Some Implications of Higgs Diphoton Excess

Based on arXiv:1212.0560 with G. Lee, A. M Thalapillil and C. E. M. Wagner, and on going work

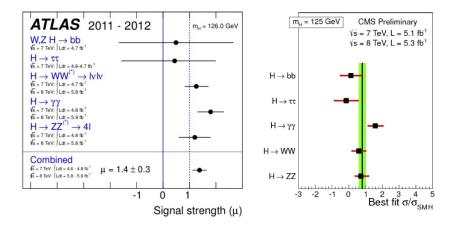
Ran Huo

EFI, University of Chicago

IPMU March 12, 2013

Ran Huo (EFI, University of Chicago)

Some Implications of Higgs Diphoton Excess


IPMU March 12, 2013 1 / 36

・ロト ・回ト ・ ヨト

- General implication of the diphoton excess to Higgs model building
- An $SU(2)\otimes SU(2)$ gauge extension of the MSSM
- A toy model with naive supersymmetry for EW baryogenesis

()

The Famous Experimental Diphoton Excess

- New ATLAS result: $\mu_{\gamma\gamma}=1.65\pm0.2$
- New CMS result: May kill it in the very near future
- But at least $ar{\mu}_{\gamma\gamma} \geq$ 1.32 for ATLAS and CMS:-)

< ロ > < 同 > < 三 > < 三

• Low Energy Theorem relates partial width to renormalization and mass matrix

$$\mathcal{L}_{h\gamma\gamma} \simeq \frac{\alpha}{16\pi} \frac{h}{v} b_i Q_i^2 \frac{\partial}{\partial \log v} \log \left(\det \mathcal{M}_i^2 \right)$$

• In the SM, dominant amplitude of $h \to \gamma \gamma$ is from W^{\pm} , subdominant amplitude is from top, but they interfere destructively

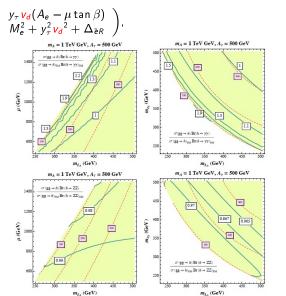
$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 m_h^3}{128 \sqrt{2} \pi^3} \left| A_1(\tau_W) + \sum_f N_c Q_t^2 A_{1/2}(\tau_t) \right|^2, \qquad \tau_i \equiv \frac{m_h^2}{4 m_i^2}.$$

$$A_1(\tau_W) = -8.32_{SM} \rightarrow -\frac{22}{3}_{LET}, \qquad N_c Q_t^2 A_{1/2}(\tau_t) = 1.84_{SM} \rightarrow \frac{16}{9}_{LET}.$$

• All matter (fermion and scalar) have the same sign b_i s with top. All the SM particles have trivially positive $\frac{\partial}{\partial \log y} \log \det \mathcal{M}_i^2$.

• However, new physics can flip the sign of $\frac{\partial}{\partial \log v} \log \det \mathcal{M}_i^2$.

< ロ > < 同 > < 三 > < 三

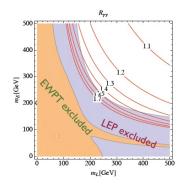

Model 1: Light Stau in MSSM

•
$$M_{\tilde{\tau}}^2 = \begin{pmatrix} M_\ell^2 + y_{\tilde{\tau}}^2 v_d^2 + \Delta_{\tilde{e}L} \\ y_{\tau} v_d (A_{eij}^* - \mu^* \tan \beta) \end{pmatrix}$$

•
$$\frac{\partial \ln \det M_{\tilde{\tau}}^2}{\partial \ln v} \simeq -\frac{2y_{\tau}^2 |A_e - \mu \tan \beta|^2 v_d^2}{M_\ell^2 M_e^2}.$$

- For scalar $b = \frac{1}{3}$,
- $A_e \mu \tan \beta$ can be relatively large, so the enhancement is sufficient.
- Stau is near the LEP bound of 82 GeV

