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3Warming up: C, P, T and CPT

Convention of γ-matrices:

{γµ, γν} = 2gµν, γ†µ = γµ, γ5 = iγ1γ2γ3γ0 = γ†5,

γT1 = −γ1, γT2 = γ2, γT3 = −γ3, γT0 = γ0, γT5 = γ5.

γ⋆1 = γ1, γ⋆2 = −γ2, γ⋆3 = γ3, γ⋆0 = γ0, γ⋆5 = γ5.

C: Charge conjugation is defined by

ψ(x)→ −C−1ψ
T
(x), ψ(x)→ ψT (x)C,

where the charge conjugation matrixC = iγ2γ0 satisfies

C†C = 1, CT = −C, CγµC
−1 = −γTµ , Cγ5C

−1 = γT5 .



4P: Parity transformation is defined by

ψ(t, x⃗)→ γ0ψ(t,−x⃗), ψ(t, x⃗)→ ψ(t,−x⃗)γ0,

CP transformation is defined as

ψ(t, x⃗)→ −W−1ψ
T
(t,−x⃗), ψ(t, x⃗)→ ψT (t,−x⃗)W

where

W = iγ2, W †W = 1,

and

WγµW
−1 = γTk , µ = k,

= −γT0 , µ = 0,

Wγ5W
−1 = −γT5 .



5T :(Anti-unitary) time reversal is defined by

T ψα(t, x⃗)T −1 = Tαβψβ(−t, x⃗),

T ψ†α(t, x⃗)T −1 = ψ†β(−t, x⃗)(T−1)βα,

with

T = iγ1γ3, TγµT
−1 = γTµ = (γµ)⋆,

T = T † = T−1 = −T ⋆

For example,

T iµψ̄(x0, x⃗)ψ(y0, y⃗)T −1

= −iµψ†(−x0, x⃗)T−1(γ0)
⋆Tψ(−y0, y⃗)

= −iµψ̄(−x0, x⃗)ψ(−y0, y⃗).



6Anti-unitary CPT is defined by

CPT ψα(t, x⃗)(CPT )−1 = iγ5
αβψ

†
β(−t,−x⃗),

CPT ψ̄α(t, x⃗)(CPT )−1 = −iψβ(−t,−x⃗)(γ5γ0)βα.

For example,

CPT iµψ̄(x0, x⃗)ψ(y0, y⃗)(CPT )−1

= (−iµ)ψβ(−x0,−x⃗)(γ5γ0)βαγ
5
αδψ

†
δ(−y

0,−y⃗)
= −iµψ̄(−y0,−y⃗)ψ(−x0,−x⃗).

where we used the spin-statistics theorem.



7Possible CPT violation

Conventional Argument: O.W. Greenberg, Phys. Rev.
Lett. 89, 231602 (2002).

CPT violation⇒ Lorentz symmetry violation

Counter Example: M. Chaichian, A.D. Dolgov, V.A.
Novikov and A. Tureanu, Phys. Lett.B699, 177 (2011).

L = ψ̄(x)[iγµ∂µ −M ]ψ(x) +
1

2
∂µϕ(x)∂µϕ(x)− 1

2
m2ϕ2(x)

+gψ̄(x)ψ(x)ϕ(x)− V (ϕ)

+g1ψ̄(x)ψ(x)

∫
d4yθ(x0 − y0)θ((x− y)2)ϕ(y)

but C and CP are preserved.



8Yukawa-type model of CPT violation:
arXiv:1205.0152[hep-th].

L = ψ̄(x)[iγµ∂µ −M ]ψ(x) +
1

2
∂µϕ(x)∂µϕ(x)− 1

2
m2ϕ2(x)

+gψ̄(x)ψ(x)ϕ(x)− V (ϕ)

+g1ψ̄(x)ψ(x)

∫
d4yθ(x0 − y0)δ((x− y)2 − l2)ϕ(y).

