Neutrino Production and Interaction Modeling for Long Baseline Neutrino Experiments

Mark Hartz (University of Toronto, York University)

Kavli Institute for the Physics and Mathematics of the Universe, Seminar, February 4, 2013

Outline

- 1. Introduction to neutrino oscillations
- 2. The T2K experiment
- 3. Neutrino flux modeling for T2K
- 4. Neutrino interaction modeling for T2K
- 5. T2K near detector constraint on flux and interaction models
- 6. Challenges for future T2K measurements and Hyper-K

Neutrinos in the Standard Model

Neutrinos:

Carry no electrical or color charge

Interaction via the weak force

Small mass (<0.3 eV)

Neutrino Interactions

• Weakly interacting isospin partners of charged leptons:

From an experimental perspective:

Detection of lepton in the final state:

- Charged lepton in CC interactions can be detected
- Neutrino in NC interactions is not detected

Mass of lepton in the final state:

- Mass of charged lepton in CC interactions limits the kinematically allowed space of the interaction
- Neutrinos are effectively massless at energy scales of interest

Neutrino Sources

Where do the neutrinos that we study come from?

The Solar Neutrino Anomaly

The Homestake Experiment

PRL 20, 1205–1209 (1968) Astrophys.J. 496 (1998) 505-526

Neutrino interactions in 615 tons of C_2Cl_4 cleaning fluid

Electron neutrinos from the sun detected by production of ³⁷Ar from charged current scattering off of ³⁷CI (group led by Raymond Davis Jr.)

Measured rate was 1/3 of expected rate based on calculations of J. Bahcall (Phys. Rev. Lett., 12, 300)

Was this a problem in the experiment, solar model or something else?

Atmospheric Neutrino Anomaly

50 kton water Cherekov detector

Detect muon and electron neutrinos produced in cosmic ray showers

Deficit of muon neutrinos observed, depends on neutrino energy and distance traveled

Can this and the solar anomaly be explained? Yes, if the neutrinos are massive and mix.

M. Hartz, UofT/YorkU

Feb 4, 2013

Neutrino Mixing & Oscillations

• Parameterization of mixing with the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix U_{μ} :

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$

(Atmospheric)

(Solar)

- δ is phase that can can cause CP violation
- Probability to oscillate depends on energy (E), distance traveled (L), the mixing matrix U and the differences in the squared neutrino masses :

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \Re \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4 E} \right)$$
$$+ 2 \sum_{i>j} \Im \left(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^* \right) \sin \left(\frac{\Delta m_{ij}^2 L}{2 E} \right)$$

Observed deficits are original flavor oscillating to another undetected flavor

Knowledge of Oscillation Parameters

Three mixing angles, two mass squared differences, CP phase

 $\sin^{2}(2\theta_{12}) = 0.86 \pm 0.02 \qquad \Delta m_{12}^{2} = 7.50 \pm 0.20 \times 10^{-5} eV^{2} \qquad \text{SNO, KAMLAND, SK}$ $\sin^{2}(2\theta_{23}) > 0.95 \quad (90\% \ C.L.) \qquad \Delta m_{23}^{2} = 2.32 \pm 0.12 \times 10^{-3} eV^{2} \qquad \text{SK, K2K, MINOS}$

$$\sin^2(2\theta_{13}) < 0.12 \quad (90\% \ C.L.)$$
 MINOS, CHOOZ (As of 2010)
 $\delta_{CP} = ?$

Feb 4, 2013

Electron Neutrino Appearance

Accelerator based experiments - access to θ_{13} through oscillations of muon neutrinos to electron neutrinos:

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{\nu}} + \text{subleading terms}$

 v_{e} appearance probability for T2K _____ baseline (L=295 km) and $sin^{2}(2\theta_{13})=0.1$ (ignoring subleading terms)

Design experiment with $v_{_{\!\!\!\!\mu}}$ beam peaked at first oscillation maximum

Search for v_{e} appearance

Recent Success in Measuring θ_{1}

- June 2011 T2K observes 6 electron neutrino candidates when 1.5±0.3 (syst.) are expected from background
 - θ_{13} =0 is disfavored at 2.5 σ Phys. Rev. Lett. 107 (2011) 041801
- March 2012 Daya Bay observes a >5 σ deficit in reactor \overline{v}_{a}

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) = 1 - \sin^{2}(2\theta_{13})\sin^{2}(1.27\frac{\Delta m_{31}^{2}L}{E})$$

