2. Measure shapes of background sources
3. Stack on centers

Finding the Centers of Dark Matter Halos
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Fig. 3.— Weak lensing signal stacked on the full sample of groups around di↵erent centers, along with centered (thick blue, �⌃cen) and
o↵set (thin magenta, �⌃o↵) models. Halo and central components of these models are shown for MMGG

scale

(green dashed for �⌃cen

NFW

,

orange dot-dashed for �⌃o↵

NFW

, red dotted for �⌃
gal

). The top row shows the signal around galaxy candidates, while the bottom row shows
centroid candidates. The signal (black points) is measured in radial bins with the first spanning 20 � 70 kpc for su�cient signal-to-noise,
then logarithmically spaced from 70 kpc to 1 Mpc.

TABLE 2
Parameters Constraints for �⌃(R)

Centered Model O↵set Model

Candidate hlog(M?,gal/M�)i log(M
200c

/M�) c
200c

�2 (⌫ = 5) log(M
200c

/M�) c
200c

�
o↵

(kpc) �2 (⌫ = 4)

Galaxy candidates

MMGG
scale

11.3 13.43 ± 0.07 4.0 4.2 13.45 ± 0.07 3.9 18.2 ± 11.3 4.2
MMGG

R200

11.4 13.43 ± 0.06 4.0 5.3 13.47 ± 0.07 3.9 28.3 ± 15.2 4.4
BGG

scale

11.2 13.40 ± 0.06 4.0 2.9 13.43 ± 0.07 4.0 16.8 ± 10.0 2.8
BGG

R200

11.3 13.42 ± 0.07 4.0 4.4 13.45 ± 0.06 3.9 24.8 ± 12.0 3.0

Centroid candidates

CN - 13.35 ± 0.07 4.0 21.0 13.51 ± 0.07 3.9 65.0 ± 18.0 2.8
CM - 13.39 ± 0.07 4.0 10.5 13.45 ± 0.08 3.9 34.5 ± 21.6 9.3
CF - 13.38 ± 0.07 4.0 14.0 13.51 ± 0.09 3.9 66.9 ± 29.9 9.5
X-ray - 13.30 ± 0.08 4.1 15.2 13.42 ± 0.08 4.0 57.1 ± 16.9 3.5

Note. — For both models, M?,gal is fixed to the stellar mass of the central galaxy (for galaxy candidates) and zero otherwise,
and the halo concentration is fixed by the relation of Zhao et al. (2009).

In the samples where the MMGG
scale

disagrees with
other galaxy candidates (Figure 5), the lensing signal is
di↵erent than in the centroid comparison. The best-fit
halo masses are significantly lower than in the full sample
measured earlier. The lensing signals are noisier, in part
because of the smaller sample sizes, and one case deviates
significantly from the o↵set model. Though it appears
that the BGG

scale

produces a higher lensing signal than
the MMGG

scale

at small radii in this direct comparison,
that profile is not well-fit by a centered NFW model and
the fitted mass is similarly low.
Figure 6 shows how two samples of groups with dif-

fering galaxy candidates are distributed in redshift and
X-ray luminosity relative to the full sample of groups.
Cases where the most massive group member lies in

the outskirts (MMGG
scale

6= MMGG
R200

) appear to be
evenly distributed throughout the sample. Groups where
the brightest galaxy near the X-ray position is not the
most massive (MMGG

scale

6= BGG
scale

) tend to be at
higher redshifts, which can also be seen in the mean red-
shifts for the samples in Figure 5. This illustrates how
an observed-frame selection of BCGs, like that used for
BGG

scale

here, tends to pick up bluer star-forming galax-
ies at higher redshifts.
The low masses shown in Figure 5 could be attributed

to statistical fluctuations with the small sample size
(24 � 40 groups, as compared with 91 � 98 groups in
Figure 4). To test this idea, we performed jackknife
tests using randomly selected samples of the same num-
ber of groups without replacement. In each of 1000

R [ h-1 Mpc]

Demonstrating the power of stacked weak lensing to improve centroid 
algorithms for galaxy clusters

 (George,  AL, et al. 2012).

