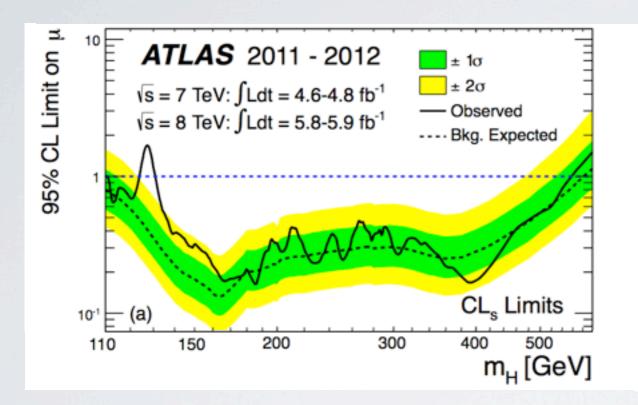
Axion-Higgs Unification

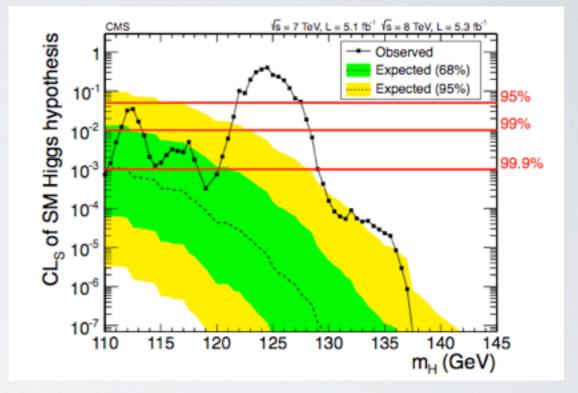
Michele Redi

1208.6013 with A. Strumia

IPMU, March 2013

July 31, 2012 Phys. Lett. B716





$m_h \approx 125 \,\mathrm{GeV}$

FLAVOR HAS FOUND NOTHING

$\Lambda > 10^5 \,\mathrm{TeV}$

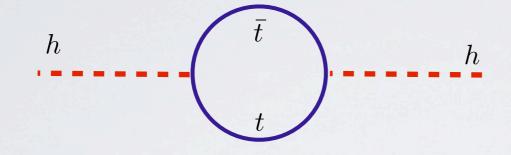
LEP HAS FOUND NOTHING

$\Lambda > 5 - 10 \,\mathrm{TeV}$

LHC HAS FOUND THE HIGGS + NOTHING

$\Lambda > \text{few} \times \text{TeV}$

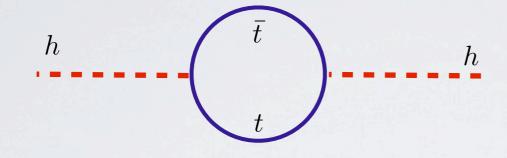
Hierarchy Problem:



$$\delta m_h^2 = -\frac{3\lambda_t^2}{8\pi^2}\Lambda_t^2$$

$\Lambda < 1\,{\rm TeV}$

Hierarchy Problem:



$$\delta m_h^2 = -\frac{3\lambda_t^2}{8\pi^2}\Lambda_t^2$$

$\Lambda < 1 \,\mathrm{TeV}$

Suspicion: Perhaps naturalness was not a good guide

$\Lambda \gg \text{TeV}?$

$\Lambda \gg \text{TeV}?$

- Explains why we have not seen anything

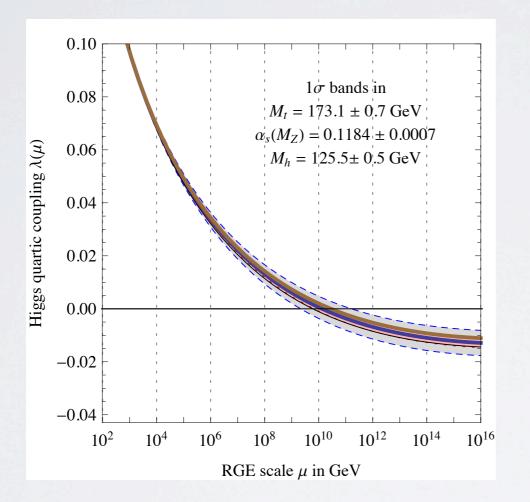
$\Lambda \gg \text{TeV}?$

- Explains why we have not seen anything

- Higgs could be tuned anthropically (as c.c.)

