
weak lensing with CFHTLenS
and future surveys

data and catalogue release at CADC
www.cfhtlens.org

Lance Miller

The CFHTLenS team:
L. van Waerbeke, C Heymans, T Erben, H Hildebrandt, H Hoekstra, T Kitching, 

Y Mellier, P Simon, C Bonnett, J Coupon, L Fu, J Harnois-Deraps, M Hudson, M 
Kilbinger, K Kuijken, L Miller, B Rowe, T Schrabback, E Semboloni, E van Uitert, 

S Vafei, M Velander

http://www.cfhtlens.org
http://www.cfhtlens.org


1.Weak lensing shear measurement
2.Systematics
3.Results from CFHTLenS
4.Future surveys



weak lensing and cosmic shear

strong lensing: non-linear, 
multiple images

weak lensing: quasi-linear, 
single images

• “cosmic shear” is the statistical effect of cosmological large-scale 
structure: rms ellipticity distortion <1%

• although the shear is in the linear regime, we still sample modes in 
where the cosmological powerspectrum is non-linear



Shear measurement

graphic from Great08, Bridle et al. 2009 (AnAp 3,  6)

Need to measure galaxy shapes (ellipticity) given that images have been

convolved with atmosphere and optics PSF
sheared by atmosphere and optics
sampled onto detector with finite pixels
degraded by noise



shear measurement
75˝

• Although any individual galaxy cannot be well-measured, we must measure the 
ensemble free from systematic bias

typical Megacam 
PSF  FWHM

Megacam pixel size

HST Deep/GSS survey: Simard et al. 2002
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• The weak lensing signal is carried by 
the faintest galaxies with low S/N.

• Galaxy half-light radii are smaller than the 
PSF and comparable to the pixel scale!



methods: KSB
• Aim to correct for convolution with PSF by measuring second moments of image
• A round PSF reduces the measured ellipticity of the galaxy
• If we measure the sizes of galaxy and PSF we can correct for this
• We can also correct for an elliptical PSF

• Method only considers second moments, higher moments are ignored
• Hence cannot correct for complex PSFs, e.g. with twisted isophotes:

• Moments must be weighted because of noise: weighting biases the measurement 
towards the weight function

• Deconvolution of moments breaks down in limit of low signal-to-noise
• “Deimos” is better: applies some partial correction for higher moments

PSF with twisted isophotes

• You might think that because any one galaxy is very noisy we don’t need an 
accurate method

• Wrong! we must avoid systematic bias at a level a factor >100 smaller than 
individual measurement accuracy!



The problem with deconvolution
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We should avoid trying to 
solve the deconvolution 
inverse problem and instead 
consider only the forward 
problem (model-fitting).

Bernstein 2010

noise power blows up in 
deconvolved data

All methods require regularisation, and we 
need to understand the effect on measurement



Probabilistic model-fitting

model
&

priors

data

statistical
comparison

construction of a likelihood function based on a 
model (and its priors) allows a probabilistic 
interpretation of the data and hence the generation 
of PDFs for measured quantities



Probabilistic model-fitting

model
&

priors

data

statistical
comparison

adding more physical information allows better 
constraints to be obtained - this is important when 
we are measuring the shapes of galaxies near the 
magnitude limit.  We need to make use of our prior 
physical knowledge of the structures of galaxies 
from data with higher S/N



Probabilistic model-fitting

model
&

priors

data

statistical
comparison

biased

But we must be careful not to introduce bias!
We should avoid models that are not based on 
physical reality (e.g. convenient orthogonal 
mathematical functions) and instead prefer models 
based on our knowledge of galaxy structures (e.g. 
de Vaucouleurs, exponential, Sersic surface 
brightness profiles - although we may have trouble 
at z>1)



lensfit
make galaxy models with some free parameters (enough to allow 
the full range of galaxy types to be represented)

- 2-component ellipticity

- 2-component position

- bulge + disk components with fixed relative scalelengths but variable flux 
ratio according to a bulge fraction prior

- galaxy scalelength

estimate priors from other data (e.g. distribution of disk ellipticity 
from SDSS, scalelength distribution from fits to HST data)
measure the PSF from multiple star images, interpolating to galaxy 
position taking account of sub-pixel centroiding
fit convolved galaxy models to multi-image data
marginalise over “uninteresting” parameters

- bulge and disk flux marginalisable with an assumed bulge fraction prior

- position numerically marginalisable rapidly using FFT cross-correlation

- scalelength numerically marginalised by sampling multiple values



Any method should use individual 
exposures, not stacked images!

interpolate
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stacked image
now has 

spatially-varying 
PSF and 

correlated 
noise - bad!

We need a method that 
measures individual 
exposures but optimally 
combines results from 
multiple measurements: 
easily done by adding 
log(likelihood) deduced 
from each exposure.

• All interpolation is a form of smoothing. In image stacking the interpolation kernel (and 
hence PSF) varies cyclically across image - very difficult to correct for! 

• The noise is initially independent between pixels but after interpolation becomes 
correlated with spatially-dependent covariance.

• The “distorted multi-exposure” problem is crucial in real data (not included in “GREAT 
challenge” simulations, even in GREAT3 distortion is not included).

pixel interpolation



Any method should use individual 
exposures, not stacked images!

gaps between CCDs in 
mosaic cameras
multiple images are 
“dithered”
causes discontinuous 
variation in PSF!
very difficult to measure PSF 
in gaps on stacked images
can affect 20% of the area

image 1

image 2
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astrophysical systematics

Intrinsic alignments “II” term

lens

distant sheared 
galaxy

galaxy near lens, 
tidally aligned

close galaxies, 
tidally aligned

Intrinsic alignments “GI” term



astrophysical systematics

true cosmology

confidence contours
on w0, wa for a Euclid-
like survey, where
w(a) = w0+(1-a)wa

including model for 
intrinsic alignments

if intrinsic alignments are 
ignored, but really exist 

with various prescriptions

Kirk et al 2012



measurement systematics

- image combination errors
- PSF errors
- noise bias (Refregier et al 2012, Melchior & Viola 

2012, Miller et al 2013)

ellipticity and shear are non-
linear transformations of the 
pixel values
random pixel noise causes bias 
(likelihood function is distorted)
bayesian method should be able 
to correct for this but we have 
not yet figured out how to 
calculate the likelihood bias

ellipticity likelihood surface

true value

PSF



noise bias

causes measured shear to 
tend to zero at low 
signal-to-noise ratio
effect is significant (few 
percent) even for bright 
galaxies

also causes cross-
correlation with PSF

signal-to-noise ratio

signal-to-noise ratio
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model or weight bias

if the wrong models are used, results may be 
biased
galaxy morphology changes with redshift and rest-
frame band of observation
size of effect can only be determined from HST 
data
same effect applies to all methods (moments, 
shapelets) because weight functions do not match 
true surface brightness distributions



tests for measurement 
systematics

- E/B mode decomposition

- star-galaxy cross-correlation

to first order, weak lensing should only 
make E modes (gradient of a scalar 
potential)
need to account for survey boundaries
measurement systematics may also create 
E modes
in practice is not very sensitive test 

many causes of systematics lead to PSF-
galaxy cross-correlation and hence this is a 
powerful test
we need to average over enough galaxies 
to detect an effect
but the measure may vary on small length 
scales
also need to allow that cosmological shear 
may randomly correlate with PSF
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tests for measurement 
systematics

- redshift scaling

signal should  increase with redshift of source
test either with cosmic shear or galaxy-galaxy 
lensing
be careful not to create confirmation bias (i.e. do 
not require results to fit favourite cosmology, just 
check that signal increases with z)
KSB in CFHTLenS failed this test!
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CFHTLenS: The CFHT Lensing Survey

complete reanalysis of the CFHT Legacy Survey 
(CFHTLS) “Wide Survey”, data obtained 2003-9
four years of work!
154 sq deg in five optical bands, ugriz
lensing measurements of 8x106 galaxies in good 
seeing (FWHM < 0.8 arcsec) i band to depth i<24.7
photometric redshifts from ugriz accurate to rms 
error σ(z) ~ 0.04(1+z) with 4 percent outlier rate
- crucial for lensing equation!  also allows 

tomographic, 3D and GG lensing analyses
- median redshift 0.7



direct mass maps
CFHTLenS: Mapping of the Large Scale Structures 9

Figure 6. In the W1 field, comparison of the total mass from gravitational lensing reconstruction (underlying continuous map with
contours) and the predicted mass inferred from the foreground galaxies is indicated by the open white circles in the map. Open circles
indicate the position of peaks with positive curvature in the predicted projected mass. The number density of circles is therefore indicative
of the amount of mass expected in projection in a particular region. The size of the circles are also indicative of how significant a peak of
the predicted mass map is. The open circles distribution coincides nicely with the high density regions in the reconstructed mass density
map.

