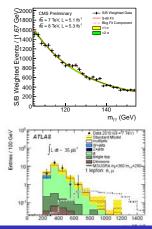
How low can SUSY go?

Jamie Tattersall

In collaboration with H Dreiner and M Krämer

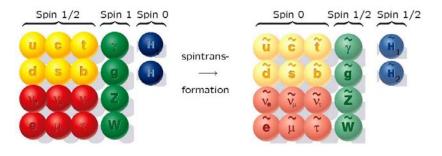
arXiv:1207.1613, epl 99 (2012) 61001 arXiv:1211.4981 (accepted for PRD)



Bethe Center for Theoretical Physics

The search for TeV physics is underway.

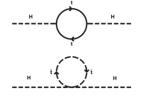
- 2012 LHC run went extremely well.
 - Collected over 23 fb⁻¹ per experiment this year.
 - The Higgs has almost certainly been discovered at ~125 GeV.
- We are all eagerly awaiting (praying for) any signs of new physics.
- Unfortunately so far we have only seen

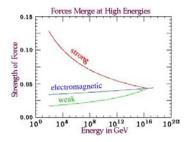

Supersymmetry (SUSY)

Supersymmetry relates fermions and bosons.

- *Q*|*boson* >= |*fermion* >
- *Q*|*fermion* >= |*boson* >

All SM particles get a 'Superpartner'.

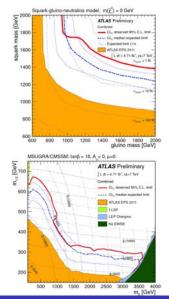

- Same quantum numbers.
- Differ in spin by 1/2.



Motivations

SUSY is one of the best motivated extensions of the SM.

- Offers a solution to the hierarchy problem.
- Provides a 'natural' dark matter candidate.
 - If R-parity is assumed.
- Unique extension of the Poincaré group.
- Unification of coupling constants.


Current Limits

LHC now sets very strict limits on the SUSY parameter space.

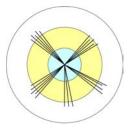
- Simplified Model ($m_{\tilde{\chi}_1^0} = 0$).
 - $m_{\tilde{q}} = m_{\tilde{g}} \gtrsim 1.5$ TeV.
 - $m_{ ilde{g}}\gtrsim$ 940 GeV, ($m_{ ilde{q}}=$ 2 TeV).
 - $m_{ ilde q}\gtrsim$ 1380 GeV, ($m_{ ilde g}=$ 2 TeV).
- mSugra (tan $\beta = 10, A_0 = 0, \mu > 0$).

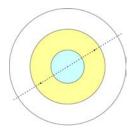
• $m_{\tilde{q}} = m_{\tilde{g}} \gtrsim 1.4$ TeV.

- CMS gives very similar bounds (all a little weaker).
- Everything else has much weaker bounds.
 - \tilde{t} 's, \tilde{b} 's, $\tilde{\ell}$'s, $\tilde{\chi}$'s.

Searching for SUSY

How are these limits set?

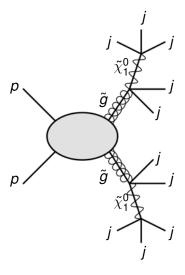

- Assume large mass gaps between states.
 - Lots of hard jets and leptons.
- Last particle in the chain is the dark matter candidate.
 - Missing energy to distinguish from background.
- Searches are not complicated (mostly).
 - Look for events with hard jets/leptons.
 - Lots of Missing Energy.



If we are interested in light \tilde{q} 's and \tilde{g} 's, is there an escape clause?

Two obvious possibilities:

- Events containing no Missing Energy.
 - Signal can be hidden under QCD.
- Events containing only Missing Energy.
 - Signal can be invisible to the detector.


Events containing no MET

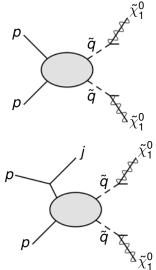
Without MET, QCD background is huge.