 Deficits confirmed at high significance by RENO and Double Chooz experiments

Updated Daya Bay measurement in October 2012 arXiv:1210.6327

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 (stat.) \pm 0.005 (syst.)$

Ling Ao-II NPP

Ling Ao NPP

AD1 AD2

Dava Bay NPP

EH1

AD3

EH2

EH3

AD4

AD5

AD6

Measuring δ

Full appearance probability includes term that goes as $sin(\delta)$:

$$\propto \pm \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta$$

Sign flip for neutrino vs. antineutrino

Need non-zero value for all three mixing angles including θ_{13}

0.004

E/L (GeV/km)

The T2K Experiment

T2K (Tokai to Kamioka) Experiment

- Experiment's immediate goals:
 - Search for v_e appearance: $P(v_{\mu} \rightarrow v_e) \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{32}^2 L}{4 E_{...}}$
 - Precision v_{μ} disappearance: $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{32}^2 L}{4E_{\nu}}$

T2K Overview

J-PARC Neutrino Beam Line

ND280 (Near) Off-axis Detector

• 0.2 T UA1 magnet

Used in this analysis

- Fine Grained Detectors (FGD) neutrino target mass and tracking
- Time Projection Chambers (TPC) momentum and dE/dx measurements

Important for future analyses

- P0D π^0 detector measures NC π^0 rates
- Electromagnetic calorimeters identify electrons, photon reconstruction
- SMRD muon detector installed in the magnet yoke muon range detector to improve muon ID

SK (Far) Detector

- 50 kton (22.5 kton fiducial volume) water cherenkov detector
- ~11,000 20" PMT for inner detector (ID) (40% photo coverage)
- ~2,000 outward facing 8" PMT for outer detector (OD): veto cosmics, radioactivity, exiting events
- Good reconstruction for T2K energy range (GeV)

Cherenkov light produces a ring detected by the PMTs

v Signal & Background at SK

Oscillation Signal:

Oscillation Measurement

Measure the event rate at the far detector: $N_{SK}^{data}(p_l, \theta_l)$

May be binned by lepton kinematics

Build an event rate prediction:

$$N_{SK}^{pred}(p_l,\theta_l) = \int_{E_{\nu}} P_{osc}(E_{\nu}) \cdot \frac{\Phi_{SK}^{\nu_{\mu}(\nu_e)}(E_{\nu})}{dE_{\nu}} \frac{d\sigma(E_{\nu},p_l,\theta_l)}{dE_{\nu}} \cdot \epsilon_{SK}(p_l,\theta_l) M_{SK} dE_{\nu}$$

Apply fitting procedures to extract the oscillation parameters

Uncertainties on the flux and interaction models propagate to uncertainties on the fitted oscillation parameters

These models and uncertainties are derived from external data and T2K near detector data

Near Detector Constraint Flow

Flux Model

Neutrino Flux and Modeling

Flux Simulation:

- Proton beam monitor measurements as inputs
- In Target Hadron Production:
 - NA61 experimental (at CERN) data to model π^{\pm} , K^{*} production
 - Other hadron interactions modeled with FLUKA
- Out of target interactions, horn focusing, particle decays
 - GEANT3 simulation
 - Interaction cross sections are tuned to existing external data

Flux prediction description published in: Phys. Rev. D 87, 012001 (2013)

Neutrino Flux Prediction

• Muon neutrino flux around oscillation maximum predominantly from pion decays

- Intrinsic electron neutrino flux in beam from muon and kaon decays ~1% of total flux below 1 GeV

• Dominant source around oscillation maximum is from muon decays

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
Flux depends on pion
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

Importance of Beam Monitoring

Measured properties of the proton beam \rightarrow inputs to the flux simulation

Current transformers: measure beam current (absolute normalization)

Beam profile monitors: measure the beam direction, width and divergence in the transverse plane

0.5 mm shift of beam position at the target face corresponds to ~10 MeV shift in the peak of the flux spectrum

Fractional change to flux for 1σ shifts of the beam position and direction

The OTR Monitor

Place a titanium foil 30 cm upstream of the T2K target

Transport light through shielding with 4 parabolic mirrors

Image light with a radiation hard camera to measure proton beam profile

Description published Nucl. Instrum. Meth. A Vol. 703, 45 (2013) 10.1016/j.nima.2012.11.044