This Lagrangian is formally Hermitian and the term
with a small real g1 and the step function θ(x0 − y0)
stands for the CPT and T violating interaction; l is a
real constant parameter.



9Present CPT violation is based on the extra form fac-
tor in momentum space as

g1

∫
d4xψ̄(x)ψ(x)

∫
d4yθ(x0 − y0)δ((x− y)2 − l2)ϕ(y)

= g1

∫
dp1dp2dq

∫
d4xψ̄(p1)e

−ip1xψ(p2)e
−ip2x

×
∫
d4yθ(x0 − y0)δ((x− y)2 − l2)ϕ(q)e−iqy

= g1

∫
dp1dp2dq(2π)4δ4(p1 + p2 + q)ψ̄(p1)ψ(p2)f (q)ϕ(q),

where f (q) ≡
∫
d4zθ(z0)δ(z2 − l2)eiqz.



10The ordinary local field theory is characterized by δ(z)
and f (q) = 1. The above form factor is infrared diver-
gent, and it is quadratically divergent in the present
example. This infrared divergence arises from the fact
that we cannot divide Minkowski space into (time-like)
domains with finite 4-dimensional volumes in a Lorentz
invariant manner. The Minkowski space is hyperbolic
rather than elliptic.



11It is convenient to define the form factors

f±(p) =

∫
d4z1e

±ipz1θ(z0
1)δ((z1)

2 − l2),

which are inequivalent for the time-like p due to the
factor θ(z0

1). For the time-like momentum p, one may
choose a suitable Lorentz frame such that p⃗ = 0 and

f±(p0) = 2π

∫ ∞

0

dz
z2e±ip

0
√
z2+l2

√
z2 + l2

,

and for the space-like momentum p one may choose a
suitable Lorentz frame such that p0 = 0 and

f±(p⃗) =
2π

|p|2

∫ ∞

0

dz z
sin z√

z2 + (|p|l)2
,

which is analogous to the Fourier transform of the
Coulomb potential and real.



12The expression f±(p) is mathematically related to the
formula of the two-point Wightman function (for a free
scalar field), which suggests that f±(p) is mathemat-
ically well-defined for p ̸= 0 at least in the sense of
distribution.

Two-point Wightman function for a free scalar

⟨0|ϕ(x)ϕ(y)|0⟩ =

∫
d4k

(2π)4
e−ik(x−y)2πδ(k2 −m2)θ(k0).



13Quantization:

No canonical quantization of theory non-local in time.

1. Yang-Feldman formulation (←equations of motion)

2. Path integral by integrating the formal equations
of motion by means of Schwinger’s action principle.
K. Fujikawa, Phys. Rev. D70, 085006 (2004).

Cf., Spin-statistical theorem in path integral
K. Fujikawa, Int.J. Mod. Phys. A16(2001) 4025 [hep-
th/0107076].



14The generating functional

⟨0,+∞|0,−∞⟩J =

∫
DψDψ̄Dϕ exp{ i

~

∫
d4x[L + LJ ]}

with LJ = ψ̄(x)η(x) + η̄(x)ψ(x) + ϕ(x)J(x), and one
may generate Green’s functions in a power series expan-
sion of perturbation such as

(i)n⟨T ⋆ϕ(x1)...ϕ(xN)

∫
d4y1LI(y1)....

∫
d4ynLI(yn)⟩,

We use the covariant T ⋆-product which is essential to
make the path integral on the basis of Schwinger’s ac-
tion principle consistent.



15Lagrangian model of fermion mass splitting

In the present nonlocal formulation, we have a new
possibility which is absent in a smooth nonlocal exten-
sion of the CPT-even local field theory. One can con-
sider Hermitian combination∫

d4xd4y[θ(x0 − y0)− θ(y0 − x0)]

×δ((x− y)2 − l2)[iµψ̄(x)ψ(y)],

which is non-vanishing.