Will lead to improved constraints on halo profiles & concentrations

Finding the Centers of Dark Matter Halos
A Weak Lensing Study of Halo Centering 7

Fig. 2.— Schematic illustration of stacked lensing around di↵erent candidate centers. Candidate centers are defined in each group (left),
then shear maps are stacked around each position (middle), and azimuthally averaged to compute �⌃ profiles (right).

sets between the candidate and true halo center, and the
full model which adds freedom to the halo profile and
allows for excess mass in the form of a subhalo around
the candidate center.
We model the average mass density in halos with a

spherical NFW profile, for which the projected surface
density ⌃

halo

(R) = ⌃
NFW

(R) is given in e.g. Wright &
Brainerd (2000), with halo mass and concentration as
two free parameters. For the centered and o↵set models
we will assume a mass-concentration relation from Zhao
et al. (2009), leaving mass as a single free parameter for
the halo component, while both mass and concentration
are free parameters in the full model.
When the surface density of a spherically symmetric

halo is measured around the correct center of mass, we
have ⌃(R) = ⌃

halo

(R). If there is an o↵set R
o↵

in the
lens plane between the true center and the position used
for measurement, the surface density measured at the
coordinates (R, ✓) relative to the o↵set position is (Yang
et al. 2003, Appendix B)

⌃o↵

halo

(R, ✓|R
o↵

) = ⌃
halo

✓q
R2 +R2

o↵

� 2RR
o↵

cos ✓

◆
.

(5)
The azimuthally-averaged surface density around the o↵-
set position is

⌃
o↵

halo

(R|R
o↵

) =
1

2⇡

Z
2⇡

0

d✓⌃o↵

halo

(R, ✓|R
o↵

). (6)

For an ensemble of halos with a distribution of o↵sets
P (R

o↵

), Johnston et al. (2007a,b) generalized Equa-
tion (6) to give the mean azimuthally-averaged surface
mass profile stacked around the o↵set positions

⌃
o↵

halo

(R|P (R
o↵

)) =

Z 1

0

P (R
o↵

)⌃
o↵

halo

(R|R
o↵

) dR
o↵

.

(7)

The mean surface density inside a radius R is

⌃
o↵

halo

(< R|P (R
o↵

)) =
1

⇡R2

RZ

0

2⇡Z

0

1Z

0

P (R
o↵

)⌃o↵

halo

(R0, ✓|R
o↵

)

⇥ R0dR0d✓dR
o↵

=
2

R2

Z R

0

⌃
o↵

halo

(R0|P (R
o↵

))R0dR0.

(8)

To model the lensing signal from a large sample of
galaxy clusters centered around BCGs, Johnston et al.
(2007b) used a distribution of o↵sets P (R

o↵

) estimated
from mock catalogs. In their model a fraction of BCGs
correctly identified the centers of halos (R

o↵

= 0), while
the remaining clusters had a distribution of o↵sets given
by

P (R
o↵

) =
R

o↵

�
o↵

exp

✓
� R2

o↵

2�2

o↵

◆
. (9)

This model, called a two-dimensional Gaussian or a
Rayleigh distribution, was chosen based on mock cata-
logs to which their cluster-finding algorithm had been ap-
plied. The mocks suggested that the fraction of correctly-
centered clusters depended on richness, with higher rich-
ness clusters more likely to be centered correctly. In other
clusters, the central galaxy was not correctly identified
as the BCG, and the distribution of o↵sets between the
BCG and true halo center could be described by Equa-
tion (9) with the parameter �

o↵

= 420 h�1 kpc describ-
ing the typical o↵set scale, independent of cluster rich-
ness.
We can think of the o↵set more generally in three di-

mensions, where we assume the o↵set in each dimension
is normally distributed with mean zero. The observed
o↵set in the line-of-sight dimension might not have the

➠



A Sample of 800 Clusters in Stripe 82
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mis-centering e!ects cause 
arti"cal downturns in lensing
signals which impact the inferred
halo pro"les.

Large sample to z=0.7. Test-bed for HSC/DES/Euclid.