- Possible with R-parity violation in SUSY.
- Multi-jet topology that is very hard to separate from background.
- Need some kinematical discriminant.
 - CMS has searched for tri-jet resonance.
 - For gluino -> 3jets, *m*_{g̃} > 280 - 460 GeV.

Natural SUSY's Last Hope: R-parity Violation via UDD Operators (arXiv:1301.2336),

Bhattacherjee, Evans, Ibe, Matsumoto, Yanagida.

Events containing only MET


If the spectrum is compressed all momentum is carried by the LSP.

- Hard event is invisible.
- Possibility to use ISR to recoil against LSP.
- Hard ISR jets are common.

(Plehn, Rainwater, Skands; hep-ph/0510144)

Process, $m_{\tilde{q}_i} = 500 \text{ GeV}$	Xsec (fb)
$p_T(j) > 100 \; ext{GeV}$	
$pp ightarrow ilde{q} ilde{q}$	24
ho p ho o ilde q ilde q j	6.6
$pp ightarrow ilde{q} ilde{q} extsf{j} extsf{j}$	1.1

 I will concentrate on this possibility here.

Looking for SUSY with ISR

This is not the first idea to look for SUSY with ISR.

- Initially studied at the Tevatron. (Gunion, Mrenna; hep-ph/9906270)
- Re-analyses of ATLAS search for compressed SUSY.

(LeCompte, Martin; 1105.4304, 111.6897)

- We look at monojet searches.
 - ATLAS searches all require 2 jets > 60 GeV.
- We take all hadronic SUSY searches.
 - CMS now has many 'shape' based searches.
- We consider 'extreme' compression.
- We explore uncertainties in ISR and the parton shower.
- LHC 8 TeV reach in compressed spectra.

(Bhattacherjee, Ghosh; 1207.6289)

Stops with ISR.

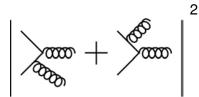
(Carena, Freitas, Wagner; 0808.2298), (Drees, Hanussek, Kim; 1201.5714)...

• Model independent dark matter.

(Bai, Fox, Harnik; 1005.3797), (Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu; 1005.1286)...

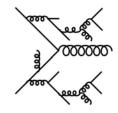
Simplified Models

We take simplified models to capture the extremes.


- Squarks degenerate with LSP (gluino decoupled).
- Gluino degenerate with LSP (squarks decoupled).
- Gluino and squark degenerate with LSP.
- Single eigenstate 'stop' model.
- LSP mass varied from, $M_{\chi_1^0} = M_{\widetilde{q},\widetilde{g}} - 2 \text{ GeV} \rightarrow M_{\chi_1^0} = 0 \text{ GeV}.$

Compact Supersymmetry, Phys.Rev D86 115014; Murayama, Nomura, Shirai.

Matrix Element vs Parton Shower


Matrix Element

- Pros:
 - Exact to fixed order.
 - Include interference effects.
- Cons:
 - Perturbation breaks down due to large logs.
 - Computationally expensive.

Valid when partons are hard and well separated.

Parton Shower

- Pros:
 - Resum logs.
 - Produce high multiplicity event.
- Cons:
 - Only an approximation to ME.
 - No interference effects.

Valid when partons are soft and/or collinear.

How does a Parton Shower work?

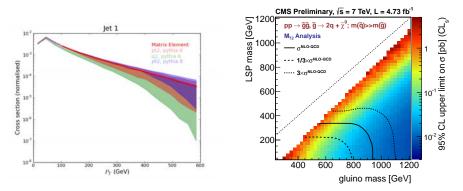
Use QCD evolution equations to describe the non-splitting probability, Δ_S , of a parton between two scales (ρ_i , ρ_{i+1}),

$$\Delta_{\mathcal{S}}(\rho_i,\rho_{i+1}) = \exp\left[-\int_{\rho_{i+1}}^{\rho_i} d\rho \int dz \alpha_{\mathcal{S}}(\rho) \mathcal{P}_i(\rho,z)\right].$$

- Describes successive QCD emissions.
 - Uses soft/collinear approximation.
 - 'Evolves' from hard scattering scale down to hadronisation.
- Easily adapted into a Monte-Carlo code.
 - Between two scales throw random number *R*.
 - If $R > \Delta_S$, parton is split.