16We have the following transformation property of the
operator part

C : iµψ̄(x)ψ(y)→ iµψ̄(y)ψ(x),

P : iµψ̄(x0, x⃗)ψ(y0, y⃗)→ iµψ̄(x0,−x⃗)ψ(y0,−y⃗),
T : iµψ̄(x0, x⃗)ψ(y0, y⃗)→ −iµψ̄(−x0, x⃗)ψ(−y0, y⃗),

and thus the overall transformation property is C=−1,
P=1, T=1.

Namely, C=CP=CPT=−1.



17It is thus interesting to examine a new action

S =

∫
d4x{ψ̄(x)iγµ∂µψ(x)−mψ̄(x)ψ(x)

−
∫
d4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)

×[iµψ̄(x)ψ(y)]},
which is Lorentz invariant and Hermitian. For the real
parameter µ, the third term has C=CP=CPT=−1 and
no symmetry to ensure the equality of particle and an-
tiparticle masses.



18The Dirac equation is replaced by

iγµ∂µψ(x) = mψ(x)

+iµ

∫
d4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)ψ(y).

By inserting an ansatz ψ(x) = e−ipxU(p),

̸pU(p) = mU(p)

+ iµ

∫
d4y[θ(x0 − y0)− θ(y0 − x0)]

× δ((x− y)2 − l2)e−ip(y−x)U(p)

= mU(p) + iµ[f+(p)− f−(p)]U(p),

where f±(p) is the Lorentz invariant form factor.



19The (off-shell) propagator is defined by∫
d4xeip(x−y)⟨T ⋆ψ(x)ψ̄(y)⟩

=
i

̸p−m + iϵ− iµ[f+(p)− f−(p)]
,

which is manifestly Lorentz covariant. Note that we
use the T ⋆-product for the path integral in accord with
Schwinger’s action principle, which is based on the equa-
tion of motion.
TheT ⋆-product is quite different from the canonical
T -product in the present nonlocal theory, and in fact
the canonical quantization is not defined in the present
theory.



20For the space-like p, the extra term with µ in the
denominator of the propagator vanishes since f+(p) =
f−(p) for p = (0, p⃗). Thus the propagator has poles
only at the time-like momentum, and in this sense the
present Hermitian action does not allow a tachyon.
For time-like p, we go to the frame where p⃗ = 0. Then

the eigenvalue equation is given by

p0 = γ0{m + iµ[f+(p0)− f−(p0)]},
namely,

p0 = γ0

[
m− 4πµ

∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
. (1)



21The solution p0 of this equation determines the possi-
ble mass eigenvalues.
This eigenvalue equation under p0 → −p0 becomes:

−p0 = γ0

[
m + 4πµ

∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
.

By sandwiching this equation by γ5, we have

p0 = γ0

[
m + 4πµ

∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2

]
, (2)

which is not identical to the original equation (1).



22In other words, if p0 is the solution of the original
equation, −p0 cannot be the solution of the original
equation except for µ = 0. The last term in our La-
grangian with C=CP=CPT=−1 splits the particle and
antiparticle masses.
As a crude estimate of the mass splitting, one may

assume µ≪ m and solve these equations iteratively.

p0 ≃ m∓ 4πµ

∫ ∞

0

dz
z2 sin[m

√
z2 + l2]√

z2 + l2
,

where we used the upper component of γ0.



23It is possible to assign a finite value to the mass split-
ting for p0 ̸= 0 by using the formal relation,∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]√

z2 + l2
= − ∂2

∂p2
0

∫ ∞

0

dz
z2 sin[p0

√
z2 + l2]

[z2 + l2]3/2
.