‣ Improve centroid schemes via lensing
‣ Visual inspection of central galaxies
‣ Color bias in central galaxy selection?
‣ Richness-Mh relation to z=0.7

Currently :

‣ Add clustering information for centering
‣ Use stacked weak lensing to improve 
the identification of mergers and 
fragmented systems (tests using N-body 
simulations)
‣ Constraints on halo concentration

Effects of mis-centering on 
weak lensing measurements 

of halo profiles.
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Future :

Mis-centering



Detecting Cluster Tri-axiality?

Traditional method: azimuthal 
variation in tangential shear  
(Natarayan & Refregier 2000)

 Relies on optical axis for 
stacking. Signal washed out with 

galaxy-halo mis-alignements. 

 Investigating new methods to 
probe halo ellipticity based on 3-

pt correlation functions. No 
assumption about alignments 
between baryons and dark 

matter.

Leauthaud et al. in prep, Mineo et al. in prep

AL,  Takada M, Oguri M, Mineo S, Katayama N, Okabe  N



Detecting Cluster Tri-axiality?

Leauthaud et al. in prep, Mineo et al. in prep

AL,  Takada M, Oguri M, Mineo S, Katayama N, Okabe  N

BCG

φ

Υ1

Υ2

Can we use the 3pt 
correction function 
< Υ1 x Υ2  > to detect :

➡ Halo triaxiality?
➡ Sub-structure?
➡ Filamentary structure?

A direct probe of λCDM 
predictions for dark 
matter halos!



Detecting Cluster Tri-axiality?
Preliminary
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From N-body simulations :
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Detecting Cluster Tri-axiality?
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Galaxy Formation
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Connecting Galaxies to Dark Matter
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The galaxy stellar mass function :
• Number of galaxies per unit volume
• “easy” to calculate
• Typically modeled through “abundance matching”
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Galaxy auto correlation function  :
• Excess probability above random of finding two 

galaxies with a given separation
• Typically modeled through HOD models
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y Galaxy-galaxy lensing :
• Measures the galaxy-matter correlation function
• Weak signal that is difficult to measure
• Tells us directly about the galaxy-dark matter 

connection
3

Combining Lensing + Clustering
Leauthaud et al. 2011



The Galaxy-Galaxy Lensing Signal
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The quantity that we seek to 
measure is Delta Sigma 

Sigma: surface mass density 
of the central lens. 

Delta Sigma: surface mass 
density contrast.

€ 

ΔΣ(r) ≡ Σ (< r) − Σ (r) = Σcrit × γ t (r)

galaxy-galaxy lensing:
stacked weak lensing around a 

large number of foreground 
galaxies.

SatelliteCentral

Physical transverse distance  R  [Mpc]



Ten Parameter Model

+ Tinker et al. 2008 halo mass function
+ Tinker et al. 2010 bias function
+ Halo exclusion

 Parametric form for the stellar-to-halo mass relation (M1, M*0, β, δ, γ)

8 A. Leauthaud

TABLE 3
Binning scheme for the g-g lensing

g-g bin1 g-g bin2 g-g bin3 g-g bin4 g-g bin5 g-g bin6 g-g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In Paper I we described a HOD-based model that can
be used to analytically predict the SMF, g-g lensing,
and clustering signals. A key component of this model
is the SHMR which is modelled as a log-normal prob-
ability distribution function with a log-normal scatter3

noted σlogM∗
and with a mean-log relation that is noted

as M∗ = fshmr(Mh).
For a given parameter set and cosmology, fshmr and

σlogM∗
can be used to determine the central and satel-

lite occupations functions, 〈Ncen〉 and 〈Nsat〉. These are
then in turn used to predict the SMF, g-g lensing, and
clustering signals.