At a fixed low scale (${\sim}1~\text{GeV})$ matched to a hadronisation model.

Parton shower has to be tuned to match phenomenological data.


- Starting scale is the most important parameter (for high p²_T behaviour).
- For ISR, should be factorisation scale.
 - Often chosen as the transverse mass, $\mu_F = \sqrt{p_T^2 + \hat{m}^2}$.
 - 'Wimpy' shower.
 - Softer than matrix element.
- Phenomenologically better choice is far higher.
 - Allow parton shower to fill full phase space, $p_{T,j} = \sqrt{s}/2$.
 - 'Power' shower.
 - In conflict with factorisation assumption.
 - Can be harder than matrix element.
- Large differences depending upon choice.
 - Older tunes more 'wimpy'.
 - Newer tunes getting tougher!

(Plehn, Rainwater, Skands; hep-ph/0510144)

Parton shower variation

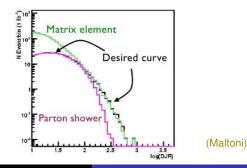
Until recently collaborations had only used parton showers.

- Uncertainty in the ISR prediction is huge.
- Reason they hadn't shown limits in compressed spectra.
- Depending on settings, parton shower can be harder than matrix element.

Matching the matrix element to the parton shower

Conclusion \rightarrow We need the accuracy of the matrix element but...

- Can only include a finite number of additional jets (<=2).
- Only valid in the perturbative regime.
- Perturbative means something new at the LHC.
- To get accurate acceptances, we need to include soft physics as well.


Conclusion \rightarrow Add the parton shower to the matrix element prediction.

- We have already seen that the some parton showers can give harder radiation than the matrix element.
- We need to avoid double counting.

Matching the matrix element to the parton shower

We must match the Matrix Element prediction to the parton shower.

- Reweight inclusive samples.
- Smooth distributions between areas of validity.
- Small dependence on matching scale.
- Small dependence on parton shower.
- Should converge as we include higher multiplicities.

How low can SUSY go?

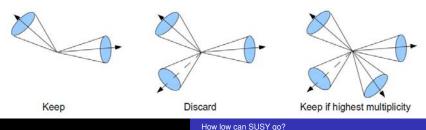
Developed later than CKKW but easier to implement...

(Mangano; 04)

(Mangano, Moretti, Piccinini, Treccani; hep-ph/0611129)

(Alwall, de Visscher, Maltoni; 0810.5350)

Matrix Element production:


- Generate multiparton event with a jet measure cut. $k_{\perp}^{2} = \min \left\{ \min(p_{T,i}^{2}, p_{T,j}^{2}), \min(p_{T,i}^{2}, p_{T,j}^{2}) \frac{(\Delta \eta_{ij})^{2} + (\Delta \phi_{ij})^{2}}{D^{2}} \right\}$
- Cluster event (into a series of 1 → 2 splittings) and use k_⊥ as factorisation scale (α_s and PDF's).
 - Reweight at each vertex (try to mimic parton shower behaviour).
 - Only allow clusterings given by diagrams.
 - For SUSY, ignore particles produced in a decay.

MLM Matching

Adding the parton shower:

- Shower event starting from the maximum clustering scale (assumption tested).
- Cluster event with k_{\perp} algorithm (ignoring showers initiated in SUSY decays).
- Match clustered jets to partons, $k_{\perp}(jet, parton) > k_{\perp}^{cut}$.
- Reject event if any jets are unmatched.
- Subtlety for highest multiplicity sample.
 - Allow extra jets with,

 k_{\perp} (*jet*, *parton*) < min(k_{\perp} (*parton*, *parton*)).