sdlkvn lskdn vl lk v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn
vkjs dvk asjdv fillup text nbjla sald lkjn sdlkvn lskdn vl lk
v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup
text nbjla sald lkjn sdlkvn lskdn vl lk v valsd vlsdjkn vls
ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup text nbjla sald lkjn
sdlkvn lskdn vl lk v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn
vkjs dvk asjdv fillup text nbjla sald lkjn sdlkvn lskdn vl lk
v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup
text nbjla sald lkjn sdlkvn lskdn vl lk v valsd vlsdjkn vls
ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup text nbjla sald lkjn
sdlkvn lskdn vl lk v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn
vkjs dvk asjdv fillup text nbjla sald lkjn sdlkvn lskdn vl lk

v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup
text nbjla sald lkjn sdlkvn lskdn vl lk v valsd vlsdjkn vls
ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup text nbjla sald lkjn
sdlkvn lskdn vl lk v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn
vkjs dvk asjdv fillup text nbjla sald lkjn sdlkvn lskdn vl lk
v valsd vlsdjkn vls ljvsn dvj sdjv ksjdn vkjs dvk asjdv fillup
text nbjla sald lkjn sdlkvn lskdn vl lk v valsd vlsdjkn vls
ljvsn dvj sdjv ksjdn vkjs dvk asjdv

c� 2011 RAS, MNRAS 000, 1–12

10 L. Van Waerbeke et al.

Figure 8. Similar to Fig.??, with the background map and contours mapping the total projected matter from gravitational lensing mass
reconstruction, now the open triangles show the position of the negative curvature peaks in the mass map predicted from the foreground
galaxies. The open triangles now clearly trace the underdense regions in the density mass map. Larger triangles correspond to deeper
peaks.
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triangles (right): negative convergence predicted from galaxy underdensity
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2D cosmic shear constraints

aperture mass dispersion               top-hat shear variance                       ring statistic

CFHTLenS: cosmological model comparison using 2D weak lensing 9

〈|γ|2〉 is the one with the highest correlation between data points.
The predicted leakage from the B- to the E-mode is smaller than
the measured E-mode, but becomes comparable to the latter for
θ > 100 arcmin, where the leakage reaches up to 50 per cent of the
E-mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is
plotted in the right panel of Fig. 8. Each data point shows the E-
and B-mode on the angular range between ϑmin and ϑmax, the lat-
ter of which is labelled on the x-axis. The B-mode is found to be
consistent with zero, a χ2 null test yields a 35 per cent probability
of a non-zero B-mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B-mode of at most a few
×10−12 for n ! 5 and ϑmax ! 250 arcmin. Even though this is a
few orders of magnitudes larger than the B-mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B-mode increases
to be of the order of the E-mode. This is true independent of the
binning or whether noise is added. We presume that this is due to
insufficient accuracy with which the shear correlation function is
estimated from the simulation on these very large scales, from only
a small number of galaxy pairs. Further, for n > 5 a similarly
large B-mode is found for some cases of (ϑmin,ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise nu-
merical integration over the rapidly-oscillating filter functions of
Log-COSEBIs for higher modes (Becker 2012). We will therefore
restrict ourselves to n ! 5 for the subsequent cosmological analy-
sis.

The measured COSEBIs modes are shown in Fig. 9. We use
as smallest scale ϑ = 10 arcsec, and two cases of ϑmax of 100 and
250 arcmin. In both cases we do not see a significant B-mode. The
signal-to-noise ratio of the high mode points decreases when the
angular range is increased: For ϑmax = 250 arcmin only the first
two modes are significant. This is not unexpected, since the filter
functions for ϑmax = 250 arcmin sample larger angular scales and
put less weight on small scales where the signal-to-noise ratio in
the 2PCFs is larger.

A further derived second-order quantity are the shear E-/B-
mode correlation functions ξE,B (Crittenden et al. 2002; Pen et al.
2002), which have been used in F08. Whereas they share the in-
convenience with the top-hat shear rms of a formal upper infinite
integration limit, they offer no advantage over the latter, and will
therefore not be used in this work.

3.6 Conclusion on estimators

We compared various second-order real-space shear functions,
starting with the fundamental two-point correlation functions ξ±.
From the 2PCFs we calculated a number of E-/B-mode separat-
ing functions. The top-hat shear rms 〈|γ|2〉 is of limited use for
cosmological analysis because of the cosmology-dependent E-/B-
mode leakage. For the aperture-mass dispersion 〈M2

ap〉 this leakage
is confined to small scales, whereas the optimized ring statistic RE

and COSEBIs were introduced to avoid any leakage. The drawback
of the 2PCFs is that they are sensitive to large scales outside the
survey area and thus may contain an undetectable B-mode signal
(Schneider et al. 2010). COSEBIs capture the E-/B-mode signals
in an optimal way on a finite angular-scale interval [ϑmin;ϑmax].
The interpretation of COSEBIs and the matching of modes to an-
gular scales are not straightforward since the corresponding filter
functions are strongly oscillating.
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Figure 8. Smoothed second-order functions: Aperture-mass dispersion
〈M2

ap〉 (left panel), shear top-hat rms 〈|γ|2〉 (middle) and optimized ring
statistic RE (right), split into the E-mode (black filled squares) and B-
mode (red open squares). The error bars are the Clone field-to-field rms.
The dashed line is the theoretical prediction for a WMAP7-cosmology (with
zero E-/B-mode leakage), the dotted curve shows the Clone lines-of-sight
mean E-mode signal. For 〈M2

ap〉 and 〈|γ|2〉 the WMAP7-prediction of the
leaked B-mode is shown as red dashed curve; the shaded region in the mid-
dle panel corresponds to the 95 per cent WMAP7 confidence interval of σ8
(flat ΛCDM). For the shear top-hat rms, negative points are plotted with
dashed error bars.
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〈|γ|2〉 is the one with the highest correlation between data points.
The predicted leakage from the B- to the E-mode is smaller than
the measured E-mode, but becomes comparable to the latter for
θ > 100 arcmin, where the leakage reaches up to 50 per cent of the
E-mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is
plotted in the right panel of Fig. 8. Each data point shows the E-
and B-mode on the angular range between ϑmin and ϑmax, the lat-
ter of which is labelled on the x-axis. The B-mode is found to be
consistent with zero, a χ2 null test yields a 35 per cent probability
of a non-zero B-mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B-mode of at most a few
×10−12 for n ! 5 and ϑmax ! 250 arcmin. Even though this is a
few orders of magnitudes larger than the B-mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B-mode increases
to be of the order of the E-mode. This is true independent of the
binning or whether noise is added. We presume that this is due to
insufficient accuracy with which the shear correlation function is
estimated from the simulation on these very large scales, from only
a small number of galaxy pairs. Further, for n > 5 a similarly
large B-mode is found for some cases of (ϑmin,ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise nu-
merical integration over the rapidly-oscillating filter functions of
Log-COSEBIs for higher modes (Becker 2012). We will therefore
restrict ourselves to n ! 5 for the subsequent cosmological analy-
sis.

The measured COSEBIs modes are shown in Fig. 9. We use
as smallest scale ϑ = 10 arcsec, and two cases of ϑmax of 100 and
250 arcmin. In both cases we do not see a significant B-mode. The
signal-to-noise ratio of the high mode points decreases when the
angular range is increased: For ϑmax = 250 arcmin only the first
two modes are significant. This is not unexpected, since the filter
functions for ϑmax = 250 arcmin sample larger angular scales and
put less weight on small scales where the signal-to-noise ratio in
the 2PCFs is larger.

A further derived second-order quantity are the shear E-/B-
mode correlation functions ξE,B (Crittenden et al. 2002; Pen et al.
2002), which have been used in F08. Whereas they share the in-
convenience with the top-hat shear rms of a formal upper infinite
integration limit, they offer no advantage over the latter, and will
therefore not be used in this work.

3.6 Conclusion on estimators

We compared various second-order real-space shear functions,
starting with the fundamental two-point correlation functions ξ±.
From the 2PCFs we calculated a number of E-/B-mode separat-
ing functions. The top-hat shear rms 〈|γ|2〉 is of limited use for
cosmological analysis because of the cosmology-dependent E-/B-
mode leakage. For the aperture-mass dispersion 〈M2

ap〉 this leakage
is confined to small scales, whereas the optimized ring statistic RE

and COSEBIs were introduced to avoid any leakage. The drawback
of the 2PCFs is that they are sensitive to large scales outside the
survey area and thus may contain an undetectable B-mode signal
(Schneider et al. 2010). COSEBIs capture the E-/B-mode signals
in an optimal way on a finite angular-scale interval [ϑmin;ϑmax].
The interpretation of COSEBIs and the matching of modes to an-
gular scales are not straightforward since the corresponding filter
functions are strongly oscillating.
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Figure 8. Smoothed second-order functions: Aperture-mass dispersion
〈M2

ap〉 (left panel), shear top-hat rms 〈|γ|2〉 (middle) and optimized ring
statistic RE (right), split into the E-mode (black filled squares) and B-
mode (red open squares). The error bars are the Clone field-to-field rms.
The dashed line is the theoretical prediction for a WMAP7-cosmology (with
zero E-/B-mode leakage), the dotted curve shows the Clone lines-of-sight
mean E-mode signal. For 〈M2

ap〉 and 〈|γ|2〉 the WMAP7-prediction of the
leaked B-mode is shown as red dashed curve; the shaded region in the mid-
dle panel corresponds to the 95 per cent WMAP7 confidence interval of σ8
(flat ΛCDM). For the shear top-hat rms, negative points are plotted with
dashed error bars.
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〈|γ|2〉 is the one with the highest correlation between data points.
The predicted leakage from the B- to the E-mode is smaller than
the measured E-mode, but becomes comparable to the latter for
θ > 100 arcmin, where the leakage reaches up to 50 per cent of the
E-mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is
plotted in the right panel of Fig. 8. Each data point shows the E-
and B-mode on the angular range between ϑmin and ϑmax, the lat-
ter of which is labelled on the x-axis. The B-mode is found to be
consistent with zero, a χ2 null test yields a 35 per cent probability
of a non-zero B-mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B-mode of at most a few
×10−12 for n ! 5 and ϑmax ! 250 arcmin. Even though this is a
few orders of magnitudes larger than the B-mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B-mode increases
to be of the order of the E-mode. This is true independent of the
binning or whether noise is added. We presume that this is due to
insufficient accuracy with which the shear correlation function is
estimated from the simulation on these very large scales, from only
a small number of galaxy pairs. Further, for n > 5 a similarly
large B-mode is found for some cases of (ϑmin,ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise nu-
merical integration over the rapidly-oscillating filter functions of
Log-COSEBIs for higher modes (Becker 2012). We will therefore
restrict ourselves to n ! 5 for the subsequent cosmological analy-
sis.