HINTS ?

• Running:



$$V(h) = m^2 h^2 / 2 + \lambda h^4 / 4$$

De Grassi et al.'12

Quartic almost zero at high scale for 125 GeV Higgs

• Strong CP problem:

 $\frac{\theta}{32\pi^2} \int d^4x \,\epsilon^{\mu\nu\rho\sigma} \,Tr[G_{\mu\nu}G_{\rho\sigma}]$

 $\theta < 10^{-10}$

• Strong CP problem:

$$\frac{\theta}{32\pi^2} \int d^4x \,\epsilon^{\mu\nu\rho\sigma} \,Tr[G_{\mu\nu}G_{\rho\sigma}]$$

 $\theta < 10^{-10}$

Axions are most elegant solution

$$\theta \to \frac{a(x)}{f}$$

Axions are Nambu-Goldstone bosons of a symmetry anomalous under QCD

$$m_a \sim \frac{m_\pi f_\pi}{f}$$

Experimentally:

 $f>10^9\,{\rm GeV}$

Axions can be dark matter

$$\frac{\rho_a}{\rho_{\rm DM}} \approx \theta_i^2 \left(\frac{f}{2 - 3 \times 10^{11} \,\text{GeV}} \right) \qquad \longrightarrow \qquad f \approx 10^{11} \,\text{GeV}$$

Experimentally:

 $f>10^9\,{\rm GeV}$

Axions can be dark matter

$$\frac{\rho_a}{\rho_{\rm DM}} \approx \theta_i^2 \left(\frac{f}{2 - 3 \times 10^{11} \,\text{GeV}} \right) \qquad \longrightarrow \qquad f \approx 10^{11} \,\text{GeV}$$

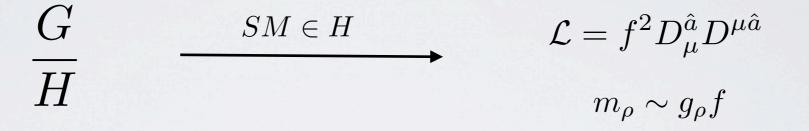
• Neutrino masses

$$\frac{1}{\Lambda}(LH)^2 \qquad \qquad m_{\nu} \propto \frac{v^2}{\Lambda}$$

NGB HIGGS

Georgi, Kaplan '80s

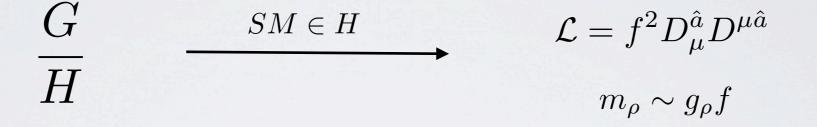
Higgs could be a Nambu-Goldstone boson of new strong dynamics



NGB HIGGS

Georgi, Kaplan '80s

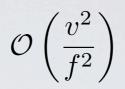
Higgs could be a Nambu-Goldstone boson of new strong dynamics



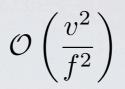
Massless at leading order.

Main difference from technicolor is that f is not linked to v.

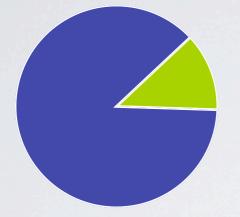
Deviation from SM:



Deviation from SM:



Higgs is an angle,



$0 < h < 2\pi f$		\rightarrow TUNING $\propto \frac{f^2}{v^2}$
	Small Tuning	f < TeV
Typical spectrum:		
		$m_ ho\sim 3{ m TeV}$
$f=0.5-1{ m TeV}$		$m_h = 125 \mathrm{GeV}$ $m_W = 80 \mathrm{GeV}$ 0

Partial compositeness:

D. B. Kaplan '92 Contino-Pomarol, '04

Strong sector: Higgs + (top) m_{ρ} g_{ρ} Elementary: SM Fermions + Gauge Fields

Partial compositeness:

D. B. Kaplan '92 Contino-Pomarol, '04

Strong sector: Higgs + (top) m_{ρ} g_{ρ}

$$\lambda_L$$
 λ_R g
Gauging SU(3)xSU(2)xU(1)
mixing to fermionic operators

Elementary: SM Fermions + Gauge Fields

They talk through linear couplings:

$$\mathcal{L}_{gauge} = g \, A_{\mu} J^{\mu}$$

 $\mathcal{L}_{mixing} = \lambda_L \bar{f}_L O_R + \lambda_R \bar{f}_R O_R$

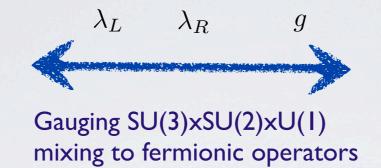
$$\epsilon \sim \frac{\lambda}{Y}$$

 $y_{SM} = \epsilon_L \cdot Y \cdot \epsilon_R$

Partial compositeness:

D. B. Kaplan '92 Contino-Pomarol, '04

Strong sector: Higgs + (top) m_{ρ} g_{ρ}



 $\epsilon \sim \frac{\lambda}{V}$

Elementary: SM Fermions + Gauge Fields

They talk through linear couplings:

$$\mathcal{L}_{gauge} = g \, A_{\mu} J^{\mu}$$

$$\mathcal{L}_{mixing} = \lambda_L \bar{f}_L O_R + \lambda_R \bar{f}_R O_R$$

$$y_{SM} = \epsilon_L \cdot Y \cdot \epsilon_R$$

+ phenomenology greatly ameliorated

- big dynamical assumptions

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

- precision tests

 $m_{\rho} > 3 \,\mathrm{TeV}$

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

- precision tests

 $m_{\rho} > 3 \,\mathrm{TeV}$

- direct exclusion

 $m_f > 0.7 \,\mathrm{TeV}$ $m_\rho > 2 \,\mathrm{TeV}$

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

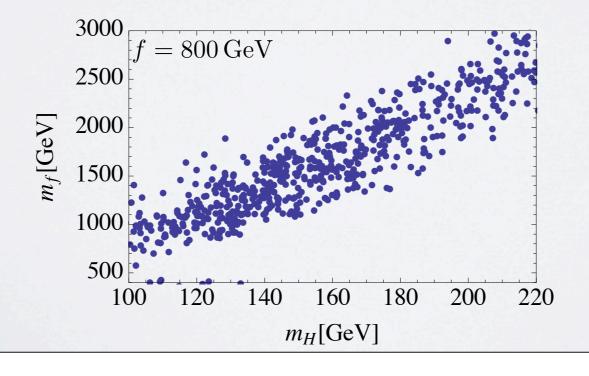
- precision tests

 $m_{\rho} > 3 \,\mathrm{TeV}$

- direct exclusion

 $m_f > 0.7 \,\mathrm{TeV}$ $m_\rho > 2 \,\mathrm{TeV}$

- Higgs mass

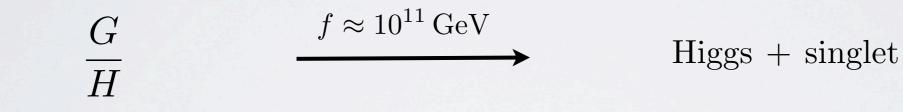


Redi, Tesi '12

$f \approx 10^{11} \,\mathrm{GeV}$

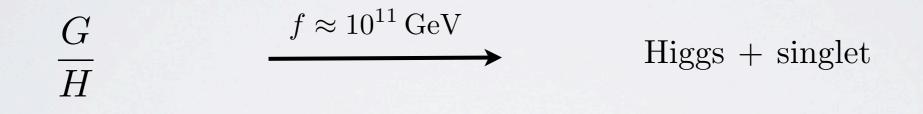
AXION-HIGGS

Basic idea: Axion and Higgs originate from the same dynamics. f is fixed by dark matter and the electro-weak scale is tuned.



AXION-HIGGS

Basic idea: Axion and Higgs originate from the same dynamics. f is fixed by dark matter and the electro-weak scale is tuned.