CKKW is the original matching algorithm.

(Catani, Krauss, Kuhn, Webber; hep-ph/0109231)

- Generate multiparton event with jet measure cut (k_{\perp}^{cut}) .
- Cluster event with k_{\perp} and reweight each vertex.
- Reweight event with Sudakov factor,

 $\frac{\Delta_{\mathcal{S}}(\rho_j, k_{\perp}^{\text{cut}})}{\Delta_{\mathcal{S}}(\rho_i, k_{\perp}^{\text{cut}})},$

for each parton between vertices *i* and *j* (*j* can be k_{\perp}^{cut}).

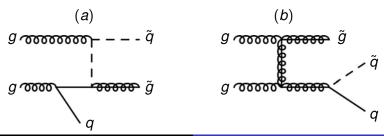
- Shower event, only allowing emissions with, $k_{\perp} < k_{\perp}^{\text{cut}}$.
 - Known as vetoed shower.
- For highest multiplicity sample, allow emissions up to, k_{\perp}^{\min} .

CKKW-L matching for Pythia-8

- Until recently, only matching algorithm that was implemented for new physics was MLM matching integrated with MadGraph and Pythia 6.
 - We wanted to test the matching and the parton shower.
- CKKW-L matching released for Pythia 8. (Lönnblad, Prestel; 1109.4829)
 - We have adapted to SUSY (with lots of help from the above).
- Pythia 8 has a far more sophisticated underlying event model.
 - Contains many colour connections between multiple interactions and hard event.
 - Results in far more soft QCD activity, 'the pedestal'.

Double counting on the matrix element level

On-shell resonances can be double counted.


(Alwall, de Vischer, Maltoni; 0810.5350)

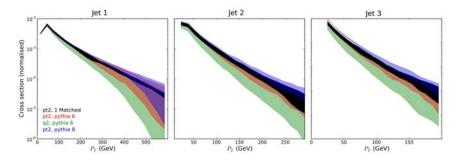
- (a) is a 'genuine' correction to $2 \rightarrow 2$ process.
- (b) contains a possible resonant contribution.

• Already taken care of in $\tilde{g}\tilde{g}$ channel.

Solution \rightarrow remove resonant propagators.

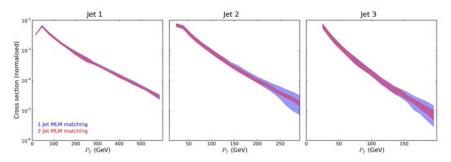
- Not gauge invariant.
- Lose interference between diagrams.
 - Works well if width is small $(\Gamma/m \ll 1)$.

Our choice


We use both matching schemes to test our predictions.

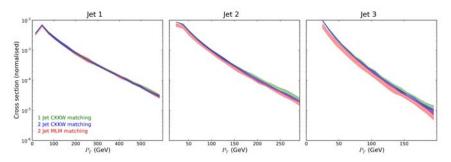
- Integrated MLM matching in MadGraph.
 - Interfaced with Pythia 6 shower.
 - First PS matching for SUSY.
- Newly developed CKKW matching in Pythia 8.
 - We have adapted code to work with SUSY.
 - Provides a cross-check with different matching scheme and shower.
- We also test standalone Parton Showers without additional jets generated by the matrix element.
 - Herwig++, Pythia 6 (P_T^2) , Pythia 6 (Q^2) , Pythia 8 (P_T^2) .
- We use NLL-Fast for cross-sections.
 - NLO with leading log soft gluon resummation.

(http://web.physik.rwth-aachen.de/service/wiki/bin/view/Kraemer/SquarksandGluinos)


PS vs Matched

Comparison of Parton Shower and Matched Uncertainties.