24Neutrino antineutrino mass splitting:

H. Murayama, T. Yanagida, Phys. Lett. B 520 (2001)
263;
G. Barenboim, L. Borissov, J.D. Lykken, A.Y. Smirnov,
JHEP 0210 (2002) 001;
G. Barenboim, L. Borissov, J. Lykken, Phys. Lett. B
534 (2002) 106;
S.M. Bilenky, M. Freund, M. Lindner, T. Ohlsson, W.
Winter, Phys. Rev. D 65 (2002) 073024;
G. Barenboim, J.D. Lykken, Phys. Rev. D 80 (2009)
113008.



25G. Altarelli, The mystery of neutrino mixings,
arXiv:1111.6421 [hep-ph].

P. Adamson, et al., MINOS Collaboration, Phys. Rev.
Lett. 107 (2011) 181802;
P. Adamson, et al., MINOS Collaboration, Phys. Rev.
Lett. 108 (2012) 191801;
P. Adamson, et al., MINOS Collaboration, Phys. Rev.
D 85 (2012) 031101.



26We consider a minimal extension of the Standard
Model by incorporating the right-handed neutrino:

ψL =

(
νL
eL

)
, ψR =

(
νR
eR

)
and the part of the Standard Model Lagrangian relevant
to our discussion is given by

L = ψLiγ
µ(∂µ − igT aW a

µ − i
1

2
g′YLBµ)ψL

+eRiγ
µ(∂µ + ig′Bµ)eR + νRiγ

µ∂µνR

−

[√
2me

v
eRϕ

†ψL +

√
2mD

v
νRϕ

†
cψL +

mR

2
νTRCνR

]
+ h.c.



27with YL = −1, and the Higgs doublet and its SU(2)
conjugate:

ϕ =

(
ϕ+

ϕ0

)
, ϕc ≡ iτ2ϕ

⋆ =

(
ϕ̄0

−ϕ−
)
.

The operator C stands for the charge-conjugation ma-
trix for spinors. The term with mR in the above
Lagrangian is the Majorana mass term for the right-
handed neutrino.



28We take the above Lagrangian as a low-energy effec-
tive theory and apply to it the naturalness argument
of ’t Hooft. We first argue that the choice m2

D ≫ m2
R

is natural, since by setting mR = 0 one recovers an
enhanced fermion number symmetry. We then ar-
gue that me ≫ mD is also natural, since by setting
mD = mR = 0 one finds an enhanced symmetry
νR(x)→ νR(x)+ξR, with constant ξR. Thus, our basic
assumption is me ≫ mD ≫ mR, namely, the so-called
pseudo-Dirac scenario, and in the explicit analysis be-
low we adopt the Dirac limit mR = 0 for simplicity.



29Our next observation is that the combination

ϕ†c(x)ψL(x)

is invariant under the full SU(2)L × U(1) gauge sym-
metry. One may thus add a hermitian non-local Higgs
coupling to the Lagrangian,

LCPT (x) = −i2
√

2µ

v

∫
d4yδ((x− y)2 − l2)θ(x0 − y0){

ν̄R(x)
(
ϕ†c(y)ψL(y)

)
−

(
ψ̄L(y)ϕc(y)

)
νR(x)

}
,

without spoiling the basic SU(2)L × U(1) gauge sym-
metry.



30In the unitary gauge, ϕ±(x) = 0 and ϕ0(x) → (v +
φ(x))/

√
2, the neutrino mass term (with mR = 0)

Sνmass =

∫
d4x

{
−mDν̄(x)ν(x)

(
1 +

φ(x)

v

)
−iµ

∫
d4yδ((x− y)2 − l2)θ(x0 − y0)

×[ν̄(x)

(
1 +

φ(y)

v

)
(1− γ5)ν(y)

−ν̄(y)

(
1 +

φ(y)

v

)
(1 + γ5)ν(x)]

}



31

Sνmass =

∫
d4x

{
−mDν̄(x)ν(x)

(
1 +

φ(x)

v

)
−iµ

∫
d4yδ((x− y)2 − l2)[θ(x0 − y0)

−θ(y0 − x0)]ν̄(x)ν(y)