Carena, Gori, Shah and Wagner, arXiv:1112.3336


・ロト ・回ト ・ヨト

•
$$M_{\ell} = \begin{pmatrix} Y_c' \mathbf{v} & m_l \\ m_e & Y_c'' \mathbf{v} \end{pmatrix}$$

• $\frac{\partial \ln \det M_{\tilde{\tau}}^2}{\partial \ln v} \simeq -\frac{2Y_c' Y_c'' v^2}{m_l m_e}$

• For chiral fermion
$$b = \frac{2}{3}$$
,

- Stability problem
- New lepton is near the LEP bound of 100 GeV

Joglekar, Schwaller and Wagner, arXiv:1207.4235

< □ > < ^[] >

• Chargino has the "correct" sign contribution

$$\mathsf{M}_{ij}^{\pm} = \left(\begin{array}{cc} M_2 & \frac{1}{\sqrt{2}} g v \sin \beta \\ \frac{1}{\sqrt{2}} g v \cos \beta & \mu \end{array}\right), \qquad \frac{\partial}{\partial \log v} \log \det \mathsf{M}_{ij}^{\pm} \simeq -\frac{g^2 v^2 \sin 2\beta}{2M_2 \mu}$$

- But it is still insufficient for the observed diphoton excess. Can be interpreted as the gauge coupling is still small.
- We will talk about the gauge extension later in detail.

- Collider: mass bound vs. being light for diphoton enhancement
- \bullet Fermionic Stability: bounded from below \rightarrow SUSY help
- Scalar Stability: not yet tunnel to charge and color breaking minimum
- Electroweak Precision Measurement

Fermionic diphoton model classification

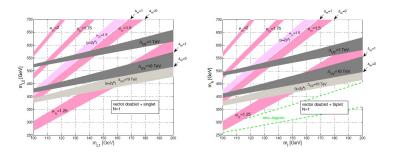
Arkani-Hamed et al, arXiv:1207.4482.

• Charged fermion mass mixing matrix

$$\mathcal{M}_{F^{\pm}} = \left(\begin{array}{cc} m_{\psi} & \frac{1}{\sqrt{2}} y \phi \\ \frac{1}{\sqrt{2}} y \phi & m_{\chi} \end{array}\right)$$

- Higgs is charged under $SU(2)_L imes U(1)_Y o$ new ψ and χ are charged
- Leptonic: $\psi \sim (1,2)_{-rac{1}{2}}$ and $\chi \sim (1,1)_{-1}$

$$\mathcal{L} \supset -y\psi^{\dagger}H\chi - y\chi^{\dagger}H^{\dagger}\psi - m_{\psi}\psi^{\dagger}\psi - m_{\chi}\chi^{\dagger}\chi$$


• Wino-Higgsino like: $\psi \sim (1,2)_{rac{1}{2}}$ and $\chi \sim (1,3)_{0}$

$$\mathcal{L} \supset -\sqrt{2}y\psi^{\dagger}\chi H - \sqrt{2}yH^{\dagger}\chi\psi - m_{\psi}\psi^{\dagger}\psi - \frac{1}{2}m_{\chi}\chi\chi$$

< ロ > < 同 > < 三 > < 三

Leptonic vs. Wino-Higgsino Like

- Collider: $M_{l'} \geq$ 102.6 GeV vs. $M_{ ilde{\chi},\pm} \geq$ 103.5, the same
- Fermionic Stability: Leptonic model is more efficient because all degree of freedom contributing to the quartic coupling RGE are charged and contributing to diphoton enhancement, while wino-Higgsino like model has extra neutral (neutralino) degree of freedom which worsen the stability problem.

• Electroweak Precision Measurement: Both can be satisfied.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- General implication of the diphoton excess to Higgs model building
- An $SU(2)\otimes SU(2)$ gauge extension of the MSSM
- A toy model with naive supersymmetry for EW baryogenesis

• • • • • • • • • • • • •

• Our extended gauge group is $SU(2)_1 \otimes SU(2)_2$.

```
Batra, Delgado, Kaplan and Tait, 2004.
```

• The first two generation are charged under $SU(2)_1$, the third generation and the Higgs are charged under $SU(2)_2$.