4.1. The stellar-to-halo mass relation

Following Behroozi et al. (2010) (hereafter “B10”),
fshmr(Mh) is mathematically defined via its inverse func-
tion:

log10(f−1
shmr(M∗)) = log10(Mh) =

log10(M1) + β log10

(

M∗

M∗,0

)

+

(

M∗

M∗,0

)δ

1 +
(

M∗

M∗,0

)−γ −
1

2

(13)
where M1 is a characteristic halo mass, M∗,0 is a charac-
teristic stellar mass, β is the faint end slope, and δ and γ
control the massive end slope. We refer to B10 for a more
detailed justification of this functional form. Briefly, we
expect that at least 4 parameters are required to model
the SHMR: a normalization, break, a faint end slope and
a bright end slope. In addition, B10 have suggested that
the SHMR displays sub-exponential behaviour at large
M∗. This is modelled by the δ parameter which leads to
a total of 5 parameters. Figure 3 illustrates the influence
of each parameter on the shape on the SHMR and fur-
ther details on the role of each parameter can be found
in § 2.1 of Paper I.

In contrast to B10, however, we do not model the red-
shift evolution of this functional form. Instead, we bin
the data into three redshift bins and check for redshift
evolution in the parameters a posteriori. We also assume
that Equation 13 is only relevant for central galaxies.

4.2. Scatter between stellar and halo mass

The measured scatter in stellar mass at fixed halo mass
has an intrinsic component (noted σi

logM∗

), but also in-
cludes a stellar mass measurement error due to redshift,
photometry, and modeling uncertainties (noted σm

logM∗

).
Ideally, we would measure both components but unfortu-
nately we can only constrain the quadratic sum of these

3 Scatter is quoted as the standard deviation of the logarithm
base 10 of the stellar mass at fixed halo mass.

two sources of scatter. Nonetheless, given a model for
σm

logM∗

, we could in principle extract σi
logM∗

from σlogM∗
.

Previous work suggests that σlogM∗
is independent of

halo mass. For example, Yang et al. (2009) find that
σlogM∗

= 0.17 dex and More et al. 2009 find a scat-
ter in luminosity at fixed halo mass of 0.16 ± 0.04 dex.
Both Moster et al. (2010) and B10 are able to fit the
SDSS galaxy SMF assuming σlogM∗

= 0.15 dex and
σlogM∗

= 0.175 dex respectively. However, these results
are derived with spectroscopic samples of galaxies. In
contrast to these surveys, we expect a larger measure-
ment error for the COSMOS stellar masses due to the
use of photometric redshifts. In addition, since photoz
errors increase for fainter galaxies, we might also expect
that σm

logM∗

(and thus σlogM∗
) will depend on M∗.

To test if the assumption that σlogM∗
is constant has

any impact on our results, we implement two models for
σlogM∗

. In the first case (called “sig mod1”), σlogM∗
is

assumed to be constant (this is our base-line model). In
the second case (called “sig mod2”), we explicitly model
σm

logM∗

to reflect stellar mass measurement errors. Note
that the goal of this exercise is not to perform a careful
and thorough error analysis, but simply to build a realis-
tic enough model to asses whether or not a M∗ dependant
error has any strong impact on our conclusions.

For the sig mod2 model, we consider three contribu-
tions to the stellar mass error budget. The first is called
“model error”: this is measured by the 68% confidence
interval of the mass probability distribution determined
for each galaxy by the mass estimator. It represents the
range of model templates (each with its own M/L ratio)
that provide reasonable fits to the observed SED. This
range is determined both by degeneracies in the grid of
models used to fit the data, as well as by the photometric
uncertainty in the observed SED. The second term is the
photo-z error, which derives from the uncertainty in the
luminosity distance owing to the error on a given photo-
metric redshift. The final component is the photometric
uncertainty from the observed K-band magnitude, which
translates into an uncertainty in luminosity and therefore
stellar mass. The total measurement error, σm

logM∗

is the
sum in quadrature of these three sources of error. The
results are shown in Figure 4 for the three redshift bins.