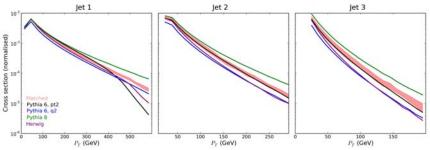
- Decoupled production of 500 GeV squarks, degenerate LSP.
- Parton shower varied between 'wimpy' and 'power' settings.
- Matching scale varied between 50 and 200 GeV.
- Large reduction in uncertainty.
- Parton shower 2nd jet uncertainty also improved.


Matching more jets.

- Moving to 2 jet matching further reduces uncertainty.
- 3rd jet uncertainty also improved.
- Only matching 1 jet actually gives reasonable prediction.
- Parton shower varied between 'wimpy' and 'power' settings.
- Matching scale varied between 50 and 200 GeV.

MLM vs CKKW

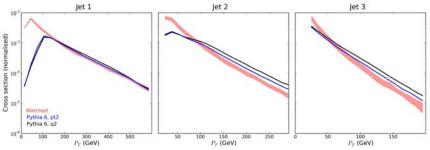
Comparison between MLM matching and CKKW.


- CKKW matching with Pythia 8 gives very similar results.
- Pythia 8 underlying event gives more soft activity.

• Need to test with latest Pythia 6 tunes.

- We can be confident in the predictions.
- Parton shower varied between 'wimpy' and 'power' (not in P8) settings.
- Matching scale varied between 50 and 200 GeV.

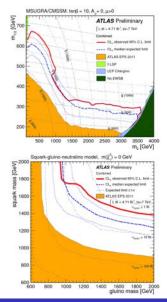
Default parton showers


Comparison of Parton Shower and Matched Uncertainties.

- Different parton shower defaults give very different behaviour.
- No 'out of the box' setting is correct.
- Varying showers between 'wimpy' and 'power' settings is representative.
- Default Pythia 8 is now a power shower.
 - Significantly overestimates jet production

Double counting

Double counting is a real problem!


- Often considered to be a theoretical issue.
- Parton shower tunes are softer but still hard enough.
- Looking at the hardest jet can fool you.
- Comparison done with the relatively soft Pythia 6 showers.
 - With the default Pythia 8 shower, the situation would be even worse.

Searches

Jets and MET.

- Take ATLAS search as example (very similar CMS search).
- By far easiest search for stupid pheno guys to implement.
- Current mSugra world champion!
- $m_{eff}(incl) > 1200 \text{ GeV}$ $(\sum E_T^{jet} \gtrsim 750 \text{ GeV}).$
- $E_T^{miss}/m_{eff}(Nj) > 0.15 0.4.$
- $p_T(j_1) > 130$ GeV.
- $p_T(j_2) > 60$ GeV.

•
$$\Delta \phi(j, E_T^{miss}) > 0.4$$
.

Shape based.

- Take CMS RAZOR search as example (CMS also has α_T and M_{T2}).
- Use topology to better discriminate signal and background.
 - Allows kinematical cuts to be set lower.
 - Removes need for explicit jet, MET collinearity cut.

$$M_{R} = \sqrt{(E_{j1} + E_{j2})^{2} - (p_{z}^{j1} + p_{z}^{j2})^{2}}$$
$$M_{T}^{R} = \sqrt{\frac{E_{T}^{miss}(p_{T}^{j1} + p_{T}^{j2}) - \vec{E}_{T}^{miss}(\vec{p}_{T}^{j1} + \vec{p}_{T}^{j2})}{2}}$$
$$R = \frac{M_{T}^{R}}{2}$$

MR

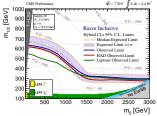
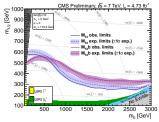



Figure 12: Observed (solid blue curve) and median expected (dot-dashed curve) 95% CL limits in the $(m_0, m_{1/2})$ CMSSM plane with $\tan \beta = 10, A_0 = 0, \operatorname{sogn}(\mu) - +1$ from the razor analysis. The \pm one standard deviation equivalent variations in the uncertainties are shown as a band around the median expected limit. Shown separately the observed HAD-only (solid crimson) and heptonic-only (solid green 95% CL limits.