OTR Monitor Performance

Example OTR for a 9x10¹³ proton beam spill

Can make precise measurement of the beam position on the target

Dominant uncertainties are from the alignment of the monitor

Can measure beam position and width to 0.5 mm

Source	$\delta x(\mu m)$	$\delta y(\mu m)$	$\delta\sigma_x(\mu m)$	$\delta\sigma_y(\mu m)$
Calib. foil alignment	302	300	87	102
Signal model	5	3	436	376
Background model	90	115	10	31
Fitter bias	4	15	105	140
Calib. light alignment	210	251	46	38
Pixel charge decay	101	84	19	30
Distortion correction	29	39	83	111
Others sources	95	57	79	85
Total	404	432	473	441

Table 4: Sources of systematic uncertainties for single spill OTR measurements

radius

The OTR Monitor Post-Earthquake

The OTR foils system is attached to the front plate of the first T2K horn (which also contains the target)

If horn/target moved relative to upstream proton beam monitors, OTR should move with them

Post-earthquake check:

- Scan the beam across the target
- Check consistency of OTR measurement with extrapolation from upstream monitors
- Good consistency!

NA61 Hadron Production Measurments

Large acceptance spectrometer and time-of-flight detectors

M. Hartz, UofT/YorkU

10

NA61 Measurements

Measure 30 GeV proton cross section on carbon:

Measure differential production of $\pi^{\scriptscriptstyle\pm}$ and $K^{\scriptscriptstyle+}$

Phys. Rev. C 84, 034604 (2011) Phys. Rev. C 85, 035210 (2012)

The phase space for which NA61 makes measurements has excellent overlap with the phase space of hadrons that contribute to the T2K flux (blue)

We tune the hadron interactions in the flux simulation to match the NA61 data, propagate uncertainties from the data

M. Hartz, UofT/YorkU

Hadron Production Tuning

Effect of pion production tuning is ~8% for flux near spectrum peak

Effect of kaon tuning is ~30% at high energy (FLUKA model underestimates the kaon production)

We also tune the inelastic cross sections for hadrons in the GEANT3 simulation – few % effect

Flux prediction is controlled to 15% near the spectrum peak

Dominant uncertainties are in the hadron interaction model

- Propagated from data uncertainties
- Discrepancies between data sets
- Data vs model discrepancies

Flux Uncertainty Correlations

ND280 Inclusive μ -Like: Parent Pion p- θ

We evaluate the full covariance between bins of the flux prediction at ND280 and SK

Have significant correlations between the v_{μ} and v_{e} flux predictions – Can constrain the intrinsic v_{e} with v_{μ} measurements

Flux Energy Bin Correlations Flux Energy Bins Correlation SK v_e Flux 0.5 $\frac{SK}{Flux}\nu_{\mu}$ 0 ND280 v_{μ} -0.5 Flux ND280 v., SK v_{μ} SK ve Flux Flux Flux Flux Energy Bins SK v_e Bgnd.: Parent Pion p- θ ×10⁻³ $\times 10^{-3}$ θ_{π} (rad.) Sample Fraction/(10 mrad)/(0.2 GeV/c) Sample Fraction/(10 mrad)/(0.2 GeV/c) 3.5 0.3 2.5 0.2 0.1 0.5

Significant overlap in the parent pion phase space

00 5 10 Feb 4, 2013

 θ_{π} (rad.)

0.3

0.2

0.1

M. Hartz, UofT/YorkU

20

15

 p_{π} (GeV/c)

0

5

10

15

20

 p_{π} (GeV/c)

Cross Section Model

Neutrino Interactions at T2K

In region of interest for T2K:

Large contribution from charge current quasi-elastic (CCQE)

 $NC\pi^{0}$ is significant background mode:

NEUT Neutrino Interaction Generator

Y. Hayato, Acta Phys. Pol. B 40, 2477 (2009)

Use the NEUT interaction generator developed for SK atmospheric analysis

- Interactions of neutrinos on quasi-free nucleons in various nuclei
- CCQE: Relativistic fermi gas model of nucleus, vector and axial-vector form factors for the nucleon
- Pion production: Rein and Sehgal model. Dominant production is by the $\Delta(1232)$ resonance.
- Final state interactions: cascade model simulates interactions of hadrons in the nucleus

Cross Section Parametrization

We want to tune the NEUT interaction model based on our near detector data

Define a set of semi-empirical and empirical parameters and set central values and uncertainties based on external data