Axion anomaly from new fermions (KSVZ)

Axion anomaly from SM fermions (DFSZ)

HIGGS + KSVZ AXION

Kim-Shifman-Vainstein-Zakharov: Add new colored fermions + complex scalar

$$\Psi_Q \to e^{i\alpha_Q\gamma_5}\Psi_Q, \qquad \sigma \to e^{-2i\alpha_Q}\sigma$$

$$L = L_{\rm SM} + \bar{\Psi}_Q \partial \Psi_Q + |\partial_\mu \sigma|^2 + (\lambda \sigma \bar{\Psi}_Q \Psi_Q + \text{h.c.}) - V(\sigma)$$

HIGGS + KSVZ AXION

Kim-Shifman-Vainstein-Zakharov: Add new colored fermions + complex scalar

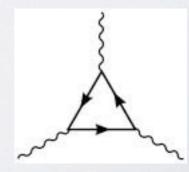
$$\Psi_Q \to e^{i\alpha_Q\gamma_5}\Psi_Q, \qquad \sigma \to e^{-2i\alpha_Q}\sigma$$

$$L = L_{\rm SM} + \bar{\Psi}_Q \partial \Psi_Q + |\partial_\mu \sigma|^2 + (\lambda \sigma \bar{\Psi}_Q \Psi_Q + \text{h.c.}) - V(\sigma)$$

Spontaneous PQ symmetry breaking

 $f \approx \langle \sigma \rangle \qquad \qquad a = \sqrt{2} \operatorname{Im}[\sigma]$

PQ symmetry anomalous under QCD



 $\frac{G}{H} = \frac{SU(6)_L \times SU(6)_R}{SU(6)_{L+R}}$

Under $SU(5)_{SM}$

 $\mathbf{35} = \mathbf{24} \oplus \mathbf{5} \oplus \mathbf{ar{5}} \oplus \mathbf{1}$

One Higgs doublet. Two massless singlets are axion candidates. $\frac{G}{H} = \frac{SU(6)_L \times SU(6)_R}{SU(6)_{L+R}}$

Under $SU(5)_{SM}$

 $\mathbf{35} = \mathbf{24} \oplus \mathbf{5} \oplus \mathbf{ar{5}} \oplus \mathbf{1}$

One Higgs doublet. Two massless singlets are axion candidates.

Under SM 33 charged scalars acquire mass.

$$m \approx \frac{g_{SM}}{4\pi} \Lambda$$

UV realization: SU(n) gauge theory with 6 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{c}$	$SU(n)_{\rm TC}$
D	$\frac{1}{3}$	1	$\overline{3}$	n
L	$-\frac{1}{2}$	2	1	n
N	$\overline{0}$	1	1	n
$ar{D}$	$-\frac{1}{3}$	1	3	$ar{n}$
\overline{L}	$\frac{1}{2}$	$\overline{2}$	1	$ar{n}$
$ar{N}$	$\tilde{0}$	1	1	$ar{n}$

$$\langle D\bar{D}\rangle = \langle L\bar{L}\rangle = \langle N\bar{N}\rangle \approx \Lambda^3$$

 $H \sim (L\bar{N}) - (\bar{L}N)^*$

 $U(1) \times SU(n)_{TC}^2$ anomaly

$$D\bar{D} + L\bar{L} + N\bar{N} \longrightarrow \frac{g_{TC}}{4\pi}\Lambda$$

UV realization: SU(n) gauge theory with 6 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{c}$	$SU(n)_{\rm TC}$
D	$\frac{1}{3}$	1	$\overline{3}$	n
L	$-\frac{1}{2}$	2	1	n
N	$\overline{0}$	1	1	n
$ar{D}$	$-\frac{1}{3}$	1	3	$ar{n}$
\overline{L}	$\frac{1}{2}$	$\overline{2}$	1	$ar{n}$
$ar{N}$	$\tilde{0}$	1	1	$ar{n}$

$$\langle D\bar{D}\rangle = \langle L\bar{L}\rangle = \langle N\bar{N}\rangle \approx \Lambda^3$$

 $H \sim (L\bar{N}) - (\bar{L}N)^*$

 $U(1) \times SU(n)_{TC}^2$ anomaly

$$D\bar{D} + L\bar{L} + N\bar{N} \longrightarrow \frac{g_{TC}}{4\pi}\Lambda$$

FLAVOR:
$$\frac{1}{\Lambda^2}(qu)(L\bar{N})$$

$$\frac{1}{\Lambda^2}(\bar{q}\bar{u})(\bar{L}N)$$

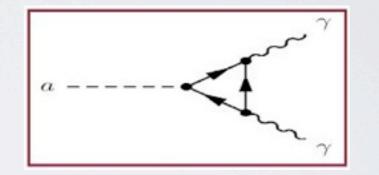
Axions couple to photon and gluons through anomalies