Shape based.

- Take CMS RAZOR search as example (CMS also has α_T and M_{T2}).
- Use topology to better discriminate signal and background.
 - Allows kinematical cuts to be set lower.
 - Removes need for explicit jet, MET collinearity cut.
- $M_R > 500 \text{ GeV} (\sum E_T^{jet} \gtrsim 600 \text{ GeV}).$
- $E_T^{miss} \gtrsim 200$ GeV.
- $p_T(j_2) > 60$ GeV.
- Difference is probably more cosmetic than real.

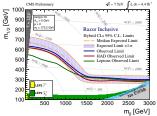
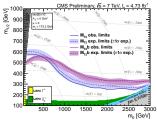
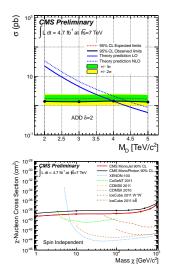
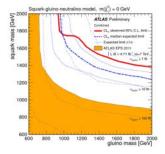
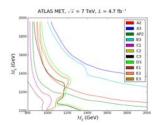




Figure 12: Observed (solid blue curve) and median expected (dot-dashed curve) 95% CI. limits in the $(m_0, m_{1/2})$ CMSSM plane with $\tan \beta = 10, A_0 = 0, \operatorname{sgn}(\mu) = +1$ from the razor analysis. The \pm one standard deviation equivalent variations in the uncertainties are shown as a band around the median expected limit. Shown separately the observed HAD-only (solid crimson) and heptonic-only (solid green) 95% CI. limits.

Monojet.


- Both CMS and ATLAS have a monojet search.
 - Designed to search for ADD extra dimensions.
 - Now also used for model independent dark matter
- $E_T^{miss} \gtrsim 350$ GeV.
- Both have a third jet veto.
- ATLAS also had 2nd jet veto, $p_T < 60$ GeV. (now removed for 4.7 fb⁻¹).
- For CMS $\Delta \phi(j_1, j_2) < 2.5 \ (\sim 140^{\circ}).$



Searches

Verifying my implementation.

- Good agreement with all analyses.
 - Jets are easy when the hard work is done!
- Only use best expected box.
 - If exclusion is better than expected, use expected.
 - More conservative than ATLAS.
 - Allows a fairer comparison between searches and regions.
 - Relevant regions for compressed spectra unaffected.

Searches

Verifying my implementation.

- Good agreement with all analyses.
 - Jets are easy when the hard work is done!
- Only use best expected box.
 - CMS RAZOR use complicated unbinned likelihood.
 - Impossible to replicate but provide fine binning (60 bins) on wiki.
 - I reduce number of bins 'intelligently' and use best exclusion.
 - Worse reach than official analysis.

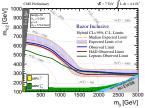
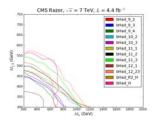
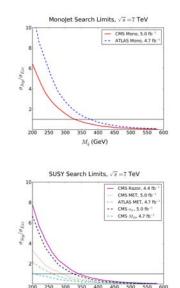




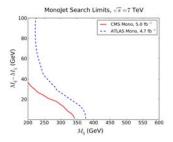
Figure 12 Observed (solid blue curve) and median expected (dot-dashed curve) 95% CL limits in the $(m_0, m_{1/2})$ CMSSM plane with $\tan \beta = 10$, $A_0 = 0$, $sgn(\mu) = +1$ from the razor analysis. The \pm one standard deviation equivalent variations in the uncertainties are shown as a band around the median expected limit. Shown separately the observed HAD-only (solid crimison) and leptonic-only (solid green 95% CL limits.