The measured COSEBIs modes are shown in Fig. 9. We use
as smallest scale ϑ = 10 arcsec, and two cases of ϑmax of 100 and
250 arcmin. In both cases we do not see a significant B-mode. The
signal-to-noise ratio of the high mode points decreases when the
angular range is increased: For ϑmax = 250 arcmin only the first
two modes are significant. This is not unexpected, since the filter
functions for ϑmax = 250 arcmin sample larger angular scales and
put less weight on small scales where the signal-to-noise ratio in
the 2PCFs is larger.

A further derived second-order quantity are the shear E-/B-
mode correlation functions ξE,B (Crittenden et al. 2002; Pen et al.
2002), which have been used in F08. Whereas they share the in-
convenience with the top-hat shear rms of a formal upper infinite
integration limit, they offer no advantage over the latter, and will
therefore not be used in this work.

3.6 Conclusion on estimators

We compared various second-order real-space shear functions,
starting with the fundamental two-point correlation functions ξ±.
From the 2PCFs we calculated a number of E-/B-mode separat-
ing functions. The top-hat shear rms 〈|γ|2〉 is of limited use for
cosmological analysis because of the cosmology-dependent E-/B-
mode leakage. For the aperture-mass dispersion 〈M2

ap〉 this leakage
is confined to small scales, whereas the optimized ring statistic RE

and COSEBIs were introduced to avoid any leakage. The drawback
of the 2PCFs is that they are sensitive to large scales outside the
survey area and thus may contain an undetectable B-mode signal
(Schneider et al. 2010). COSEBIs capture the E-/B-mode signals
in an optimal way on a finite angular-scale interval [ϑmin;ϑmax].
The interpretation of COSEBIs and the matching of modes to an-
gular scales are not straightforward since the corresponding filter
functions are strongly oscillating.
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Figure 8. Smoothed second-order functions: Aperture-mass dispersion
〈M2

ap〉 (left panel), shear top-hat rms 〈|γ|2〉 (middle) and optimized ring
statistic RE (right), split into the E-mode (black filled squares) and B-
mode (red open squares). The error bars are the Clone field-to-field rms.
The dashed line is the theoretical prediction for a WMAP7-cosmology (with
zero E-/B-mode leakage), the dotted curve shows the Clone lines-of-sight
mean E-mode signal. For 〈M2

ap〉 and 〈|γ|2〉 the WMAP7-prediction of the
leaked B-mode is shown as red dashed curve; the shaded region in the mid-
dle panel corresponds to the 95 per cent WMAP7 confidence interval of σ8
(flat ΛCDM). For the shear top-hat rms, negative points are plotted with
dashed error bars.
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to first order, weak lensing should only make E 
modes (gradient of a scalar potential)
in CFHTLenS no significant B modes on any scale 
(red points)
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of 〈M2

ap〉
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-

c© 2009 RAS, MNRAS 000, 1–18
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Figure 12.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
curved wCDM.

responding Anderson-Hartlap factor α, we find identical results as
before and conclude that the number of simulations is easily suffi-
cient for this work.

7 DISCUSSION AND CONCLUSION

In this paper we present measurements of various second-order
shear correlations from weak gravitational lensing by CFHTLenS,
the Canada-France Hawaii Telescope Lensing Survey. Using a sin-
gle redshift bin, 0.2 < zp < 1.3, we obtain cosmological con-
straints on the matter density, Ωm, and the power-spectrum ampli-
tude, σ8. Adding WMAP7, BOSS and R09 data, we obtain parame-
ter constraints for flat and curved ΛCDM and dark-energy models,
and calculate the Bayesian evidence to compare the probability for
each model given the data.
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Figure 13. Marginalised posterior density contours (68.3%, 95.5%,
99.7%) for WMAP7 (green), WMAP7+CFHTLenS (magenta),
WMAP7+BOSS+R09 (orange) and WMAP7+CFHTLenS+BOSS+R09
(black). The model is flat ΛCDM (upper panel) and curved ΛCDM (lower
panel), respectively.

Second-order shear functions Along with the two-point correla-
tion functions ξ+ and ξ−, which are the fundamental shear observ-
ables, we consider various derived second-order functions, which
are able to separate the shear correlation into its E- and B-mode.
The resulting B-mode is consistent with zero on all scales. The ex-
cess in the E- and B-mode signal that was seen in the CFHTLS-
T0003 data (F08) between 50 and 130 arcmin is no longer present.
This excess was most likely due to systematics in the earlier data,
and the removal of this feature has to be seen as a success of the
CFHTLenS analysis. In particular, hints for deviations from Gen-
eral Relativity using the F08 data (Zhao et al. 2010) are not con-
firmed with CFHTLenS (Simpson et al. 2012).

Cosmological parameters The parameter combination which
2D weak lensing can constrain best, is σ8Ω

α
m with α ∼

0.6. CFHTLenS alone, with the two-point correlation functions

c© 2009 RAS, MNRAS 000, 1–18
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broad, particularly for the redshift bins with a significant fraction
of catastrophic outliers in the photometric redshift distribution (see
Figure 1).

Figure 3 shows the resulting compressed 21 data points for
each statistic, ⇠

+

(circles) and ⇠� (crosses), plotting ↵ij
ˆ⇠ij
fid

(✓ =

1

0
) against z

peak

. This can be compared to the fiducial cosmol-
ogy prediction (shown dotted, by setting ↵ = 1). To recover ↵ij

from this figure, one simply divides the value of each data point
by the value of the fiducial model, shown dotted, at that z

peak

. We
find a signal that rises as the peak redshift of the lensing efficiency
function increases; the more large scale structure the light from our
background galaxies propagates through, the stronger the lensing
effect. In general, the data are well-fit by the WMAP7 GG-only
fiducial model, but we do see an indication of an excess signal at
low redshifts where, for a fixed angular scale, the smaller physical
scales probed are more likely to be contaminated by the intrinsic
galaxy alignment signal. This is however also the regime where the
analysis is most affected by catastrophic outliers in our photomet-
ric redshift distribution. Based on the cross-correlation analysis of
Benjamin et al. (2012) we expect these errors to be accounted for
by our use of photometric redshift distributions P (z). In Heymans
et al. (2012), we also show that the catalogues used in this analy-
sis present no significant redshift-dependent systematic bias when
tested with a cosmology-insensitive galaxy-galaxy lensing analy-
sis. This gives us confidence in the robustness of our results at all
redshifts. We note that in order to make this visualization of the
data, the different redshift bin combinations and the ⇠

+

and ⇠�
statistics are considered to be uncorrelated. The plotted 1� errors
on ↵ are therefore underestimated but we re-iterate at this point
that this data compression is purely for visualization purposes and
it is not used in any of the cosmological parameter constraints that
follow.

4.2 Comparison of parameter constraints from weak lensing
in a flat ⇤CDM cosmology

The measurement of cosmological weak lensing alone is most sen-
sitive to the overall amplitude of the matter power spectrum. This
depends on a degenerate combination of the clustering amplitude
�
8

and the matter density parameter ⌦
m

, and it is therefore in this
parameter space that we choose to compare the constraints we find
from weak lensing alone using different analysis techniques. We
limit this comparison to flat ⇤CDM cosmologies. Figure 4 com-
pares three cases. In blue we show the 68 per cent Bayesian confi-
dence limits from a 2D weak lensing analysis of CFHTLenS, lim-
ited to the same angular scales as our tomography analysis with
✓ < 35 arcmin. This can be compared to the 68 per cent con-
straints from our 6-bin ⇠± tomographic lensing measurement when
intrinsic alignments are assumed to be zero (pale blue) and when
the amplitude of the intrinsic alignment model is allowed to be a
free parameter and is marginalised over (pink). All three measure-
ments are consistent and can be compared to the best-fit WMAP7
results shown as a white circle for reference.

Table 2 lists the parameter constraints orthogonal to the �
8

�
⌦

m

degeneracy direction for the three cases shown in Figure 4.
These can be compared to the 2D CFHTLenS constraints from
Kilbinger et al. (2012), where large angular scales were included
in the analysis, and a 2-bin tomography analysis from Benjamin
et al. (2012), limited to the same angular scales considered in this
analysis. We find excellent agreement between the results from the
different analyses, indicating that ignoring intrinsic alignment con-

Figure 3. Compressed CFHTLenS tomographic data where each point rep-
resents a different tomographic bin combination ij as indicated by z

peak

,
the peak redshift of the lensing efficiency for that bin combination. The
best-fitting amplitude ↵ij of the data relative to a fixed fiducial GG-only
cosmology model is shown, multiplied by the fiducial model at ✓ = 1
arcmin for ⇠

+

(circles) and ⇠� (crosses). The error bars show the 1� con-
straints on the fit. The data can be compared to the fiducial GG-only model,
shown dotted. Note that the colour of the points follow the same colour-
scheme as Figure 1, and indicates the lower redshift bin that is used for
each point.