$$\frac{a\,E}{32\pi^2 f}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$$

$$\frac{aN}{32\pi^2 f} \epsilon^{\mu\nu\rho\sigma} Tr[G_{\mu\nu}G_{\rho\sigma}]$$

$$E = \sum Q_{PQ} Q_{em}^2$$

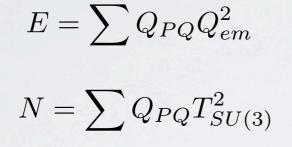
$$N = \sum Q_{PQ} T_{SU(3)}^2$$

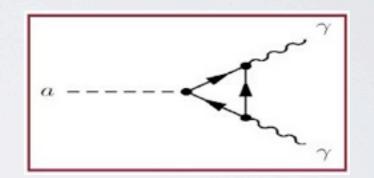


Axions couple to photon and gluons through anomalies

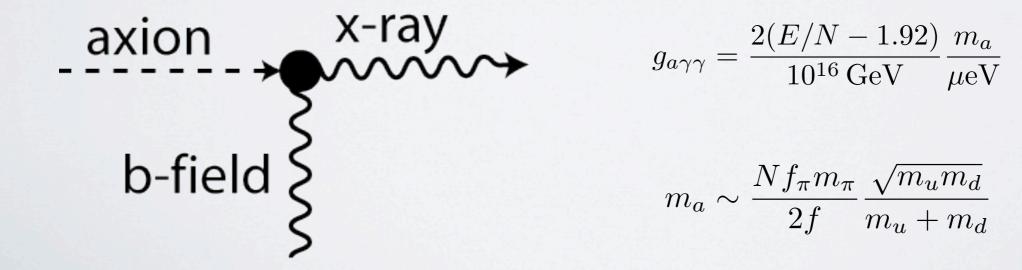
$$\frac{a\,E}{32\pi^2 f}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$$

$$\frac{aN}{32\pi^2 f} \epsilon^{\mu\nu\rho\sigma} Tr[G_{\mu\nu}G_{\rho\sigma}]$$





Experiments measure conversion of axion to photons





a) If UV interactions respect singlets symmetry

$$\frac{4D - 3L - 6N}{\sqrt{102}}, \qquad \frac{L - 2N}{\sqrt{3}} \qquad \qquad \frac{E}{N} = -\frac{5}{6}$$

a) If UV interactions respect singlets symmetry

$$\frac{4D - 3L - 6N}{\sqrt{102}}, \qquad \frac{L - 2N}{\sqrt{3}} \qquad \qquad \frac{E}{N} = -\frac{5}{6}$$

b) If SU(5) is gauged

D+L-5N	$E _ 8$
$\sqrt{30}$	$\overline{N} = \overline{3}$

a) If UV interactions respect singlets symmetry

$$\frac{4D - 3L - 6N}{\sqrt{102}}, \qquad \frac{L - 2N}{\sqrt{3}} \qquad \qquad \frac{E}{N} = -\frac{5}{6}$$