CCQE Cros	ss Section
M_A^{QE}	The mass parameter in the axial dipole form factor for quasi-elastic interactions
x_1^{QE}	The normalization of the quasi-elastic cross section for $E_{\nu} < 1.5 \text{ GeV}$
x_2^{QE}	The normalization of the quasi-elastic cross section for $1.5 < E_{\nu} < 3.5 \text{ GeV}$
x_3^{QE}	The normalization of the quasi-elastic cross section for $E_{\nu} > 3.5 \text{ GeV}$
Nuclear Mo	del for CCQE Interactions (separate parameters for interactions on O and C)
x_{sf}	Smoothly changes from a relativistic Fermi gas nuclear model to a spectral function model
p_F	The Fermi surface momentum in the relativistic Fermi gas model
Resonant P	ion Production Cross Section
M_A^{RES}	The mass parameter in the axial dipole form factor for resonant pion production interactions
$x_1^{CC1\pi}$	The normalization of the CC resonant pion production cross section for $E_{\nu} < 2.5 \text{ GeV}$
$x_2^{CC1\pi}$	The normalization of the CC resonant pion production cross section for $E_{\nu} > 2.5 \text{ GeV}$
$x^{NC1\pi^0}$	The normalization of the $NC1\pi^0$ cross section
$x_{1\pi E_{\nu}}$	Varies the energy dependence of the 1π cross section for better agreement with MiniBooNE data
W_{eff}	Varies the distribution of $N\pi$ invariant mass in resonant production
$x_{\pi-less}$	Varies the fraction of Δ resonances that decay or are absorbed without producing a pion
Other	
x^{CCcoh} .	The normalization of CC coherent pion production
x^{NCcoh} .	The normalization of NC coherent pion production
$x^{NCother}$	The normalization of NC interactions other than $NC1\pi^0$ production
$x_{CCother}$	Varies the CC multi- π cross section normalization, with a larger effect at lower energy
\vec{x}_{FSI}	Parameters that vary the microscopic pion scattering cross sections used in the FSI model
x_{ν_e/ν_μ}	Varies the ratio of the CC ν_e and ν_{μ} cross sections

ND280 Data and Constraint

ND280 Tracker v_u Sample

Interactions in the FGD1

Highest momentum negative track in TPC2 is identified as muon by dE/dx

Split into CCQE-like and CCnonQE-like samples – based on presence of additional tracks that could be pions, or Michel electron candidates in FGD1

ND280 Tracker v Data

CCQE Enhanced Selection

CCnonQE Enhanced Selection

For 1.08x10²⁰ POT: 2352 CCQE-like events 2132 CCnonQE-like events

The CCQE-like selection gives a sample that is 70% CCQE in the NEUT based simulation

Feb 4, 2013

M. Hartz, UofT/YorkU

Fit to ND280 Tracker Data

Data is divided into 20 muon p,cos0 bins for each selection (40 bins total)

Construct a binned likelihood that depends on nuisance parameters that vary the neutrino flux and cross section models, as well as the detector model

Flux, cross section and detector nuisance

 $-2\ln(L) = 2\sum_{i}^{p,\theta \text{ bins}} N_{i}^{\text{pred}}(\vec{b},\vec{x},\vec{d}) - N_{i}^{\text{data}} + N_{i}^{\text{data}} \ln[N_{i}^{\text{data}}/N_{i}^{\text{pred}}(\vec{b},\vec{x},\vec{d})]$

$$+\sum_{i}^{E_{v} \text{ bins}} \sum_{j}^{E_{v} \text{ bins}} (1-b_{i})(V_{b}^{-1})_{i,j}(1-b_{j}) + \sum_{i}^{x \text{sec pars}} \sum_{j}^{x \text{sec pars}} (x_{i}^{nom} - x_{i})(V_{x}^{-1})_{i,j}(x_{j}^{nom} - x_{j}) + \sum_{i}^{p,\theta \text{ bins}} \sum_{j}^{p,\theta \text{ bins}} (1-d_{i})(V_{d}(\vec{b},\vec{x})^{-1})_{i,j}(1-d_{j}) + \ln(\frac{|V_{d}(\vec{b},\vec{x})|}{|V_{d}^{nom}|}) + \ln(\frac{|V_{d}(\vec{b},\vec{x})|}{|V_{d}^{nom}|})$$