Figure 4. Flat ⇤CDM parameter constraints (68 per cent confidence) on the
amplitude of the matter power spectrum controlled by �

8

and the matter
density parameter ⌦

m

from CFHTLenS-only, comparing three cases: 2D
weak lensing (blue) and 6-bin tomographic lensing where intrinsic align-
ments are assumed to be zero (pale blue) and are marginalised over (pink).
For reference, the white circle shows the corresponding best-fit values from
WMAP7 (Komatsu et al. 2011).
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Figure 5. Flat ⇤CDM joint parameter constraints on the amplitude of the
matter power spectrum controlled by �

8

and the matter density parameter
⌦

m

from CFHTLenS-only (pink), WMAP7-only (blue), BOSS combined
with WMAP7 and R11 (green), and CFHTLenS combined with BOSS,
WMAP7 and R11 (white).

4.3 Joint Cosmological Parameter constraints

We present joint cosmological parameter constraints from
CFHTLenS combined with WMAP7, BOSS and R11 for four cos-
mological models testing flat and curved ⇤CDM and wCDM cos-
mologies. Table 3 lists the best-fit 68 per cent confidence limits for
our cosmological parameter set for the combination of CFHTLenS
and WMAP7 (first line for each parameter), CFHTLenS, WMAP7
and R11 (second line for each parameter) and for CFHTLenS,
WMAP7, BOSS and R11 (third line for each parameter). For com-
parison the figures also show constraints for WMAP7-only and
WMAP7 combined with BOSS and R11. We refer the reader to
Komatsu et al. (2011) and Anderson et al. (2012) for tabulated
cosmological parameter constraints for the non-CFHTLenS com-
bination of data sets shown, noting that we find good agreement
with their tabulated constraints. We also refer the reader to Kil-
binger et al. (2012) for CFHTLenS-only parameter constraints for
the curved and wCDM cosmological models tested in this section.
Whilst CFHTLenS currently represents the most cosmologically
constraining weak lensing survey, it spans only 154 square degrees
and is therefore not expected to have significant constraining power
when considered alone. This is demonstrated in Figure 5 which
compares parameter constraints in the �

8

� ⌦

m

plane for a flat
⇤CDM cosmology. The wide constraints from CFHTLenS-only
are shown in pink (note the inner 68 per cent confidence region was
shown in pink in Figure 4), in comparison to the tight constraints
from WMAP7-only (blue). The power of lensing, however arises
from its ability to break degeneracies in this parameter space ow-
ing to the orthogonal degeneracy directions. BOSS combined with
WMAP7 and R11 is shown green and when CFHTLenS is added
in combination with BOSS, WMAP7 and R11 (white) we find the
combined confidence region decreases in area by nearly a factor of
two. As we will show in this section, the tomographic lensing infor-
mation presented in this analysis is therefore very powerful when
used in combination with auxiliary data sets.

The figures that follow in this section all compare constraints
for different combinations of cosmological parameters and cosmo-
logical models with the following colour-scheme: WMAP7-only
(in blue), WMAP7 combined with CFHTLenS and R11 (in pink),
WMAP7 combined with BOSS and R11 (in green) and all four
data sets in combination (in white). Comparing the green contours
with the pink contours allows the reader to gauge the relative power
of BOSS and CFHTLenS when either survey is used in combina-
tion with WMAP7 and R11. Comparing the green contours with the
white contours allows the reader to gauge the extra contribution that
CFHTLenS makes to BOSS, R11 and WMAP7 in breaking differ-
ent parameter degeneracies and constraining cosmological param-
eters.

4.3.1 Constraints in the �
8

� ⌦

m

plane

Figure 6 shows joint parameter constraints on the normalisation of
the matter power spectrum �

8

and the matter density parameter
⌦

m

for four cosmological models: flat ⇤CDM, flat wCDM, curved
⇤CDM and curved wCDM. The comparison of the results for the
four cosmological models show the decreased WMAP7 sensitiv-
ity to these two cosmological parameters when extra freedom in
the cosmological model is introduced, such as dark energy w

0

, or
curvature. We find slightly tighter constraints from CFHTLenS in
combination with WMAP7 and R11 (pink), in comparison to BOSS
in combination with WMAP7 and R11 (green). The 68 per cent
confidence regions between these two survey combinations only
marginally overlap, introducing a mild tension. The constraints are
however consistent at the 95 per cent confidence level. For the mat-
ter density parameter ⌦

m

, the addition of BOSS data to the com-
bined CFHTLenS, WMAP7, R11 analysis typically decreases the
1� errors by ⇠ 20 per cent across all cosmologies. For the normal-
isation of the matter power spectrum �

8

, however, we find BOSS
adds little to the constraining power of CFHTLenS with WMAP7
and R11 for the cosmological models tested. Furthermore, for a flat
⇤CDM cosmology the constraint �

8

= 0.799 ± 0.015 is almost
entirely driven by CFHTLenS in combination with WMAP7 alone.

4.3.2 Curved cosmological models

We consider two curved cosmologies where the sum of the dif-
ferent density components of the Universe is no longer limited
to the critical density. Figure 7 shows joint parameter constraints
on the curvature ⌦

K

and the matter density parameter ⌦

m

for
WMAP7-only (blue), BOSS combined with WMAP7 and R11
(green), CFHTLenS combined with WMAP7 and R11 (pink) and
CFHTLenS combined with BOSS, WMAP7 and R11 (white). In
both the curved ⇤CDM and curved wCDM cosmology we find that
the data are consistent with a flat Universe with ⌦K ' �0.004 ±
0.004 (see Table 3 for exact numbers for the different cosmologies
and data combinations). In this parameter space we find a factor
of two improvement when R11 is included in combination with
CFHTLenS and WMAP7. This is partly because when curvature is
allowed the degeneracy direction of the CMB in the �

8

�⌦

m

plane
changes such that the combination of lensing with the CMB be-
comes less powerful. Little improvement is found in the constrain-
ing power when BOSS is included in our parameter combination,
but the mean ⌦K changes by nearly 2�.
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Figure 8. Joint parameter constraints on the dark energy equation of state parameter w
0

and the matter density parameter ⌦
m

, and curvature parameter ⌦
K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).

Figure 9. Compressed CFHTLenS tomographic data for two galaxy sam-
ples; early-type (circles) and late-type (cross) galaxies. As in Figure 3, each
point represents a different tomographic bin combination ij as indicated
by z

peak

, the peak redshift of the lensing efficiency for that bin. The best-
fitting amplitude ↵ij of the data relative to a fixed fiducial GG-only cos-
mology model is shown, multiplied by the fiducial model at ✓ = 1 arcmin
for ⇠

+

. The error bars show the 1� constraints on the fit. The data can be
compared to the fiducial GG-only model, shown dotted.

and represents the best-fitting spectral energy distribution to each
galaxy’s photometry (see Hildebrandt et al. 2012, for more details).
We follow Velander et al. (2012) by selecting late-type spiral galax-
ies with T

BPZ

> 2.0, roughly 80 per cent of the galaxy catalogue
used in the main analysis. The remaining 20 per cent are classi-
fied as early-type galaxies. Each sample is split into 6 tomographic
bins, using the redshift selection given in Table 1, and the redshift
distribution determined from the sum of the P (z). Covariance ma-
trices were determined for each galaxy sample using the method
outlined in Section 3.3, but mapping only the relevant galaxy sam-

ple on to the N-body lensing simulations. We found no evidence for
a significant difference in �e for the two samples. Figure 9 shows
the resulting compressed tomographic measurements made with
early-type galaxies (circles) and late-type galaxies (crosses). The
data compression uses the visualization method described in Sec-
tion 4.1, modified slightly such that the free amplitude parameter
↵ij is fitted simultaneously to both the ⇠

+

and ⇠� measured from
the data. The resulting best-fitting amplitude ↵ij is shown, multi-
plied by the fiducial model at ✓ = 1 arcmin for ⇠

+

. With only 20 per
cent of the data contained in the early-type sample, it is unsurpris-
ing that the measured signal to noise is significantly weaker than
for the late-type sample which are well fit by the fiducial GG-only
model, shown dotted. We can, however, optimise the measurement
of the intrinsic alignment signal from early-type galaxies, to get a
clearer picture, if we assume the II contribution to cross-correlated
bins is small in comparison to the GI signal. If this is the case, we
can decrease the noise on the GI measurement by using the full
galaxy sample as background galaxies to correlate with the early-
type galaxies in the foreground bin. The result of this optimised
analysis is shown, in compressed tomographic data form, in Fig-
ure 10. The open circles show the tomographic signal measured in
the auto-correlated redshift bins between early-type galaxies (these
auto-correlation bins are also shown in Figure 9). The closed sym-
bols show the tomographic signal in the cross-correlated redshift
bins where early-type galaxies populate the foreground bin and the
full galaxy sample populates the background higher redshift bin.
The data can be compared to the fiducial GG-only model, shown
dotted. What is interesting to note from this Figure is that at low
redshifts, where the intrinsic alignment signal is expected to be
the most prominent, the auto-correlated bins tend to lie above the
GG-only model. We expect this from the II term. For the cross-
correlated bins, however, the measured signal tends to lie below
the GG-only model. We expect this from the GI term.