Yukawa hierarchy between the 1st 2nd generations and the 3rd generation

- A bidoublet Σ transforming as $(\mathbf{2}, \overline{\mathbf{2}})$ induce spontaneously symmetry breaking $SU(2) \otimes SU(2) \rightarrow SU(2)_L$.
- Gauge coupling $g_1 < g_2$ and $1/g^2 = 1/g_1^2 + 1/g_2^2$. $SU(2)_2$ chargino has larger coupling $g_2 > g_{\rm SM}$

$$rac{\partial}{\partial \log v} \log \det M^\pm_{ij} \simeq -rac{g_2^2 v^2 \sin 2eta}{2M'_2 \mu}$$

Large enough

(日) (同) (日) (日)

More on $SU(2) \otimes SU(2) \rightarrow SU(2)_L$

- Breaking pattern is $\langle \Sigma \rangle = u \mathbf{1}$.
- New W' mix with W. $M_{W'} = \sqrt{\frac{1}{2}(g_1^2 + g_2^2)u}$ is effectively the scale for supersymmetry restoration.
- Extended chargino mixing matrix

$$M_{ij}^{\pm} = \begin{pmatrix} M_{\tilde{W}_{1}} & 0 & 0 & \frac{1}{\sqrt{2}}g_{1}u \\ 0 & M_{\tilde{W}_{2}} & \frac{1}{\sqrt{2}}g_{2}v\sin\beta & -\frac{1}{\sqrt{2}}g_{2}u \\ 0 & \frac{1}{\sqrt{2}}g_{2}v\cos\beta & \mu & 0 \\ \frac{1}{\sqrt{2}}g_{1}u & -\frac{1}{\sqrt{2}}g_{2}u & 0 & M_{\tilde{\Sigma}} \end{pmatrix}$$

Two light charginos after decoupling two heavy ones $M_{ ilde{\mathcal{W}}_1}$ and $M_{ ilde{\Sigma}}$

$$M_{ij}^{\pm,\text{eff}} = \begin{pmatrix} M_{\tilde{W}_2} - \frac{1}{2} \frac{g_2^2 u^2}{M_{\tilde{\Sigma}}} - \frac{g_1^2 g_2^2}{4} \frac{u^4}{M_{\tilde{\Sigma}}^2 M_{\tilde{W}_1}} & \frac{1}{\sqrt{2}} g_2 v \sin \beta \\ \frac{1}{\sqrt{2}} g_2 v \cos \beta & \mu \end{pmatrix}$$

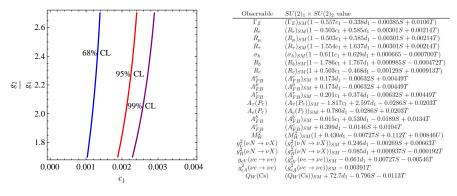
• Similar 6×6 neutralino mixing matrix.

イロト イポト イヨト イヨ

۲

$$\left. \frac{d \lambda}{d \ln Q} \right|_{\tilde{\chi}} = -\frac{1}{(4\pi)^2} \left[4g_2^4 + (g_2^2 + g'^2)^2 \right].$$

Cured by supersymmetry, which fix the high scale bound.

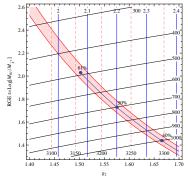

- In top down running with fixed UV value, λ and Higgs mass will be too high (> 125 GeV).
- The RGE beta coefficient is a step function with the chargino/neutralino mass. Only when the 2nd strongly coupled light chargino comes in, the running is significant.
- \bullet We also minimize tree level Higgs mass source by $\tan\beta\simeq 1.$
- Then the SM Higgs mass is completely radiatively generated

$$M_h^2 \simeq \frac{v^2}{16\pi^2} \left(2g_2^4 + (g_2^2 + {g'}^2)^2 \right) \log \frac{M_{W'}}{M_{\tilde{\chi}^\pm}} + \frac{3v^2}{4\pi^2} y_t^4 \left(\log \frac{M_{\text{SUSY}}}{M_t} + \frac{\tilde{A}_t^2}{2M_{\text{SUSY}}^2} \left(1 - \frac{\tilde{A}_t^2}{12M_{\text{SUSY}}^2} \right) \right),$$