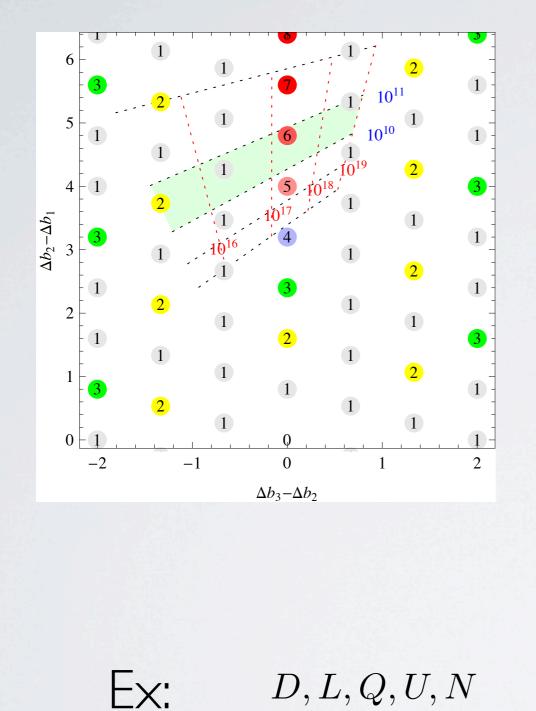
b) If SU(5) is gauged

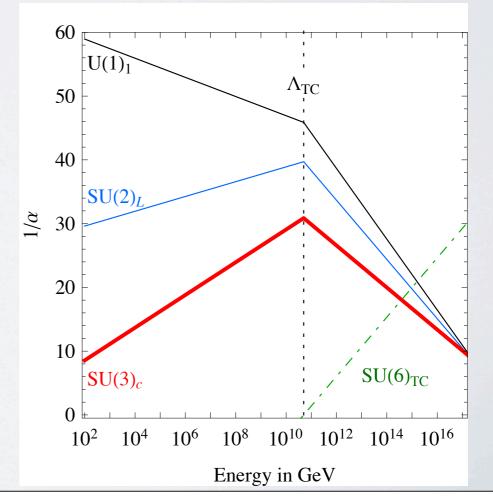
$$\frac{D+L-5N}{\sqrt{30}} \qquad \qquad \frac{E}{N} = \frac{8}{3}$$

c) If all Yukawas allowed

$$\frac{D-3L+3N}{\sqrt{30}} \qquad \qquad \frac{E}{N} = -\frac{16}{3}$$

Incomplete SU(5) multiplets can improve unification





Wednesday, March 13, 2013

HIGGS + DFSZ AXION

Dine-Fischler-Srednicki-Zhitnitsky: Two Higgs doublets and complex singlet

$$\sigma \to e^{4i\alpha}\sigma, \qquad q_{L,R} \to e^{i\alpha}q_{L,R} \qquad H_u \to e^{-2i\alpha}H_u, \qquad H_d \to e^{-2i\alpha}H_d$$
$$f = \sqrt{v_u^2 + v_d^2 + |\sigma|^2}$$

HIGGS + DFSZ AXION

Dine-Fischler-Srednicki-Zhitnitsky: Two Higgs doublets and complex singlet

$$\sigma \to e^{4i\alpha}\sigma, \qquad q_{L,R} \to e^{i\alpha}q_{L,R} \qquad H_u \to e^{-2i\alpha}H_u, \qquad H_d \to e^{-2i\alpha}H_d$$

$$f = \sqrt{v_u^2 + v_d^2 + |\sigma|^2}$$

Ex:

$$\frac{G}{H} = \frac{SU(6)}{SO(6)} \qquad \qquad SO(6) \supset SO(4) \otimes \mathrm{U}(1)_{\mathrm{PQ}}$$

 $\mathbf{20}' = (\mathbf{2}, \mathbf{2})_{\pm \mathbf{2}} \oplus (\mathbf{1}, \mathbf{1})_{\pm \mathbf{4}} \oplus (\mathbf{1}, \mathbf{1})_{\mathbf{0}} \oplus (\mathbf{3}, \mathbf{3})_{\mathbf{0}}$

UV realization: SO(n) gauge theory with 6 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{c}$	$SO(n)_{\rm TC}$	$\mathrm{U}(1)_{\mathrm{PQ}}$
L	$-\frac{1}{2}$	2	1	n	0
\overline{L}	$\frac{\overline{1}}{2}$	$\overline{2}$	1	n	0
N	$\overline{0}$	1	1	n	2
$ar{N}$	0	1	1	n	-2

 $H_1 \sim LN$

$$\langle L\bar{L}\rangle = \langle N\bar{N}\rangle = \Lambda^3$$

 $H_2 \sim \bar{L}\bar{N}$

UV realization: SO(n) gauge theory with 6 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{c}$	$SO(n)_{\rm TC}$	$U(1)_{PQ}$
	$-\frac{1}{2}$	2	1	n	0
\overline{L}	$\frac{\overline{1}}{2}$	$\overline{2}$	1	n	0
N	$\overline{0}$	1	1	n	2
\bar{N}	0	1	1	n_{i}	-2

 $H_1 \sim LN$

 $\langle L\bar{L}\rangle = \langle N\bar{N}\rangle = \Lambda^3 \qquad \qquad H_2 \sim \bar{L}\bar{N}$

Yukawas must respect PQ

$$\frac{1}{\Lambda_t^2} (q_L t_R^c)^{\dagger} (L N) + \frac{1}{\Lambda_b^2} (q_L b_R^c)^{\dagger} (\bar{L} \bar{N}) + \text{h.c.}$$