Figure 11 combines the CFHTLenS data split by galaxy type,
and our optimised early-type galaxy tomography analysis, with
auxiliary data from WMAP7, BOSS and R11 to constrain the am-
plitude of the intrinsic alignment model A. Assuming a flat ⇤CDM
model, the resulting 68 per cent and 95 per cent confidence limits

c� 0000 RAS, MNRAS 000, 000–000
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Figure 11. Joint parameter constraints on the amplitude of the intrinsic alignment model A and the matter density parameter ⌦
m

from CFHTLenS combined
with WMAP7, BOSS and R11. In the left panel the constraints can be compared between two galaxy samples split by SED type, (early-type in red and late-type
in blue). In the right panel we present constraints from a optimised analysis to enhance the measurement of the intrinsic alignment amplitude of early-type
galaxies (pink). The full sample, combining early and late-type galaxies, produces an intrinsic alignment signal that is consistent with zero (shown purple). A
flat ⇤CDM cosmology is assumed.

Figure 10. Compressed CFHTLenS tomographic data for an optimised
early-type galaxy intrinsic alignment measurement with auto-correlated
redshift bins containing only early-type galaxies (circles) and cross-
correlation redshift bins containing early-type galaxies in the low redshift
bin and all galaxy types in the high redshift bin (filled). Different tomo-
graphic bin combinations ij are indicated by z

peak

, the peak redshift of the
lensing efficiency for that bin. The best-fitting amplitude ↵ij of the data
relative to a fixed fiducial GG-only cosmology model is shown, multiplied
by the fiducial model at ✓ = 1 arcmin for ⇠

+

. The error bars show the 1�
constraints on the fit. The data can be compared to the fiducial GG-only
model, shown dotted.

on A and the matter density parameter ⌦
m

can be compared4. In

4 Note that the constraints on cosmological parameters other than A are

the left panel we show constraints from the two galaxy samples
split by SED type. The early-type galaxy constraints are shown
in red and the late-type galaxy constraints are shown in blue. In
the right panel, constraints are shown for the full galaxy sample
in purple and the optimised early-type intrinsic alignment analysis
in pink. The marginalised 68 per cent confidence errors on A, from
the combination of CFHTLenS data with WMAP7, BOSS and R11,
for the four different measurements are

A
late

= 0.18+0.83
�0.82 , (17)

A
early

= 5.15+1.74
�2.32 , (18)

Aopt

early

= 4.26+1.23
�1.39 , (19)

A
all

= �0.48+0.75
�0.87 . (20)

We find the intrinsic alignment amplitude of the late-type sample
is consistent with zero. In contrast, the amplitude of the intrinsic
alignment model for the early-type sample is detected to be non-
zero with close to 2� confidence. When we consider the optimised
analysis, we find an even stronger detection, with an intrinsic align-
ment amplitude of A = 0 for early-type galaxies ruled out with
3� confidence. The optimised early-type analysis should be con-
sidered with some caution, however, as the tomographic redshift
bins do overlap and as such a small fraction of late-type with early-
type II correlation will be included in the measurement. The mea-
surement of A

early

should therefore be considered as our cleanest
measurement of the early-type galaxy intrinsic amplitude with the
optimised Aopt

early

analysis providing us with the strongest evidence
for intrinsic galaxy alignments between early-type galaxies.

consistent between the early-type and late-type analysis, and that both sets
of parameter constraints, with the exception of A, are consistent with the
full galaxy sample analysis reported in table 3.
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Figure 5. Left: Constraints on the modified gravity parameters in a flat ⇤CDM background from redshift space distortions (green), weak lensing (red), and
combined (blue). (68 and 95 per cent CL). The dashed and solid contours represent the 68 and 95 per cent condence intervals respectively. Two auxiliary
datasets are used here to break degeneracies with the conventional cosmological parameters. These are the small-angle anisotropies from WMAP7 (` > 100),
and a prior on H

0

from (Riess et al. 2011). The cross positioned at the origin denotes the prediction of General Relativity. Right: The red, green and blue
contours are the same as the left panel, except the prior on H

0

has been replaced by measurements of the Baryon Acoustic Oscillations as detailed in Section
3.2. The yellow contours signify the constraints derived from the full WMAP7 power spectra, including the large angular scales (` < 100). The white contours
in the left hand panel show the constraints when all data sets are analysed in combination.

Table 1. Parameter constraints for different combinations of dataset and parameter space. The three different backgrounds we explore are flat ⇤CDM, flat
wCDM and the non-flat wCDM which we denote as owCDM.
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where setting � = 0.55 offers an estimate of the growth factors
in wCDM cosmologies with sub-percent accuracy. Equation (23)
from Linder & Cahn (2007) gives us the relation

� =
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1� w � µ(a)

1�⌦m(a)

i

5� 6w
, (15)

for a constant equation of state w. In a flat ⇤CDM Universe, this
parameter may be expressed as a simple function of µ

0

and ⌦
⇤

,

� =
6
11

»
1�

µ
0

2⌦
⇤

–
. (16)

Applying the prescription for the growth rate in equation (14)
with a constant value the � parameter does not offer a perfect re-
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1 INTRODUCTION

Einstein’s original formulation of General Relativity (GR) provides
a remarkably precise prescription for the motions of particles in
our solar system (Einstein 1916). It has survived close to a century
of experimental scrutiny, beginning with the precession of Mer-
cury’s orbit and the gravitational deflection of starlight, progress-
ing to ground-based tests with atomic clocks. Recent spaceborne
tests now confirm certain predictions of GR to better than one part
in ten thousand (Bertotti et al. 2003). However when we consider
the behaviour of gravity on cosmological scales, which are over
fourteen orders of magnitude greater than the inter-planetary dis-
tances, there is much greater scope for uncertainty. Observational
evidence of an accelerating universe has called Einstein’s laws into
question. The underlying cause for this “dark energy” phenomenon
may have a physical origin, the leading candidate being the cosmo-
logical constant. Another possibility is that a new regime of gravi-
tational physics has been exposed. It is this prospect which has led
to a recent flurry of activity in constraining the cosmological na-
ture of gravity (Daniel et al. 2010; Bean & Tangmatitham 2010;
Zhao et al. 2010; Song et al. 2010; Reyes et al. 2010; Tereno et al.
2011; Zuntz et al. 2011; Zhao et al. 2012; Hudson & Turnbull 2012;
Rapetti et al. 2012; Samushia et al. 2012).

Much like in the solar system, we are able to study the cos-
mological trajectories of both relativistic and non-relativistic parti-
cles, at least in a statistical sense. The peculiar motions of galaxies
falling towards overdense regions generate an illusory anisotropy
in their clustering pattern (Kaiser 1987), known as redshift space
distortions (RSD). This effect has been observed with heightened
precision over the past decade (Peacock et al. 2001; Hawkins et al.
2003; Guzzo et al. 2008; Blake et al. 2011; Beutler et al. 2012; Reid
et al. 2012) permitting inferences of the rate at which cosmological
structure forms. The peculiar velocities of galaxies can also be ob-
served directly, and the inferred measurements of the growth rate
are consistent with those from RSDs (see Hudson & Turnbull 2012,
and references therein).

For gravitational experiments, relativistic test particles are of
particular interest since their motions are not only sensitive to the
effects of time dilation, but also to the curvature of space. In the
classical test of GR, the deflection of starlight was observed during
a solar eclipse (Dyson et al. 1920). In our experiment, distant galax-
ies replace nearby stars as the source of photons, our relativistic
test particle. When imaging these distant galaxies, instead of mea-
suring their gravitational deflection angles, which are unknown, we
can study their shapes which appear correlated as a result of the
gravitational deflection of light (Bartelmann & Schneider 2001).

One important caveat is that we are required to convert an-
gles and redshifts into physical distances when interpreting obser-
vations of redshift space distortions and gravitational lensing. We
therefore require additional information on the geometry of the uni-
verse. Geometric measurements of dark energy such as supernovae
and baryon acoustic oscillations, conventionally used to determine
the equation of state for dark energy, w(z), are crucial for this pur-
pose. However their measurements alone cannot distinguish mod-
ified gravity models, which are in general capable of reproducing
any given wCDM expansion history. The Cosmic Microwave Back-
ground (CMB) is also used to further break degeneracies, and pro-
vides a high redshift anchor for the amplitude of density perturba-
tions (see e.g. Komatsu et al. 2011).

Gravitational lensing is not unique in its ability to probe both
metric potentials. CMB photons gain or lose energy as the poten-
tials evolve, a phenomenon known as the Integrated Sachs Wolfe

effect (ISW), leaving a significant anisotropy on the largest angu-
lar scales. While the expected signal strength from GR is modest,
more radical departures from the canonical model would generate
very large ISW signals, something which is not seen in the data
(Lombriser et al. 2009; Zuntz et al. 2011).

While we currently lack a specific model which can compete
with GR in terms of simplicity and physical motivation, there ex-
ist broad families of models such as f(R) which provide useful
test cases. For a recent review of the full menagerie of models,
see Clifton et al. (2011). In this work we do not aim to constrain
the parameter space of a particular family of models, or explic-
itly perform Bayesian model selection, but instead simply address
the question of whether our data appear consistent with the predic-
tions of GR. In addition to the cosmic shear data from the Canada-
France-Hawaii Telescope Lensing Survey (CFHTLenS), we make
use of redshift space distortions from WiggleZ and the Six-degree-
Field Galaxy Survey (6dFGS).