• • • • • • • • • • • • •

Electroweak Precision Measurement Constraint

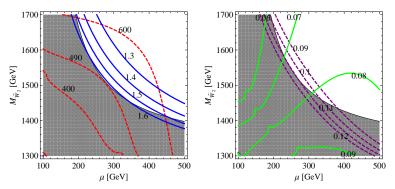
- Tree level mixing of SM W with heavy gauge bosons $W^\prime,$ going beyond of the oblique corrections.
- Flavor/generation non-universal, more severely constrained.
- Oblique correction from chargino/neutralino sector.
- We perform a global fit with 25 measurements.



$$c_1 = \frac{1}{2} (\frac{g}{g_1})^4 (\frac{v}{u})^2$$
, $d_1 = -\frac{1}{2} (\frac{g}{g_1})^2 (\frac{g}{g_2})^2 (\frac{v}{u})^2$. $T = 0.075$, $S = 0.11$.

Ran Huo (EFI, University of Chicago)

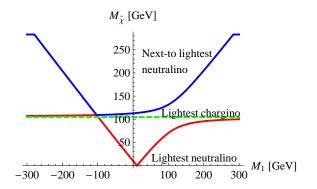
Major Results


 $\tan\beta=1,~M_{\tilde{W}_1}$ and $M_{\tilde{\Sigma}}$ decouplingly large. Top/stop sector Higgs mass contribution small.

- Blue vertical: g_2/g_1 ;
- Pink dashed vertical: u constraint from $\frac{1}{2} (\frac{g}{g_1})^4 (\frac{v}{u})^2 \lesssim 2 \times 10^{-3}$, $\rightarrow M_{W'}$ where λ RGE ends;
- ullet Black near horizontal: $M_{\tilde{\chi}^{\pm}}$ where effectively λ RGE starts;
- Pink band: SM Higgs mass 124 127 GeV.

Higgs representative line cannot extend because we cannot get consistent chargino mass.

is where the $M_{\tilde{\chi}_1^\pm}=103.5$ LEP bound curve get just tangent with one effective $M_{\tilde{\chi}^\pm}$ curve.


• Grey region: $M_{\tilde{\chi}^{\pm}} < 103.5$ GeV excluded;

- Blue: diphoton enhancement $\mu_{\gamma\gamma}$; Red dashed: $M_{\tilde{\chi}^{\pm}}$ where effectively λ RGE starts;
- Green: Oblique parameter T; Purple: Oblique parameter S.

イロト イヨト イヨト イヨ

Chargino and Neutralino Collider Phenomenology

For best point

• Left region: $M_{\tilde{\chi}_1^\pm} < M_{\tilde{\chi}_1^0}$, gravitino is the LSP; chargino pairs have the same signal as W pairs.

Inclusive W pair cross section excess noticed by P. Meade

• Except the central region, is allowed by trilepton searches.

Ran Huo (EFI, University of Chicago)

• If we relax $\tan \beta = 1$, we get tree level Higgs mass contribution

$$M_{h,\text{tree}}^2 = rac{1}{4} (g^2 \Delta + g'^2) v^2 \cos^2 2\beta,$$

ullet The enhancement factor Δ is residue of an exchange of a triplet, which is order a few

$$\Delta = \frac{1 + \frac{4m_{\Sigma}^2}{u^2} \frac{1}{g_1^2}}{1 + \frac{4m_{\Sigma}^2}{u^2} \frac{1}{g_1^{2} + g_2^2}}.$$

Batra, Delgado, Kaplan and Tait, 2004.