Maximize the likelihood while varying the nuisance parameters

Results of Fit to ND280 Tracker Data

Fitted Parameter Values

Constrained cross section parameters used to predict SK event rates

	Prior Value and Uncertainty	Fitted Value and Uncertainty
M _A ^{QE} (GeV)	1.21 ± 0.45	1.19 ± 0.19
M _A ^{RES} (GeV)	1.162 ± 0.110	1.137 ± 0.095
CCQE Norm. 0-1.5 GeV	1.000 ± 0.110	0.941 ± 0.087
CC1π Norm. 0-2.5 GeV	1.63 ± 0.43	1.67 ± 0.28
NC1π ⁰ Norm.	1.19 ± 0.43	1.22 ± 0.40

Prior value and uncertainty from fit to MiniBooNE single pion samples

The flux prediction is decreased, but within its prior uncertainty

Effect on SK Prediction

Expected number of signal+background events

Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$	
Beam flux + ν int.	8.7~%	$5.7 \ \%$	Uncertainties from
in T2K fit	5007	7507	parameters
ν mit. (from other exp.) Final state interaction	3.9%	$7.3 \ 70$ $2.4 \ \%$	constrained by fit
Far detector	7.1%	3.1 %	to ND280 data
Total	13.4~%	10.3 %	
(T2K 2011 results:	~23%	~18%)	

Appearance Fit Results

	The predicted n		
Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$	
Total	3.22	10.71	
$\nu_e \text{ signal}$	0.18	7.79	
ν_e background	1.67	1.56	Predominantly neutral
ν_{μ} background	1.21	1.21	current
$\overline{\nu}_{\mu}$ background	0.07	0.07	
$\overline{\nu}_e$ background	0.09	0.09	

For 3.01x10²⁰ POT 11 events observed!

Electron p,θ for 11 observed events and best fit prediction

Oscillation Parameter Results

All with $\sin^2(\theta_{23})$ fixed to 0.5

Result is consistent with 2011 T2K result with reduction in error band (largely from increased statistics)

New T2K results for the disappearance measurement are coming soon

Normal hierarchy

Best fit value of $\sin^2 2\theta_{13}$ 90 % C.L. allowed region 68 % C.L. allowed region

Inverted hierarchy

Best fit value of $\sin^2 2\theta_{13}$ 90 % C.L. allowed region 68 % C.L. allowed region $\begin{array}{cccc} 0.094 & 0.11 \\ 0.033 < \sin^2 2\theta_{13} < 0.188 & 0.03 < \sin^2 2\theta_{13} < 0.28 \\ 0.054 < \sin^2 2\theta_{13} < 0.147 & 0.05 < \sin^2 2\theta_{13} < 0.21 \end{array}$

 $\begin{array}{cccc} 0.116 & 0.14 \\ 0.041 < \sin^2 2\theta_{13} < 0.228 & 0.04 < \sin^2 2\theta_{13} < 0.34 \\ 0.067 < \sin^2 2\theta_{13} < 0.179 & 0.07 < \sin^2 2\theta_{13} < 0.26 \end{array}$

Feb 4, 2013

The Future

Current schedule of J-PARC protons delivered to T2K

		Period	Accumulated Protons On Target	Beam Power
		June 2012	3.1×10^{20}	170 kW
What we expect	\rightarrow	June 2013	$7.8 imes 10^{20}$	200 kW
by summer 2013		June 2014	1.2×10^{21}	250 kW^1
•		June 2015	1.8×10^{21}	250 kW
		June 2016	$2.5 imes 10^{21}$	300 kW
		June 2017	3.2×10^{21}	300 kW
		June 2018	$3.9 imes 10^{21}$	300 kW
		June 2019	$5.5 imes 10^{21}$	700 kW^2
Expected ultimate		June 2020	7.1×10^{21}	700 kW
exposure	\rightarrow	June 2021	8.8×10^{21}	700 kW