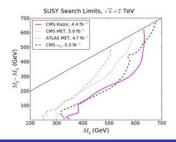
Comparison of squark limits.

- Limit in decoupled gluino scenario, $m_{\tilde{a}} \gtrsim 350$ GeV.
 - ATLAS Monojet search provides the best limit (just)!
 - General SUSY searches almost match the limit.
 - CMS RAZOR is the most constraining of the SUSY searches.

400

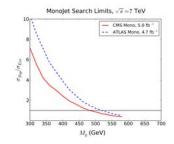
M_a (GeV)

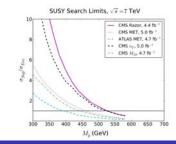

450 500 550


600

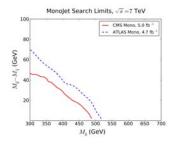
Results

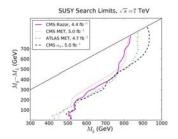
Moving away from full compression.


- Extra hadronic activity quickly hurts the monojet searches.
 - Maybe remove the jet vetoes or set these higher.
- SUSY searches rapidly improve as splitting is increased.
 - Limits 'only' reach 670 GeV.
 - t-channel gluino is dominant production mode for 'normal' SUSY.
 - Discontinuities caused by different search regions.

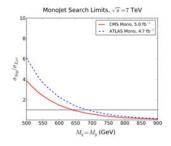


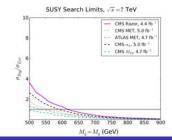
Comparison of gluino limits.


- Limit in decoupled squark scenario, m_g ≥ 500 GeV.
 - CMS RAZOR search provides the best limit.
 - Monojet is also competitive.
- Decoupled scenario is somewhat academic.
 - With $m_{\tilde{q}} = \infty$, gluino becomes stable.
 - With extreme compression gluino lifetime is large even for moderate squark masses.
 - Need stops and sbottoms around.

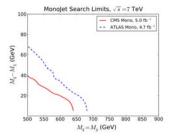


Comparison of gluino limits.

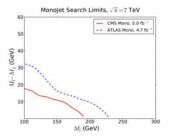

- Limit in decoupled squark scenario, m_ã ≥ 500 GeV.
 - CMS RAZOR search provides the best limit.
 - Monojet is also competitive.
- Decoupled scenario is somewhat academic.
 - With $m_{\tilde{q}} = \infty$, gluino becomes stable.
 - With extreme compression gluino lifetime is large even for moderate squark masses.
 - Need stops and sbottoms around.



Equal mass $(M_{\tilde{q}} = M_{\tilde{g}})$ limits.

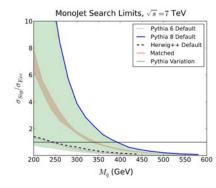

- Limit is, $M_{ ilde{q}} = M_{ ilde{g}} \gtrsim 650$ GeV.
 - ATLAS monojet search is competitive for spectrum degeneracy.
 - CMS-Razor provides the best limit from SUSY searches.
- Even with an additional factor of 2 error, limit is $\gtrsim 600$ GeV.

Equal mass $(M_{\tilde{q}} = M_{\tilde{g}})$ limits.


- Limit is, $M_{ ilde{q}} = M_{ ilde{g}} \gtrsim 650$ GeV.
 - ATLAS monojet search is competitive for spectrum degeneracy.
 - CMS-Razor provides the best limit from SUSY searches.
- SUSY searches once again improve as degeneracy is broken.



Single eigenstate 'stop' limits.


- Limit is, $M_{\tilde{t}} \gtrsim 200$ GeV.
 - Limit only valid for the decay $\tilde{t} \rightarrow c \tilde{\chi}_1^0$.
 - Decay is loop induced.
 - 100% branching ratio assumed.
 - For more complicated decays, limits are still valid close to degeneracy.
- Also valid for a single light squark (or sbottom) eigenstate.