イロト イヨト イヨト イヨト

• $\tan \beta = 1.5 \rightarrow \mu_{\gamma\gamma} = 1.42$, $\tan \beta = 2 \rightarrow \mu_{\gamma\gamma} = 1.34$.

- \bullet Low tan $\beta,$ top Yukawa blow up? Further protection from large negative g_2 contribution, fine till GUT
- Small top/stop Higgs mass contribution (~ 4800 GeV²) \rightarrow light non-mixing stop \rightarrow stop increase gluon fusion by ~ 10%. Based on the same low energy theorem
- \bullet Collider search: light chargino and neutralino, but it is the W' to really tell it from the MSSM

()

- General implication of the diphoton excess to Higgs model building
- An $SU(2)\otimes SU(2)$ gauge extension of the MSSM
- A toy model with naive supersymmetry for EW baryogenesis

• • • • • • • • • • • • •

- \bullet If the Higgs potential is understood, the next natural step is the transition itself \to Electroweak Baryogenesis. (like my advisor)
- Especially, the diphoton excess would implies a new particle strongly couple to Higgs, which just improves the insufficiency of couplings in the SM.

< □ > < 同 > < 回 > < Ξ > < Ξ

Sakharov's condition

	EW Baryogenesis	Leptogenesis
B or L violating process	Sphaleron	B: Sphaleron from L L: No definition
CP violation (with CV in the SM)	Not specified	Majorana $ u$ CP phase

.

1

イロト イヨト イヨト イヨ

Deviation from equilibrium Strongly 1st order PT Out of equilibrium decay

э

.

Successful EW Baryogenesis

- \bullet = To preserve the CPV or (already generated) matter anti-matter asymmetry from being washed out.
- ullet = To freeze sphaleron process quickly after PT

$$\Gamma \propto \mu \left(\frac{g^2}{4\pi}T\right)^{-3} m_W(T)^7 e^{-\frac{E_s}{T}}$$

$$E_s \equiv \frac{8\pi m_W(\phi)}{g^2} B(\frac{\lambda}{g^2}) \qquad B(\frac{\lambda}{g^2}) \simeq 1.96 \text{ for } m_h = 125 \text{ GeV}$$

$$\frac{E_s}{T_c} = 37.8 \frac{\langle \phi(T_c) \rangle}{T_c}$$

ullet = At nucleation temperature (right below critical temperature), PT strength \equiv

$$rac{\langle \phi({\it T}_{\it n})
angle}{{\it T}_{\it n}}\gtrsim 1$$
 . The Goal

Quirós, hep-ph/9901312.

< □ > < 同 > < 回 > < Ξ > < Ξ

A Little Bit Techniques

• To relevant leading order

$$V(\phi, T) = V_0(\phi) + \sum_{i=W,Z,t\cdots} V_{1,i}(\phi) + \sum_{i=W,Z,t\cdots} V_{1,i}(\phi, T)$$

where $V_0(\phi)=-rac{1}{4}m_h^2\phi^2+rac{1}{4}\lambda\phi^4$

• Zero temperature 1 loop $V_{1,i}(\phi)$ need to be renormalized to preserved tree level Higgs minimum and Higgs mass

$$\begin{split} V_{1,i}(\phi) &= \pm \frac{g_i}{64\pi^2} \left(m_i^2(\phi) \right)^2 \left(\ln \frac{m_i^2(\phi)}{Q^2} - \frac{3}{2} \text{ or } \frac{5}{6} \right) \\ &\to \pm \frac{g_i}{64\pi^2} \left(\left(m_i^2(\phi) \right)^2 \left(\ln \frac{m_i^2(\phi)}{m_i^2(v)} - \frac{3}{2} \right) + 2 m_i^2(v) m_i^2(\phi) \right) \end{split}$$

For $m_i(\phi)^2 = a + b\phi^2$ type mass square.