Will have ~30x the current POT

If all in neutrino mode, expect ~300 appearance candidates

Statistical errors <10% - need to work to reduce systematic uncertainties

T2K Appearance Error Breakdown

	$\sin^2 2\theta_{13} = 0$		$\sin^2 2\theta_{13} = 0.1$		-	
Error source	w/o ND280 fit	w/ ND280 fit	w/o ND280 fi	t w/ ND280 fit		
Beam only	10.8	7.9	11.8	8.5	Constrained by	
M_A^{QE}	10.6	4.5	18.7	7.9		
M_A^{RES}	4.7	4.3	2.3	Total= 2.0	III IU ND200	
CCQE norm. $(E_{\nu} < 1.5 \text{ GeV})$	4.6	3.7	7.8	5.7 6.2	data	
$CC1\pi$ norm. ($E_{\nu} < 2.5 \text{ GeV}$)	5.3	3.7	5.5	3.9		
$NC1\pi^0$ norm.	8.1	7.7	2.4	2.3	Nuclear model	
CC other shape	0.2	0.2	0.1	0.1	uncertainties.	
Spectral Function	3.1	3.1	5.4	5.4	Near detector data	
p_F	0.3	0.3	0.1	0.1	on O targets to	
CC coh. norm.	0.2	0.2	0.2	0.2	constrain &	
NC coh. norm.	2.1	2.1	0.6	0.6	improved model	
NC other norm.	2.6	2.6	0.8	0.8	Need measurement	
$\sigma_{\nu_e}/\sigma_{\nu_{\mu}}$	1.8	1.8	2.6	2.6	of v cross section	
W shape	2.0	2.0	0.9	0.9	or v _e cross section	
pion-less Δ decay	0.5	0.5	3.5	3.5	Final state looks	
$CC1\pi$, $NC1\pi^0$ energy shape	2.5	2.5	2.2	2.2		
SK detector eff.	7.1	7.1	3.1	3.1		
FSI	3.1	3.1	2.4	2.4	larger energy	
SK momentum scale	0.0	0.0	0.0	0.0		
Total	21.5	13.4	25.9	10.3	nadronic system	

Beyond T2K

Hyper-K – proposed 1 Megaton water Cherenkov detector

Same baseline from J-PARC accelerator as SK

Measure $\boldsymbol{\delta}_{_{CP}}$ by running with both neutrino and antineutrino beams

Appearance signal candidates for 1.5 years neutrino mode and 3.5 years antineutrino mode (1.6 MW beam)

$$(\sin^2 2\theta_{13} = 0.1)$$

Hyper-K LOI: arXiv:1109.3262

Hyper-K Sensitivity

M. Yokoyama

2nd Open Meeting for the Hyper-K Project

With 5% systematic uncertainties, can exclude non-CP violating case for 74% of the values of $\delta_{\rm CP}$ at 3σ

Clear improvement if systematics are reduced to 2%

It is a waste of the statistical power in the Hyper-K data sets if we can only achieve 5% systematic errors

Need to study T2K performance and consider how uncertainties can be reduced

Discuss two important uncertainties on the following slides...

Feb 4, 2013

M. Hartz, UofT/YorkU

Current neutrino interaction generators model scattering off of a single bound nucleon

Some evidence of electron scattering off correlated nucleons – Jlab sees multinucleon final states ~20% of the time

In water Chereknov detectors, nucleons are typically below threshold, not detected – multinucleon looks like QE

May explain why MiniBooNE sees an excess over predictions for the QE cross section and extracts an axial mass of 1.35 GeV

Energy Reconstruction

Relationship between the lepton kinematics and neutrino energy is important:

- We measure the lepton
- The oscillation probability depends on the neutrino energy

If we reconstruct the neutrino energy of multinucleon interactions under the QE assumption, the distribution is biased

Measuring the Multinucleon Effect

Can investigate the lepton in the final state

- In ideal case of mono-energetic neutrino beam, we can directly measure the relationship between the lepton and neutrino
- In practice the beam has a broad spectrum that "smears" these effects
- Can we use the off-axis effect to "unfold" the spectrum smearing?

Application to Larger Off-axis Angles

Flux/m²/1e20 POT/100 MeV Ongoing studies by K. McFarland and M. OA=1.5 degrees 10¹⁶ Hartz to apply method over a larger range OA=2.0 degrees of off-axis angles OA=2.5 degrees 10^{15} Principle of method can be seen in simple linear combinations of the fluxes 10^{14} $\phi_{sub} = \phi(1.5^{\circ}) - 0.34 \phi(1.0^{\circ}) - 0.42 \phi(2.5^{\circ})$ 10E_v (GeV) Off-axis flux at 1.5 degrees and Subtracted Flux In practice, we will attempt to use a Flux/m²/1e21 PO1 simultaneous fit to pseudo- 10^{16} **OA=1.5°** Subtracted flux (x2.0) experiments from a range of off-axis angles to extract model independent 10¹⁵ relationships between the neutrino energy and lepton kinematics 10^{14} Stay tuned for more!