In §2 we outline our choice of parameterisation for departures
from GR. Our datasets are summarised in §3 and §4, followed by
our methods and main results in §5 and §6. A comparison with
alternative parameterisation schemes is presented in §7, and we
briefly review the status of theoretical models of modified gravity
in §8, with concluding remarks in §9.

2 PARAMETERISING THE MODIFICATION

Given the lack of a compelling model to rival GR, we choose to
parameterise deviations from GR in a phenomenological manner.
In effect, we simply wish to ask: is the strength of gravity the same
on cosmological scales as it is here on Earth? If not, this may mod-
ify the motions of both relativistic and non-relativistic particles, but
not necessarily in the same manner. Figure 1 illustrates why we are
seeking a modified gravity signal on cosmological scales; it is the
regime in which the classical Newtonian attraction is overwhelmed
by the repulsive force associated with dark energy.

The perturbed Friedmann-Robertson-Walker metric may be
expressed in terms of the scale factor a(t), the Newtonian poten-
tial  , and the curvature potential �

ds2 = (1 + 2 ) dt2 � a2(t) (1� 2�) dx

2 . (1)

In GR each of the two gravitational potentials  and �, which
carry implicit spatial and temporal dependencies, may be deter-
mined from the distribution of matter in the Universe. In Fourier
space this is given by

k2�GR = �4⇡Ga2⇢̄� , (2)

where we have introduced the wavenumber k, the mean cosmic
density ⇢̄, and the fractional density perturbation � ⌘ ⇢/⇢̄ � 1.
In the absence of anisotropic stress the two potentials are identi-
cal,  (x, t) = �(x, t). Relativistic particles collect equal contri-
butions from the two potentials, since they traverse equal quantities
of space and time, such that

k2 ( 
GR

+ �
GR

) = �8⇡Ga2⇢̄� . (3)

We wish to investigate deviations from GR with a general parame-
terisation. Hereafter, each of the two probes, the Newtonian poten-
tial  experienced by non-relativistic particles and the lensing po-
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tential (�+ ) experienced by relativistic particles, are now mod-
ulated by the parameters ⌃ and µ

 (k, a) = [1 + µ(k, a)] 
GR

(k, a) , (4)

[ (k, a) + �(k, a)] = [1 + ⌃(k, a)] [ 
GR

(k, a) + �
GR

(k, a)] ,
(5)

where we have adopted notation similar to that of Amendola et al.
(2008), as used more recently by Zhao et al. (2010) and Song
et al. (2010). This parameterisation has the advantage of separat-
ing the modified behaviour of non-relativistic particles, as dictated
by µ(k, a), from modifications to the deflection of light, as given
by ⌃(k, a). By being able to reproduce a wide range of observa-
tional outcomes, in terms of the two-point weak lensing correla-
tion functions and the growth of large scale structure, we ensure a
broad sensitivity to different types of deviations from GR. There
is some flexibility in how we choose to parameterise the scale and
time dependence of these two parameters, much like the dark en-
ergy equation of state w(z). Previous works have often chosen a
scale independent model with a parameterised time variation of
these functions such that ⌃(a) = ⌃sa

s and µ(a) = µsa
s. How-

ever given that our primary motivation for modified gravity is to
seek an explanation of the dark energy phenomenon, we model the
time-evolution to scale in proportion with the effective dark energy
density implied by the background dynamics, such that

⌃(a) = ⌃
0

⌦
⇤

(a)
⌦

⇤

, µ(a) = µ
0

⌦
⇤

(a)
⌦

⇤

, (6)

where we have defined ⌦
⇤

⌘ ⌦
⇤

(a = 1); this normalisation was
chosen such that µ

0

and ⌃
0

reflect the present day values of µ(a)
and ⌃(a) respectively. Note that for the case of GR, ⌃

0

= µ
0

= 0.
One advantage of this parameterisation is that it permits a trivial
mapping between µ

0

and the popular growth index � (Wang &
Steinhardt 1998; Linder 2005). It also spares us from selecting an
arbitrary s value. Minimising the total number of degrees of free-
dom allows us to maintain a manageable error budget. The lack of
scale dependence in this model may seem questionable given the
stringent Solar System tests which must be satisfied. However the
length scales probed by our cosmological datasets are over fourteen
orders of magnitude greater, leaving ample opportunity for a tran-
sition at scales smaller than those studied here. Furthermore, any
significant departure from scale-independent growth is more read-
ily apparent from studies of the shape of the galaxy power spec-
trum.

With our modified potentials in equations (4, 5) the growth of
linear density perturbations is now given by

�00(a) +

„
2
a

+
ä

ȧ2

«
�0(a)�

3⌦m

2a2

h
1 + µ(a)

i
�(a) = 0 , (7)

while the cosmic shear power spectrum P i,j
 (`) correlating redshift

bins i and j takes the form

P i,j
 (`) =

9
4
⌦2

m

„
H

0

c

«
4

Z 1

0

gi(�)gj(�)
a2(�)

P�

„
`

fK(�)
, �

«

⇥ [1 + ⌃(�)]2d� ,
(8)

where the terms not present in the equations’ conventional form are
highlighted in bold. Here � denotes the radial coordinate distance,

Figure 1. The shaded triangle represents the vast regime over which the
gravitational acceleration of a test particle in the proximity of a mass M is
thought to be well described by the Newtonian prescription a = GMr�2.
While torsion balance (Laboratory) and space-based (Solar System) tests of
gravity offer superior accuracy, cosmological methods push the boundaries
of our understanding of gravity. For clarity we truncate the mass axis at the
Planck mass (red edge), while the upper bound (black edge) denotes the
Schwarzschild radius. The grey slope illustrates the amplitude of the nega-
tive contribution arising from dark energy, which scales in proportion to r,
and surpasses the conventional Newtonian force at cosmological scales.

while fK is the comoving angular diameter distance. Note also that
P(`) possesses an implicit dependence on µ via the time-evolution
of the P� term. The lensing efficiency gi is determined by the ra-
dial distribution of source galaxies ni(�) and the comoving angular
diameter distance fK(�)

gi(�) =

Z 1

�

d�0ni(�
0)

fK(�0 � �)
fK(�0)

. (9)

Note that our parameters µ
0

and ⌃
0

are only modulating the
gravitational potentials in equation (1), but not the evolution of the
expansion a(t). The standard cosmological model, in the form of a
flat ⇤CDM universe, is known to provide a good description of the
cosmic geometry, therefore for most of this paper we work on the
assumption of this global expansion, and focus on exploring the
less well determined behaviour of the gravitational perturbations.
We shall also explore the consequences of adding further degrees
of freedom to the expansion history, in the form of an effective dark
energy equation of state w and the global curvature ⌦

K

.

3 GEOMETRIC DATA

When considering the prospect of modified gravity, we must re-
lax the assumption that light deflection and structure formation fol-
low the predictions of GR. This significantly exacerbates the task
of constraining all of our unknown cosmological parameters. For
example, without knowing how mass bends light on cosmological
scales, we cannot hope to use gravitational lensing to measure the
geometry of the Universe. We therefore require auxiliary data to as-
sist in measuring the conventional cosmological parameters, those
which govern the cosmic expansion history and shape of the matter
power spectrum, before we can attempt to tackle the gravitational
parameters µ

0

and ⌃
0

.

c� 0000 RAS, MNRAS 000, 000–000

CFHTLenS: Testing the Laws of Gravity 3

tential (�+ ) experienced by relativistic particles, are now mod-
ulated by the parameters ⌃ and µ

 (k, a) = [1 + µ(k, a)] 
GR

(k, a) , (4)

[ (k, a) + �(k, a)] = [1 + ⌃(k, a)] [ 
GR

(k, a) + �
GR

(k, a)] ,
(5)

where we have adopted notation similar to that of Amendola et al.
(2008), as used more recently by Zhao et al. (2010) and Song
et al. (2010). This parameterisation has the advantage of separat-
ing the modified behaviour of non-relativistic particles, as dictated
by µ(k, a), from modifications to the deflection of light, as given
by ⌃(k, a). By being able to reproduce a wide range of observa-
tional outcomes, in terms of the two-point weak lensing correla-
tion functions and the growth of large scale structure, we ensure a
broad sensitivity to different types of deviations from GR. There
is some flexibility in how we choose to parameterise the scale and
time dependence of these two parameters, much like the dark en-
ergy equation of state w(z). Previous works have often chosen a
scale independent model with a parameterised time variation of
these functions such that ⌃(a) = ⌃sa

s and µ(a) = µsa
s. How-

ever given that our primary motivation for modified gravity is to
seek an explanation of the dark energy phenomenon, we model the
time-evolution to scale in proportion with the effective dark energy
density implied by the background dynamics, such that

⌃(a) = ⌃
0

⌦
⇤

(a)
⌦

⇤

, µ(a) = µ
0

⌦
⇤

(a)
⌦

⇤

, (6)

where we have defined ⌦
⇤

⌘ ⌦
⇤

(a = 1); this normalisation was
chosen such that µ

0

and ⌃
0

reflect the present day values of µ(a)
and ⌃(a) respectively. Note that for the case of GR, ⌃

0

= µ
0

= 0.
One advantage of this parameterisation is that it permits a trivial
mapping between µ

0

and the popular growth index � (Wang &
Steinhardt 1998; Linder 2005). It also spares us from selecting an
arbitrary s value. Minimising the total number of degrees of free-
dom allows us to maintain a manageable error budget. The lack of
scale dependence in this model may seem questionable given the
stringent Solar System tests which must be satisfied. However the
length scales probed by our cosmological datasets are over fourteen
orders of magnitude greater, leaving ample opportunity for a tran-
sition at scales smaller than those studied here. Furthermore, any
significant departure from scale-independent growth is more read-
ily apparent from studies of the shape of the galaxy power spec-
trum.