Anomalies:

$$E_{TC} = 0 \qquad \qquad \frac{E}{N} = \frac{8}{3}$$

Neutrino masses can be generated by see-saw mechanism

 $\frac{1}{\Lambda_{\nu}^{2}}(l\nu_{R}^{c})^{\dagger}(LN) + m(\nu_{R}^{c})^{2} + h.c \longrightarrow \lambda \, lH_{1}\nu_{R}^{c} + m(\nu_{R}^{c})^{2} + h.c.$

$$m_{\nu} \sim \frac{\lambda^2 v^2}{m}$$

If no right-handed neutrinos

$$\frac{1}{\Lambda_{\nu}^{5}}(l\bar{L})^{2}N^{2} \qquad \longrightarrow \qquad \frac{1}{\Lambda_{\nu}^{3}}(lH_{u})^{2}\sigma^{2} + \dots$$

PARTIAL COMPOSITENESS

$$\frac{G}{H} = \frac{SO(6)}{SO(5)} \simeq \frac{SU(4)}{\mathrm{Sp}(4)}$$

Gripaios, Pomarol, Riva, Serra '09 Redi, Tesi '12 Galloway et. al. '10

5 GBs:

5 = (2, 2) + 1

PARTIAL COMPOSITENESS

$$\frac{G}{H} = \frac{SO(6)}{SO(5)} \simeq \frac{SU(4)}{\mathrm{Sp}(4)}$$

Gripaios, Pomarol, Riva, Serra '09 Redi, Tesi '12 Galloway et. al. '10

5 GBs:

5 = (2, 2) + 1

Gauging of SM gauge symmetry preserves

 $SU(2)_L \times U(1)_Y \times U(1)_{PQ}$

Under $U(1)_{PQ}$ singlet shifts.

Sp(n) theories with 4 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{\rm c}$	$\operatorname{Sp}(n)_{\mathrm{TC}}$	$U(1)_{PQ}$
D	0	2	1	n	+1
S	$+\frac{1}{2}$	1	1	n	-1
$ar{S}$	$-\frac{1}{2}$	1	1	n	-1

Sp(n) theories with 4 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{\rm c}$	$\operatorname{Sp}(n)_{\mathrm{TC}}$	$U(1)_{PQ}$
D	0	2	1	n	+1
S	$+\frac{1}{2}$	1	1	n	-1
$ar{S}$	$-\frac{1}{2}$	1	1	n	-1

Difficult to generate QCD anomaly

(qu)(DS) $(qu)(DS)(S\overline{S})$

We can be build models with partial compositeness

 $m\psi\Psi + M\Psi\Psi + g_{\rm TC}\Psi\Psi H$

Fermions can couple to $6=(2,2)+2 \times 1$

$$q_L \to \frac{1}{\sqrt{2}} \begin{pmatrix} b_L \\ -ib_L \\ t_L \\ it_L \\ 0 \\ 0 \end{pmatrix} \qquad \qquad t_R \to \begin{pmatrix} 0 \\ 0 \\ 0 \\ i\cos\theta t_R \\ \sin\theta t_R \end{pmatrix}$$

Fermions can couple to $6=(2,2)+2 \times 1$

$$q_L \to \frac{1}{\sqrt{2}} \begin{pmatrix} b_L \\ -ib_L \\ t_L \\ it_L \\ 0 \\ 0 \end{pmatrix} \qquad \qquad t_R \to \begin{pmatrix} 0 \\ 0 \\ 0 \\ i\cos\theta t_R \\ \sin\theta t_R \end{pmatrix}$$

For $\theta = \frac{\pi}{4}$ singlet becomes exact GB PQ symmetry is anomalous due to tR rotations

$$E = 2\left[\left(\frac{4}{9} + \frac{1}{9}\right)3 + 1\right]N_F + E_{\rm TC}$$

$$\frac{E}{N} = \frac{8}{3} + \frac{E_{\rm TC}}{6} \qquad \qquad E_{TC} \sim n$$

HIGGS MASS

Higgs potential is generated by the couplings that break the global symmetry. Minimally gauge and Yukawa couplings.