0

E_v

Measuring the v_{a} Cross Section

Can we measure the v_e cross section to a few % or better at near detectors using the intrinsic v_a contamination?

The intrinsic v_e contamination of the flux is <1% near the peak

Need to reduce backgrounds from $NC\pi^0$ and misidentified muons

Flux uncertainty relative to v_{μ} is important – Since near detector constraint comes from v_{μ} interactions

Reduced by almost $\frac{1}{2}$ compared to v_e uncertainty

Irreducible off-axis angle uncertainties - 2 vs 3 body decay

Proposed T2K 2 km WC Detector

A 1 kton water Cherenkov detector for T2K was proposed, but not built

From proposal: studied the measurement of the $v_{\rm g}$ contamination

 $879 \ v_{_{\rm e}}$ events with reconstructed energy between 0.35 and 0.85 GeV

NC background 641

CC v_{_{\!\!\!\mu}} background 213

Conclusion: need more statistics and better electron separation from muons and π^0

For 5x10²¹ POT, 55.8 ton FV

ND280 v Measurement

Selection:

Interactions in both FGDs

Large photon conversion

Most electrons from higher

Need to reduce the photon

kaon decays (~80%)

Select electron candidates from dF/dx in the TPC

If electron candidate interacts in ECAL, require electron like shower

Reject events with additional electron track consistent with photon conversion

2.42x10²⁰ POT

Muon Storage Ring

vSTORM is a proposed muon storage ring at Fermilab

For details, see A Bross's slides at NuInt12

Circulating muon beam:

- ${\scriptstyle \bullet}$ Half of neutrinos are v
- Intensity of beam can be measured to
 <1% with current transformers

Can be tuned to select and circulate lower momentum muons

Conclusions

- Uncertainties on neutrino flux and cross section modeling are dominant systematic uncertainties for current experiments such as T2K
- T2K has used ex-situ and in-situ data to control these uncertainties at the 10% level
- To achieve its ultimate sensitivity, T2K must reduce systematic uncertainties to the 5% level
 - Near detector measurements on oxygen, study of multinucleon cross sections
 - Measurement of the electron neutrino cross section, but it is difficult
- Next generation experiments such as Hyper-K require systematic uncertainties <5%
 - Achieving this will be a challenge
 - Need novel ideas for cross section measurements, and need to starting work on this now!

Backup Slides

Electron Neutrino Uncertainties

Central value and error band before and after the ND280 fit

Fractional Error

Fitted Parameter Correlations

Cross section parameters are: M_A^{QE} , M_A^{RES} , CCQE low energy normalization, CC1 π low energy normalization and NC1 π^0 normalization

J-PARC Accelerator

- Located in Tokai village
- Completed in 2009
- Accelerator Design/Performance
 - Design goal of 750 kW
 - 30 GeV protons to neutrino beamline
 - Reached 145 kW before earthquake

Measuring v Disappearance

T2K can measure $\theta_{_{23}}$ and $\Delta m_{_{_{23}}}^2$ through $\nu_{_{\mu}}$ disappearance:

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{32}^2 L}{4E_{\nu}}$$

Similar to v_a appearance analysis, but now select muon like events at SK

Reconstructed neutrino energy(GeV)

Interpreting the Results

Can produce an allowed region in the $\sin^2(2\theta_{23})$ and $|\Delta m^2_{32}|$ plane

Results are consistent with those from MINOS and SK atmospheric

v Cross Section Uncertainty

We measure the $v_{_{\mu}}$ rate at the near detector and use it to predict the $v_{_{\mu}} \to v_{_e}$ rate at the far detector

Rely on model to extrapolate from v_{\parallel} interaction cross section to v_{\perp} interaction cross section

What is the uncertainty in the extrapolation?

M. Day, K. McFarland Phys.Rev. D86 (2012) 053003

Study sub-leading terms of the QE cross section in the impulse approximation that depend on the lepton mass and not well measured form factors

Uncertainty on the cross section is at ~2% near T2K peak energy

Also look at radiative corrections that are not currently included in neutrino generators. Differences of order 10%

Why not measure the $v_{\underline{a}}$ cross section?

How are Parameters Measured?