Limits on squarks in decoupled gluino model.

- Big variation on limit, 180 400 GeV.
- Default Herwig and Pythia 6 very close.
- Pythia 8 default is the power shower.

General discussion points.

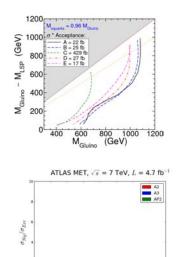
- CMS Monojet is not optimized.
 - Search region with higher MET and/or jet *p*_T would do better.
 - \sim 500 events in signal region c.f. \sim 10 for SUSY searches.

ATLAS Monojet showed how jet vetos hurt reach.

- Would both monojet searches be better with no jet veto?
- Still keep a geometrical cut with $\Delta R < 2.5$ between all jets.
- RAZOR searches have opposite problem.
 - Doesn't allow events with a monojet topology.
 - Relaxing this constraint may give better reach.
- Searches are (somewhat) orthogonal.

- Set limits in Universal Extra Dimension models.
 - Spectrum is naturally compressed.
- Can we search for electroweak states?
 - Especially interesting are Higgsinos.
- Examine ways to optimise searches.
 - Monojet search that does not veto extra jets.
 - Monojet search focusing on higher p_T jets.
- What is the ultimate reach for LHC@14 TeV.
- Encourage collaborations to start using matching in new physics searches.

- Compressing the mass spectrum makes SUSY much harder to look for.
- ISR becomes vital to see any signal.
- Matching the matrix element to the parton shower to required to accurately model the ISR.
- Squark masses \gtrsim 340 GeV.
- Gluino mass \gtrsim 500 GeV.
- Equal squark and gluino masses \gtrsim 650 GeV

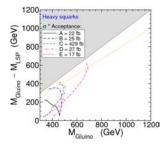

Backup Slides

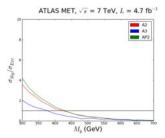
How low can SUSY go?

Agreement with LeCompte, Martin.

(LeCompte, Martin; 1105.4304, 111.6897)

- Equal mass scenario, $M_{\tilde{q}} = M_{\tilde{g}} \gtrsim 600$ GeV.
- Our ATLAS limit, $M_{\tilde{q}} = M_{\tilde{g}} \gtrsim 600$ GeV.
 - New search region for ATLAS with high MET.
 - \sim 5x luminosity.
 - We set limits slightly more conservatively.
- Monojet/Razor search, $M_{\tilde{q}} = M_{\tilde{g}} \gtrsim 650$ GeV.

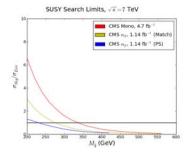



M. (GeV)

Differences with LeCompte, Martin.

(LeCompte, Martin; 1105.4304, 111.6897)

- Decoupled squark scenario, $M_{\tilde{g}} \gtrsim 450$ GeV.
- Our ATLAS limit, $M_{\tilde{g}} \gtrsim 440$ GeV.
 - New search region for ATLAS with high MET.
 - $\circ \sim$ 5x luminosity.
 - We set limits slightly more conservatively.
- RAZOR search, $M_{\tilde{g}} \gtrsim 500$ GeV.



How does the Parton Shower perform?

Comparison with 'Supersoft Supersymmetry is Super-Safe'. (Kribs, Martin; 1203.4821)

- Motivation for a decoupled gluino.
 - Add Dirac gaugino masses.
 - No issues with naturalness.
- Limits for pure squark production with decoupled gluino.
 - Apply all current SUSY searches.
 - For $0 < M_{LSP} < 100$ GeV, $M_{\tilde{q}} \gtrsim 750$ GeV.
 - For $M_{LSP}=$ 200 GeV, $M_{ ilde{q}}\gtrsim$ 650 GeV.
 - For $M_{LSP} = 300$ GeV, no limit on $M_{\tilde{q}}$.
- Different to our result.
 - Have only included default parton shower.