$$V(h) = \sum_{i} a_{i} \sin^{2i} \left(\frac{h}{f}\right)$$

Electro-weak scale:

 a_i must be tuned

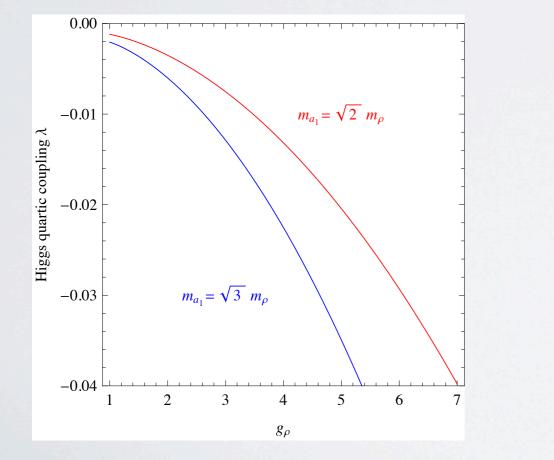
Higgs mass is then "predicted".

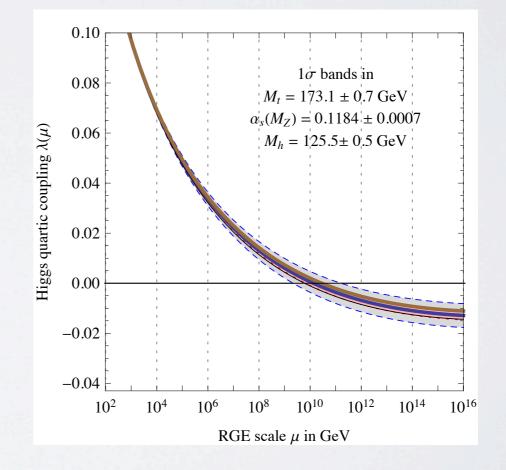
Wednesday, March 13, 2013

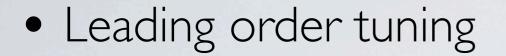
Gauge contribution:

$$V(h)_{\text{gauge}} = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \ln\left[1 + F(p^2)\sin^2\frac{h}{f}\right]$$

$$V(h)_{\text{gauge}} \approx \frac{9}{4} \frac{g^2}{16\pi^2} \frac{m_{\rho}^4}{g_{\rho}^2} \ln\left[\frac{m_{\rho}^2 + m_{a_1}^2}{2m_{\rho}^2}\right] \sin^2 \frac{h}{f} \qquad \qquad \lambda(m_{\rho})_{\text{gauge}}^{\text{leading}} \approx -3g^2 \log\frac{3}{2} \frac{g_{\rho}^2}{(4\pi)^2}$$

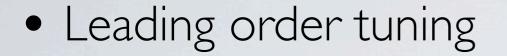






$$\lambda(\Lambda) \sim g_{\rm SM}^2 \frac{g_{\rho}^2}{(4\pi)^2} \sim \text{few} \, 10^{-2}$$

125 GeV Higgs implies weak coupling (large n)



$$\lambda(\Lambda) \sim g_{\rm SM}^2 \frac{g_\rho^2}{(4\pi)^2} \sim \text{few } 10^{-2}$$

125 GeV Higgs implies weak coupling (large n)

• Subleading order tuning

$$\lambda(\Lambda) \sim \frac{g_{\rm SM}^4}{(4\pi)^2} \sim 10^{-3}$$

Model I:

$$V_{\text{fermions}} \sim \frac{N_c \,\lambda_t^2}{16\pi^2} \Lambda^2 f^2 \sum_{\alpha=1}^2 \left| \text{Tr}[\Pi_t^{\alpha} \cdot U] \right|^2 \qquad \propto \sin^2 \frac{h}{f}$$

 So far everything is consistent with the SM being valid up to a very large a scale.

- So far everything is consistent with the SM being valid up to a very large a scale.
- The idea of the Higgs as Nambu-Goldstone boson can be naturally merged with axions if $~\Lambda \sim 10^{11}\,{\rm GeV}$

- So far everything is consistent with the SM being valid up to a very large a scale.
- The idea of the Higgs as Nambu-Goldstone boson can be naturally merged with axions if $~\Lambda \sim 10^{11}\,{\rm GeV}$

• Giving up naturalness, strong CP, dark matter, Higgs mass can be explained. Unification and neutrino masses could also fit into the picture.