Homestake	Deficit of solar v_{e} in CC interactions
SK	Deficit of atmospheric v_{μ} (\bar{v}_{μ}) in CC interactions
SNO	Deficit of solar v_{e} in CC interactions, confirm total rate with NC interactions
KamLAND	Deficit of reactor \overline{v}_{e} in CC interactions
K2K	Deficit of accelerator v_{μ} in CC interactions
MINOS	Deficit of accelerator v_{μ} (\overline{v}_{μ}) in CC interactions

Why are all the measurements of deficits in the original neutrino flavor?

Shouldn't we detect the flavor to which the neutrino has oscillated to confirm the model?

What About Neutrino Appearance?

The muon (tau) is too heavy at m_{μ} =106 MeV/c² to be produced by neutrinos with energy E_v~10 MeV

Disfavored by mixing angles: v_{μ} mostly oscillate to v_{τ} Need well designed experiment (T2K)

Need high energy beam to produce tau with mass $m_r = 1.78 \text{ GeV/c}^2$ (OPERA)

Particle Identification at SK

INGRID On-axis Detector

- 16 modules (14 in cross configuration)
- Modules consist of iron and scintillator layers
- Measures neutrino beam profile and rate

Why Off-axis?

- Pion decay kinematics:
 - In pion direction, neutrino energy proportional to pion momentum
 - At non-zero angles, weak dependence on pion momentum
- 2.5° off-axis angle gives narrow band beam peaked at the first oscillation maximum
 - More statistics in the oscillation region
 - Less feed-down from backgrounds at higher energy

Idea originally developed for long baseline proposal at BNL (E889)

Final State Interactions

- Pions produced in the v interactions can interact in the target nucleus:
 - Absorption no pion in final state
 - Production additional pions in the final state
 - Charge exchange change of pion charge
- Microscopic (internal to nucleus) pion interaction model employed in NEUT
- Tune microscopic model to reproduce macroscopic pion scattering data

Tuning: vary microscopic mean free path for different interaction types and vary models

Tuned (dotted lines) in much better agreement with data

Decay Volume and MUMON

Ê²⁰⁰ 2150

> 100 50

> > D

0

2000

 π^+

-50 -100 -150 -200

 Pions (and other particles) decay in 100 m long decay volume:

- MUMON muon monitor
 - Measures muons from pion decays
 - Si PIN photodiodes sensitive at low intensity, but radiation damage
 - Ionization chambers less suseptible to rad. damage
 - Measure beam shape and direction

Muon production vertex simulation

 μ^+

μ

10000

z (cm

ROOF

ND280 Tracker

- Track charged particles in magnetic field
- 10% momentum resolution at 1 GeV/c

- Neutrino target: 2.2 tonnes of material (including water targets)
- Tracking of particles

Reconstructing the v Energy

- Only lepton in final state is reconstructed
- Can determine neutrino energy with assumptions:
 - Neutrino direction is known (beam direction)
 - Recoil nucleon mass is known
 - Target nucleon is at rest not exactly true, adds smearing to energy

Parent Pion Phase Space

Plots show the p- θ distribution of parent pions contributing to the ND280 (upper left), SK nu_e background (upper right) and SK nu_e signal (lower left) samples. Plots are normalized to by the sample size, so the z axis is sample fraction. θ is the polar angle relative to the beam direction

The T2K Collaboration

Canada TRIUMF U. Alberta U.B. Columbia U. Regina U. Toronto U. Victoria York. U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany U. Aachen

IPNF, U. Bari Japan **ICRR RCCN KEK** Kobe U. Kyoto U. Miyagi U. Edu.

Italy

IPNF, U. Napoli IPNF, U. Padova **ICRR Kamioka**

IPNF, U. Roma

Osaka City U. U. Tokyo

Poland A. Soltan, Warsaw H. Niewodnicsanki, Cracow T.U. Warsaw U. Silesia, Katowice U. Warsaw U. Wroklaw

Russia INR

Spain IFIC, Valencia IFAE(Barcelona)

Switzerland

U. Bern U. Geneva **ETH Zurich**

United Kingdom Imperial C. London Queen Mary U.L. Lancaster U. Liverpool U. Oxford U. Sheffield U. Warwick U.

STFC/RAL STFC/Daresbury

USA **Boston U.** B.N.L. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U.C. Irvine U. Colorado **U.** Pittsburgh

U. Rochester

U. Washington