With our modified potentials in equations (4, 5) the growth of
linear density perturbations is now given by

�00(a) +

„
2
a

+
ä
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broad sensitivity to different types of deviations from GR. There
is some flexibility in how we choose to parameterise the scale and
time dependence of these two parameters, much like the dark en-
ergy equation of state w(z). Previous works have often chosen a
scale independent model with a parameterised time variation of
these functions such that ⌃(a) = ⌃sa

s and µ(a) = µsa
s. How-

ever given that our primary motivation for modified gravity is to
seek an explanation of the dark energy phenomenon, we model the
time-evolution to scale in proportion with the effective dark energy
density implied by the background dynamics, such that

⌃(a) = ⌃
0

⌦
⇤

(a)
⌦

⇤

, µ(a) = µ
0

⌦
⇤

(a)
⌦

⇤

, (6)

where we have defined ⌦
⇤

⌘ ⌦
⇤

(a = 1); this normalisation was
chosen such that µ

0

and ⌃
0

reflect the present day values of µ(a)
and ⌃(a) respectively. Note that for the case of GR, ⌃

0

= µ
0

= 0.
One advantage of this parameterisation is that it permits a trivial
mapping between µ

0

and the popular growth index � (Wang &
Steinhardt 1998; Linder 2005). It also spares us from selecting an
arbitrary s value. Minimising the total number of degrees of free-
dom allows us to maintain a manageable error budget. The lack of
scale dependence in this model may seem questionable given the
stringent Solar System tests which must be satisfied. However the
length scales probed by our cosmological datasets are over fourteen
orders of magnitude greater, leaving ample opportunity for a tran-
sition at scales smaller than those studied here. Furthermore, any
significant departure from scale-independent growth is more read-
ily apparent from studies of the shape of the galaxy power spec-
trum.

With our modified potentials in equations (4, 5) the growth of
linear density perturbations is now given by

�00(a) +

„
2
a

+
ä

ȧ2

«
�0(a)�

3⌦m

2a2

h
1 + µ(a)

i
�(a) = 0 , (7)

while the cosmic shear power spectrum P i,j
 (`) correlating redshift

bins i and j takes the form

P i,j
 (`) =

9
4
⌦2

m

„
H

0

c

«
4

Z 1

0

gi(�)gj(�)
a2(�)

P�

„
`

fK(�)
, �

«

⇥ [1 + ⌃(�)]2d� ,
(8)

where the terms not present in the equations’ conventional form are
highlighted in bold. Here � denotes the radial coordinate distance,

Figure 1. The shaded triangle represents the vast regime over which the
gravitational acceleration of a test particle in the proximity of a mass M is
thought to be well described by the Newtonian prescription a = GMr�2.
While torsion balance (Laboratory) and space-based (Solar System) tests of
gravity offer superior accuracy, cosmological methods push the boundaries
of our understanding of gravity. For clarity we truncate the mass axis at the
Planck mass (red edge), while the upper bound (black edge) denotes the
Schwarzschild radius. The grey slope illustrates the amplitude of the nega-
tive contribution arising from dark energy, which scales in proportion to r,
and surpasses the conventional Newtonian force at cosmological scales.

while fK is the comoving angular diameter distance. Note also that
P(`) possesses an implicit dependence on µ via the time-evolution
of the P� term. The lensing efficiency gi is determined by the ra-
dial distribution of source galaxies ni(�) and the comoving angular
diameter distance fK(�)

gi(�) =

Z 1

�

d�0ni(�
0)

fK(�0 � �)
fK(�0)

. (9)

Note that our parameters µ
0

and ⌃
0

are only modulating the
gravitational potentials in equation (1), but not the evolution of the
expansion a(t). The standard cosmological model, in the form of a
flat ⇤CDM universe, is known to provide a good description of the
cosmic geometry, therefore for most of this paper we work on the
assumption of this global expansion, and focus on exploring the
less well determined behaviour of the gravitational perturbations.
We shall also explore the consequences of adding further degrees
of freedom to the expansion history, in the form of an effective dark
energy equation of state w and the global curvature ⌦

K

.

3 GEOMETRIC DATA

When considering the prospect of modified gravity, we must re-
lax the assumption that light deflection and structure formation fol-
low the predictions of GR. This significantly exacerbates the task
of constraining all of our unknown cosmological parameters. For
example, without knowing how mass bends light on cosmological
scales, we cannot hope to use gravitational lensing to measure the
geometry of the Universe. We therefore require auxiliary data to as-
sist in measuring the conventional cosmological parameters, those
which govern the cosmic expansion history and shape of the matter
power spectrum, before we can attempt to tackle the gravitational
parameters µ

0

and ⌃
0

.
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Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M", a stellar mass of M∗ =

5× 1010 h−1
70 M" and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is
discussed in more detail in Mandelbaum et al. (2005a). To check
whether including the fields that failed the cosmic shear sys-
tematics test would bias our results, we compared the tangen-
tial shear around all galaxies with 19.0 < i′AB < 22.0 in the
fields that respectively passed and failed this test, and found no
significant differences between the signals.

3.2 The halo model

To model the weak lensing signal observed around galaxy-size
haloes, we have to account for the fact that galaxies generally reside
in clustered environments. In this work we do this by employing the
halo model software first introduced in VU11. For full details on the
exact implementation we refer to VU11; here we give a qualitative
overview.

Our halo model builds on work presented in Guzik & Sel-
jak (2002) and Mandelbaum et al. (2005b), where the full lensing
signal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn
reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term ∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent +∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by Duffy
et al. (2008). The halo model parameters resulting from an analy-
sis such as ours (see, for example, Section 4) are not very sensitive
to the exact halo concentration, as discussed in VU11. To com-
pute the 2-halo term, we assume that the dependence of the galaxy
bias on mass follows the prescription from Sheth et al. (2001), in-
corporating the adjustments described in Tinker et al. (2005). This
mass-bias relation is empirically calibrated on large numeri-
cal simulations, and does not discriminate between different
galaxy types.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites depends on the mass of
the central halo, and we follow the prescription from Mandel-
baum et al. (2005b). The subhaloes have been tidally stripped of
dark matter in the outer regions. Similar to Mandelbaum et al.
(2005b) we adopt a truncated NFW profile, choosing a trunca-
tion radius of 0.4r200 beyond which the lensing signal is pro-
portional to r−2, where r is the physical distance from the lens.
This choice results in about 50% of the subhalo dark matter being
stripped, and we acquire a satellite term which supplies signal on
small scales. Thus satellite galaxies add three further components
to the total lensing signal: the contribution from the stripped sub-
halo (∆Σstrip), the satellite 1-halo term which is off-centred since
the satellite galaxy is not at the centre of the main halo, and the
2-halo term from nearby haloes. Just as for the central galaxies, the
three terms add to give the satellite lensing signal:

∆Σsat = ∆Σstrip
sat +∆Σ1h

sat +∆Σ2h
sat . (7)

There is an additional contribution to the lensing signal, not
yet considered in the above equations. This is the signal induced by
the lens baryons (∆Σbar). This last term is a refinement to the halo
model presented in VU11, necessary since weak lensing measures
the total mass of a system and not just the dark matter mass. Fol-
lowing Leauthaud et al. (2011) we model the baryonic component
as a point source with a mass equal to the mean stellar mass of the
lenses in the sample:

∆Σbar =
〈M∗〉
πr2

. (8)

This term is fixed by the stellar mass of the lens, and we do not fit
it. Note that we ignore the baryonic term for neighbouring haloes,
but their contribution is negligible.

Finally, to obtain the total lensing signal of a galaxy sample
of which a fraction α are satellites we combine the baryon, central
and satellite galaxy signals, applying the appropriate proportions:

∆Σ = ∆Σbar + (1− α)∆Σcent + α∆Σsat . (9)

All components of our halo model are illustrated in Figure 3. In this
example the dark matter halo mass is M200 = 1 × 1012 h−1

70 M",
the stellar mass is M∗ = 5 × 1010 h−1

70 M", the satellite fraction
is α = 0.2, the lens redshift is zlens = 0.5 and Dls/Ds = 0.5. On
small scales the 1-halo components are prominent, while on large
scales the 2-halo components dominate.

4 LUMINOSITY TREND

The luminosity of a galaxy is an easily obtainable indicator of its
baryonic content. To investigate the relation between dark matter
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Table 4. Results from the halo model fit for the stellar mass bins. (1) Mean luminosity for red lenses [1010 h−2
70 L"]; (2) Mean stellar mass for red lenses

[1010 h−1
70 M"]; (3) Scatter-corrected best-fit mean halo mass for red lenses [1011 h−1

70 M"]; (4) Best-fit satellite fraction for red lenses; (5) Mean lumi-
nosity for blue lenses [1010 h−2

70 L"]; (6) Mean stellar mass for blue lenses [1010 h−1
70 M"]; (7) Scatter-corrected best-fit mean halo mass for blue lenses

[1011 h−1
70 M"]; (8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the red results from the S1 and

S2 bins, and the blue results from the S5 and S6 bins, are not used for fitting the power law relation in Section 5.1.