As detailed in § 5, however, we find that our re-
sults are largely unchanged, regardless of which form
we adopt for σlogM∗

. This can be explained as fol-
lows. Since the data are binned by M∗, the observ-
ables are in fact sensitive to the scatter in halo mass
at fixed stellar mass, noted σlogMh

. Given a model for
the SHMR, σlogMh

can be mathematically derived from
σlogM∗

. Further details on the mathematical connec-
tion between between σlogM∗

and σlogMh
can be found

 Central occupation function (σlog(M*))

 Satellite occupation function (Bcut, Bsat, βcut, βsat)

Dark matter probes 5

occupation functions for binned samples are trivially de-
rived from the occupation function for threshold samples
via:

〈Ncen(Mh|M t1
∗ , M t2

∗ )〉 = 〈Ncen(Mh|M t1
∗ )〉−〈Ncen(Mh|M t2

∗ )〉
(5)

and

〈Nsat(Mh|M t1
∗ , M t2

∗ )〉 = 〈Nsat(Mh|M t1
∗ )〉−〈Nsat(Mh|M t2

∗ )〉.
(6)

3.2. Functional form for 〈Ncen〉
For a threshold sample of galaxies, 〈Ncen(Mh|M t1

∗ )〉 is
fully specified given Φc(M∗|Mh) according to:

〈Ncen(Mh|M t1
∗ )〉 =

∫ ∞

M
t1
∗

Φc(M∗|Mh)dM∗. (7)

To begin with, let us consider the most simple model
in which σlogM∗

is constant. Because Φc is parameterized
as a log-normal, the central occupation function can be
analytically and conveniently derived from Equation 7
by considering the cumulative distribution function of
the Gaussian:

〈Ncen(Mh|Mt1
∗ )〉 =

1

2

[

1− erf

(
log10(Mt1

∗ ) − log10(fshmr(Mh))√
2σlogM∗

)]

(8)

where erf is the error function defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt (9)

It is important to note that Equation 8 is only valid
when σlogM∗

is constant. In the more general case where
σlogM∗

varies with Mh, 〈Ncen〉 can nonetheless be calcu-
lated by numerically integrating Equation 7. In Paper
II, we will consider cases in which σlogM∗

varies due to
the effect of stellar mass dependant measurement errors.

We note that most readers may be more familiar with
a simplified version of Equation 8 that assumes that
fshmr(Mh) is a power law. We will now describe the as-
sumptions made in order to obtain the more commonly
employed equation for 〈Ncen〉 from Equation 8.

If we make the assumption that fshmr(Mh) ∝ Mp
h and

we define Mmin such that M t1
∗ = fshmr(Mmin) (in other

terms, Mmin is the inverse of the SHMR relation for the
stellar mass threshold M t1

∗ ) then using Equation 8 we
can write that:

〈Ncen(Mh|M t1
∗ )〉

=
1

2

[

1 − erf

(
log10(M

t1
∗ ) − log10(fshmr(Mh))√

2σlogM∗

)]

=
1

2

[

1 − erf

(
log10(M

p
min) − log10(M

p
h)√

2σlogM∗

)]

(10)

If we now use the fact that erf(−x) = −erf(x) and if
we define σ̃logM such that σ̃logM ≡ σlogM∗

/p we find that:

〈Ncen(Mh|M t1
∗ )〉 =

1

2

[

1 + erf

(
log10(Mh) − log10(Mmin)√

2σ̃logM

)]

(11)
which is a commonly employed formula for 〈Ncen〉.
Firstly, it is important to note that Equation 11 is only an
approximation for 〈Ncen〉 for the case when the SHMR is
a power-law and is certainly not valid over a large range
of stellar masses. Secondly, σ̃logM can be interpreted as
the scatter in halo mass at fixed stellar mass if and only if
the SHMR is a power-law and if σlogM∗

is constant. Since
there is accumulating evidence that the SHMR is not a
single power law (and the same is in general true for the
relationship between halo mass and galaxy luminosity),
we recommend using Equation 8 instead of Equation 11.

Figure 2 illustrates the difference in 〈Ncen〉 when Equa-
tion 8 is used instead of Equation 11. At log10(M∗) !
10.2, the functional form for the SHMR has a sub-
exponential behaviour and as a result, 〈Ncen〉 begins to
deviate from a simple erf function. Assuming that Equa-
tion 8 correctly represents 〈Ncen〉, the error made on
Mmin can be of order 10 to 20% at log10(Mmin) ! 12
if Equation 11 is used to fit 〈Ncen〉 instead of Equation
8.