+iµ

∫
d4yδ((x− y)2 − l2)ν̄(x)γ5ν(y)

−iµ
v

∫
d4yδ((x− y)2 − l2)θ(x0 − y0)

×[ν̄(x)(1− γ5)ν(y)− ν̄(y)(1 + γ5)ν(x)]φ(y)
}



32When one looks at the mass terms without the Higgs φ
coupling, the first two terms are identical to our simple
model but an extra parity-violating non-local mass term
appears, which adds an extra term −iµγ5g(p

2) to m in
the mass eigenvalue equations; here

g(p2) =

∫
d4z1e

ipz1δ((z1)
2 − l2).

This extra term is C and CPT preserving and does
not contribute to the mass splitting.



33Since we are assuming that CPT breaking terms are
very small, we may solve the mass eigenvalue equations
iteratively. We then obtain

m± ≃ mD − iµγ5g(m
2
D)± 4πµ

∫ ∞

0

dz
z2 sin[mD

√
z2 + l2]√

z2 + l2
,

The parity violating mass −iµγ5g(m
2
D) is now trans-

formed away by a suitable global chiral transformation
without modifying the last term to the order linear in
the small parameter µ.



34In this way, the neutrino and antineutrino mass split-
ting is incorporated in the Standard Model by a Lorentz
invariant non-local CPT breaking mechanism, without
spoiling the SU(2)L × U(1) gauge symmetry.

The Higgs particle φ itself has a tiny C-, CP - and
CPT -violating coupling.



35If the neutrino–antineutrino mass splitting is con-
firmed by experiments, it would imply that neutrinos
are Dirac-type particles rather than Majorana-type par-
ticles. Also, our identification of the neutrino mass
terms as the origin of the possible CPT breaking may
be natural if one recalls that the mass terms of the neu-
trinos are the known origin of new physics beyond the
original Standard Model.
The remaining couplings of the Standard Model are

very tightly controlled by the SU(2)L × U(1) gauge
symmetry, and only the neutrino mass terms allow the
present non-local gauge invariant couplings without in-
troducing Wilson-line type gauge interactions.



36Some basic field theoretical issues:
As for the quantization of the theory non-local in time,

the path integral on the basis of Schwinger’s action prin-
ciple.
It is also well-known that a theory non-local in time

generally spoils unitarity. We have the neutrino propa-
gator

⟨T ⋆ν(x)ν̄(y)⟩ =

∫
d4p

(2π)4
e−ip(x−y)

× i

̸p−mD + iϵ + iµγ5g(p2)− iµ[f+(p)− f−(p)]
.

which gives mass formula in the pole approximation.



37The breaking of unitarity is somewhat analogous to
the use of a dimension 5 operator for the neutrino mass
term which also breaks unitarity in general.

Otherwise,
It is very gratifying that the basic SU(2)L×U(1) gauge

symmetry together with Lorentz symmetry are exactly
preserved by our non-local CPT violation.
We can thus avoid the appearance of negative norm

in the gauge sector if one applies gauge invariant and
Lorentz invariant regularization.



38Charged particles in the Standard Model:
modified QED

S =

∫
d4x

{
ψ̄(x)iγµDµψ(x)−mψ̄(x)ψ(x)

−
∫
d4y[θ(x0 − y0)− θ(y0 − x0)]δ((x− y)2 − l2)

×iµψ̄(x) exp

[
ie

∫ x

y

Aµ(z)dz
µ]ψ(y)

]}
−1

4

∫
d4xFµν(x)F µν(x),

with

Dµ = ∂µ − ieAµ(x).



39Electromagnetic pair production in the pres-
ence of mass splitting was analyzed.

”Electromagnetic interaction in theory with
Lorentz invariant CPT violation”, arXiv:1210.0208
[hep-th] (to appear in PLB).

Possible modification of Sakharov conditions on
baryon asymmetry in the presence of CPT violation
and particle-antiparticle mass splitting was noted.