Sample 〈Lred
r 〉(1) 〈Mred

∗ 〉(2) Mred
h

(3) αred(4) 〈Lblue
r 〉(5) 〈Mblue

∗ 〉(6) Mblue
h

(7) αblue(8)

S1 0.21 0.23 3.34+1.38
−1.03 1.00+0.00

−0.02 0.41 0.18 1.84+0.48
−0.41 0.04+0.01

−0.01

S2 0.43 0.66 2.72+1.59
−1.39 0.85+0.08

−0.06 1.11 0.54 3.31+0.67
−0.56 0.00+0.01

−0.00

S3 1.06 1.96 4.71+1.36
−1.05 0.48+0.03

−0.03 2.87 1.59 7.88+2.27
−1.90 0.05+0.03

−0.03

S4 2.49 5.65 19.7+2.40
−1.73 0.31+0.02

−0.03 7.12 4.30 18.3+8.15
−7.27 0.00+0.04

−0.00

S5 5.43 13.0 63.4+9.39
−9.44 0.28+0.06

−0.05 16.6 12.0 — —
S6 9.00 22.6 113+26.1

−23.3 0.28+0.09
−0.09 17.9 21.2 — —

S7 14.3 38.5 381+66.6
−56.7 0.20+0.00

−0.06 — — — —
S8 19.0 62.2 249+335

−214 0.00+0.20
−0.00 — — — —

Figure 10. Satellite fraction α and halo mass M200 as a function of stellar
mass. Dark purple (light green) dots represent the results for red (blue) lens
galaxies. Open circles show the points that have been excluded from the
power law fit because of a high satellite fraction. The dotted line in the
lower panel shows the α prior applied to the highest-stellar mass bins.

bin are shown in Figure 10. The satellite fraction α as a function of
stellar mass is shown in the lower panel of Figure 10 for both red
and blue lenses. In the lower-mass bins, nearly all red lenses are
satellites while for higher masses, nearly all are located centrally in
their halo. As discussed in Section 4.2, this fraction is difficult to
constrain for high masses due to the shape of the satellite terms. We
therefore apply the same uniform satellite fraction prior to the high-
stellar mass bins as we did to the high-luminosity bins, allowing
a maximum α of 20%. The overall low satellite fraction for blue
galaxies, suggesting together with low large-scale signal that most
blue galaxies are isolated, is consistent with the luminosity results.

It is clear that the relation between dark matter halo and stellar
mass is different for red and blue lenses. To quantify the difference,
we fit a power law to the lensing signals in each bin simultaneously,

Figure 11. Constraints on the power law fits shown in Figure 10. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

similarly to our treatment of the luminosity bins in the previous
section. The form of the power law is

M200 = M0,M

(
M∗

Mfid

)βM

(11)

with Mfid = 2 × 1011 h−1
70 M" a scaling factor chosen to be the

stellar mass of a fiducial galaxy as in VU11. We note here that for
the lowest red stellar mass bins, though the halo model fits the data
very well (see Figure 9), the sample consists of nearly 100% satel-
lite galaxies as mentioned above. The central halo mass associated
with these lenses is therefore effectively inferred from the satellite
term, and thus constrained indirectly by the halo model. The mod-
eling of the satellites is somewhat ad hoc and we therefore exclude
the two lowest stellar mass bins from our analysis.

The resulting best-fit values for red lenses are
M0,M = 1.02± 0.06× 1013 h−1

70 M" and βM = 1.40± 0.06,
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Figure 13. Comparison between four different datasets, showing the ratio
of measured halo mass to stellar mass as a function of stellar mass. The top
(bottom) panels show the results for red/early-type (blue/late-type) galax-
ies. The datasets used are all based on galaxy-galaxy lensing analyses with
solid dots showing the CFHTLenS results from this paper. Also shown are
halo masses measured using the RCS2 (open stars; VU11), the SDSS (open
squares Mandelbaum et al. 2006) and COSMOS (solid band; Leauthaud
et al. 2012). In the case of COSMOS we use the results from their low-
est redshift bin. Also note that no distinction between red and blue lenses
was made in the COSMOS analysis, so the same results are shown in both
panels.

Figure 14. Dependence of halo model fitting parameters halo mass M200

and satellite fraction α on stellar mass, with fSM the fraction of true mean
stellar mass used in the halo model and contours showing the 67.8%, 95.4%
and 99.7% confidence intervals. The left panel shows that including a bary-
onic component in the model (i.e. setting fSM = 1) will result in a signifi-
cantly lower best-fit halo mass than not doing so (fSM = 0), and the right
panel shows that the reason for this is an increased satellite fraction. In our
analysis we keep the stellar mass component fixed at fSM = 1.

minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and found that for low-luminosity low-redshift
samples the difference between the two definitions is negligible.
The more luminous lenses reside at higher redshifts and for them
the correction was found to be greater, most likely due to the dif-
ference in the passive evolution corrections. Since our lenses are
confined to relatively low redshifts, and since the main difference
between luminosity definitions is the passive evolution factor, we
can compare our results to Mandelbaum et al. (2006) without cor-
recting the luminosities. Our halo mass definition is also different
to that used by Mandelbaum et al. (2006) though. Mandelbaum
et al. (2006) define the mass within the radius where the den-
sity is 180 times the mean background density while we set it to be
200 times the critical density. The correction factor stemming from
the different definitions amounts to ∼ 30%. Having corrected for
this, the results are then very similar to those from Mandelbaum
et al. (2006), but the same concerns of object selection and bary-
onic contribution discussed above apply here as well. The relation
that Mandelbaum et al. (2006) find between halo mass and lumi-
nosity for red lenses is shallower than the one found by VU11, as
discussed therein, and are therefore more in agreement with our
results. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their high-
est stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
(2012) did not separate their lens sample according to galaxy type.
The results shown in the top panel of Figures 12 and 13 are there-
fore identical to those shown in the bottom panel. Note that at high
stellar masses, their sample is expected to be dominated by red
galaxies, and at low stellar masses by blue galaxies, as these
are generally more abundant in these respective regimes (see
Table 3). For stellar masses lower than 1011 h−1

70 M∗, the agree-
ment between Leauthaud et al. (2012) and the other galaxy-galaxy
lensing results is excellent for both galaxy types. For higher stellar
masses, however, Leauthaud et al. (2012) find higher halo masses
than what has been observed in the lensing only analyses discussed
above. This may be explained if a larger fraction of the galaxies
used in analysis of Leauthaud et al. (2012) reside in dense environ-
ments and can be associated to galaxy groups and clusters, so
that their halo masses correspond to the total mass of these struc-
tures. This theory is corroborated by Figure 10 of Leauthaud et al.
(2012) which shows that for large stellar masses, the ratio of stellar
mass to halo mass is very similar to that determined for a set of
X-ray luminous clusters in Hoekstra (2007), indicating that we are
entering the cluster regime. Furthermore, the sampling variance is
not taken into account in the COSMOS error range. This is likely
to affect the higher stellar mass bins more because the number of
objects there is sparse. We also note that the results from the COS-
MOS analysis of X-ray selected groups presented in Leauthaud
et al. (2010), which is centred on a redshift similar to ours and
also shown in Figure 10 of Leauthaud et al. (2012) as grey squares,
agree better with our results for higher stellar masses.

Another subtlety discussed in Section 4.2 is that the satel-
lite fraction of galaxies with high stellar masses is not well con-
strained by galaxy-galaxy lensing only. Since the satellite frac-
tion and halo mass are weakly anti-correlated (see VU11), our
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future surveys

[CFHTLenS 154 deg2 ugriz i<24.7 2012 ground]

CS82 150 deg2 ugriz i<24 2013 ground

RCSLenS 1000 deg2 gri i<23.5 2013 ground]

KiDS+VISTA 1500 deg2 ugrizyJHK i<24 2017 ground

HSC 1400 deg2 grizy i<26 2018 ground

DES 5000 deg2 griz i<25 2018 ground

Euclid 15000 deg2 “riz”,YJH i<24.5 2020-5 space

LSST 20000 deg2 ugriz i<27 2024? ground



future surveys

- noise bias will dominate measurement accuracy
- PSF modelling must be much more accurate than 

now
- undersampling of images must be taken into 

account (even in ground-based data)
- cosmological evolution of galaxy morphology may 

introduce redshift-dependent bias
- wavelength-dependent PSF requires knowledge of 

star and galaxy SED
- intrinsic alignments cannot be ignored



summary

• CFHTLenS is currently the largest weak-lensing survey (SDSS has 
larger sky area but many fewer galaxies)

• Systematic biases that have plagued previous weak-lensing surveys 
have been eliminated at the level needed to meet the statistical 
accuracy

• Basic cosmological parameter measurements are competitive with 
other probes

• Can start to probe directly the relationship between dark matter 
and stellar mass - we can now measure things for which we don’t 
have good theoretical/numerical models

• Highly constrained tests of gravity are possible but general 
constraints require orders of magnitude larger survey

• CFHTLenS will soon be eclipsed in area by KiDS, DES, HSC and 
eventually Euclid and LSST. Techniques we have developed will be 
useful for future surveys but are not yet good enough for those.