We note that this does not invalidate equation 11 as a
possible parameterization of the central occupation func-
tion. The point we wish to stress is that the common in-
terpretation of the scatter constrained by this parmater-
ization is not proportional to a the scatter in a lognormal
distribution of stellar mass at fixed halo mass.

3.3. Functional form for 〈Nsat〉
In addition to the five parameters introduced to model

〈Ncen〉 and σlogM∗
, we now introduce five new parame-

ters to model 〈Nsat〉. In order to simultaneously fit g-g
lensing, clustering, and stellar mass function measure-
ments that employ different binning schemes, we require
a model for 〈Nsat〉 that is independent of the binning
scheme.

Numerical simulations demonstrate that the occupa-
tion of subhalos (e.g., Kravtsov et al. 2004; Conroy et al.
2006) and satellite galaxies in cosmological hydrody-
namic simulations (Zheng et al. 2005) follow a power law
at high host halo mass, then fall off rapidly when the
mean occupation becomes significantly less than unity.
Thus we parameterize the satellite occupation function
a power of host mass with an exponential cutoff:

〈Nsat(Mh|M t1
∗ )〉 =

(
Mh

Msat

)αsat

exp

(
−Mcut

Mh

)
(12)

where αsat represents the power-law slope of the satellite
mean occupation function, Msat defines the amplitude of
the power-law, and Mcut sets the scale of the exponential
cut-off.

Observational analyses have demonstrated that there
is a self-similarity in occupation functions such that
Msat/Mmin ≈ constant for luminosity-defined sam-
ples (Zehavi et al. 2005; Zheng et al. 2007, 2009; The
SDSS Collaboration et al. 2010), where Mmin is taken
from equation (11) and is conceptually equivalent to
f−1
shmr(M∗), where M∗ is the stellar mass threshold of the
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occupation functions for binned samples are trivially de-
rived from the occupation function for threshold samples
via:

〈Ncen(Mh|M t1
∗ , M t2

∗ )〉 = 〈Ncen(Mh|M t1
∗ )〉−〈Ncen(Mh|M t2

∗ )〉
(5)

and

〈Nsat(Mh|M t1
∗ , M t2

∗ )〉 = 〈Nsat(Mh|M t1
∗ )〉−〈Nsat(Mh|M t2

∗ )〉.
(6)

3.2. Functional form for 〈Ncen〉
For a threshold sample of galaxies, 〈Ncen(Mh|M t1

∗ )〉 is
fully specified given Φc(M∗|Mh) according to:

〈Ncen(Mh|M t1
∗ )〉 =

∫ ∞

M
t1
∗

Φc(M∗|Mh)dM∗. (7)

To begin with, let us consider the most simple model
in which σlogM∗

is constant. Because Φc is parameterized
as a log-normal, the central occupation function can be
analytically and conveniently derived from Equation 7
by considering the cumulative distribution function of
the Gaussian:
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1
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(
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)]

(8)

where erf is the error function defined as:

erf(x) =
2√
π

∫ x

0
e−t2dt (9)

It is important to note that Equation 8 is only valid
when σlogM∗

is constant. In the more general case where
σlogM∗

varies with Mh, 〈Ncen〉 can nonetheless be calcu-
lated by numerically integrating Equation 7. In Paper
II, we will consider cases in which σlogM∗

varies due to
the effect of stellar mass dependant measurement errors.

We note that most readers may be more familiar with
a simplified version of Equation 8 that assumes that
fshmr(Mh) is a power law. We will now describe the as-
sumptions made in order to obtain the more commonly
employed equation for 〈Ncen〉 from Equation 8.

If we make the assumption that fshmr(Mh) ∝ Mp
h and

we define Mmin such that M t1
∗ = fshmr(Mmin) (in other

terms, Mmin is the inverse of the SHMR relation for the
stellar mass threshold M t1

∗ ) then using Equation 8 we
can write that:

〈Ncen(Mh|M t1
∗ )〉

=
1

2

[

1 − erf

(
log10(M

t1
∗ ) − log10(fshmr(Mh))√

2σlogM∗

)]

=
1

2

[

1 − erf

(
log10(M

p
min) − log10(M

p
h)√

2σlogM∗

)]

(10)

If we now use the fact that erf(−x) = −erf(x) and if
we define σ̃logM such that σ̃logM ≡ σlogM∗

/p we find that:

〈Ncen(Mh|M t1
∗ )〉 =

1

2

[

1 + erf

(
log10(Mh) − log10(Mmin)√

2σ̃logM

)]

(11)
which is a commonly employed formula for 〈Ncen〉.
Firstly, it is important to note that Equation 11 is only an
approximation for 〈Ncen〉 for the case when the SHMR is
a power-law and is certainly not valid over a large range
of stellar masses. Secondly, σ̃logM can be interpreted as
the scatter in halo mass at fixed stellar mass if and only if
the SHMR is a power-law and if σlogM∗

is constant. Since
there is accumulating evidence that the SHMR is not a
single power law (and the same is in general true for the
relationship between halo mass and galaxy luminosity),
we recommend using Equation 8 instead of Equation 11.

Figure 2 illustrates the difference in 〈Ncen〉 when Equa-
tion 8 is used instead of Equation 11. At log10(M∗) !
10.2, the functional form for the SHMR has a sub-
exponential behaviour and as a result, 〈Ncen〉 begins to
deviate from a simple erf function. Assuming that Equa-
tion 8 correctly represents 〈Ncen〉, the error made on
Mmin can be of order 10 to 20% at log10(Mmin) ! 12
if Equation 11 is used to fit 〈Ncen〉 instead of Equation
8.

We note that this does not invalidate equation 11 as a
possible parameterization of the central occupation func-
tion. The point we wish to stress is that the common in-
terpretation of the scatter constrained by this parmater-
ization is not proportional to a the scatter in a lognormal
distribution of stellar mass at fixed halo mass.

3.3. Functional form for 〈Nsat〉
In addition to the five parameters introduced to model

〈Ncen〉 and σlogM∗
, we now introduce five new parame-

ters to model 〈Nsat〉. In order to simultaneously fit g-g
lensing, clustering, and stellar mass function measure-
ments that employ different binning schemes, we require
a model for 〈Nsat〉 that is independent of the binning
scheme.

Numerical simulations demonstrate that the occupa-
tion of subhalos (e.g., Kravtsov et al. 2004; Conroy et al.
2006) and satellite galaxies in cosmological hydrody-
namic simulations (Zheng et al. 2005) follow a power law
at high host halo mass, then fall off rapidly when the
mean occupation becomes significantly less than unity.
Thus we parameterize the satellite occupation function
a power of host mass with an exponential cutoff:

〈Nsat(Mh|Mt1
∗ )〉 = 〈Ncen(Mh|Mt1

∗ )〉
(

Mh

Msat

)αsat

exp

(
−Mcut

Mh

)

(12)
where αsat represents the power-law slope of the satellite
mean occupation function, Msat defines the amplitude of
the power-law, and Mcut sets the scale of the exponential
cut-off.

Observational analyses have demonstrated that there
is a self-similarity in occupation functions such that
Msat/Mmin ≈ constant for luminosity-defined sam-
ples (Zehavi et al. 2005; Zheng et al. 2007, 2009; The
SDSS Collaboration et al. 2010), where Mmin is taken
from equation (11) and is conceptually equivalent to
f−1
shmr(M∗), where M∗ is the stellar mass threshold of the
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The Global Stellar Content of DM Halos
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Halo Occupation of X-ray AGN
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Conclusions



Conclusions & Future Directions

Gravitational lensing is a powerful tool to probe cosmic 
acceleration, dark matter, & galaxy formation.

BUT:  measurement precision ≃ theoretical understanding

Harness the power of BOSS, HSC, & Euclid

➡  Improve 2d clustering & lensing as a cosmological tool

➡  Theory: use N-body simulations directly? Reduce systematic uncertainties due 
to analytical models.

➡  Combine BOSS RSD with HSC lensing. GR tests?
➡ 3pt statistics
➡  Clusters to z=1 from HSC. Calibrate mass-observable relations, study dark 

matter profiles, properties of central galaxies, etc ...
➡  Connection between galaxies and dark matter with HSC to z=1. Probe 

mechanisms responsible for the quenching of star formation.