• Finite temperature 1 loop $V_{1,i}(\phi, T)$

$$V_{1T,i} = \pm g_i \int \frac{d^3 p}{(2\pi)^3} T \ln \left(1 \mp e^{-\frac{\sqrt{\vec{p}^2 + m^2}}{T}} \right)$$

Need to be calculated numerically generally, although at $T \gg m$ can be expanded. • Thermal mass $m_i(\phi)^2 = g^2 \phi^2 + O(g^2)T^2$. Daisy resummation.

An Example

• SM near critical temperature $T\simeq 171.3~{
m GeV}$

- Higgs VEV tunnels from the x=0 to nonzero values during the last several frames
- Tunneling condition

$$\frac{S_E}{T} \simeq 140$$

for a bubble to expand to the whole universe.

イロト イヨト イヨト イヨ

- SM: as shown before
 - Indeed a 1st order PT
 - Using high T expansion, the PT can be analytically calculated

$$rac{\langle \phi(T_n)
angle}{T_n}=rac{2E}{\lambda}$$
 $E=rac{1}{4\pi v^3}(2m_W^2+m_Z^3)$ Only boson contributes?

- Which is insufficient $\frac{\langle \phi(T_n) \rangle}{T_n} \simeq 0.12$
- Light stop: not in our stream
- Strong wino higgsino:
 - First fermionic baryogenesis model
 - Idea of changing effective degree of freedom

Carena, Megevand, Quirós and Wagner, 2005.

- With diphoton motivation:
 - · Fermionic contribution with non-trivial mass mixing matrix considered
 - But their benchmark Yukawa coupling is 4! Stability, perturbativity...

Davoudiasl, Lewis and Ponton, arXiv:1211.3449.

(日) (同) (日) (日)

• General framework for diphoton excess from fermionic component.

$$\mathcal{M}_{F^{\pm}} = \left(\begin{array}{cc} m_{\psi} & \frac{1}{\sqrt{2}}y\phi \\ \frac{1}{\sqrt{2}}y\phi & m_{\chi} \end{array}\right)$$

• Arbitrary charged fermionic mixing

$$\tan 2\theta = \frac{\sqrt{2}yv}{m_{\chi} - m_{\psi}} \qquad \left(\begin{array}{c} F_{1}^{\pm} \\ F_{2}^{\pm} \end{array}\right) = \left(\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{c} \psi^{\pm} \\ \chi^{\pm} \end{array}\right)$$

• Induced neutral fermionic mixing for wino-higgsino case

$$\mathcal{M}_{F^0} = \begin{pmatrix} m_{\psi} & -\frac{1}{2}y\phi \\ -\frac{1}{2}y\phi & \frac{1}{2}m_{\chi} \end{pmatrix}$$
$$\tan 2\phi = \frac{yv}{m_{\psi} - \frac{1}{2}m_{\chi}} \begin{pmatrix} F_1^0 \\ F_2^0 \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} \psi^0 \\ \chi^0 \end{pmatrix}$$

- Naive supersymmetry: same coupling, same degree of freedom, different "soft" mass
- No mixing in the bosonic component. $M_s^2 = m_{
 m soft}^2 + rac{1}{2}y^2\phi^2$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Tricky Point

Which Ponton make it wrong at first

• Fermionic mass square is not of the form $a + b\phi^2$

$$\begin{split} M_{F_{1,2}^{\pm}} &= \frac{1}{2} \Big(m_{\psi} + m_{\chi} \mp \sqrt{(m_{\psi} - m_{\chi})^2 + 2y^2 \phi^2} \Big) \\ M_{F_{1,2}^{0}} &= \frac{1}{2} \Big(m_{\psi} + \frac{1}{2} m_{\chi} \mp \sqrt{(m_{\psi} - \frac{1}{2} m_{\chi})^2 + y^2 \phi^2} \Big), \end{split}$$

so the zero temperature $V_1(\phi)$ form cannot be used

• $V_1(\phi)$ for arbitrary mass square

$$V_{1,i}(\phi) = \pm \frac{g_i}{64\pi^2} \left((m_i^2(\phi))^2 \ln m_i^2(\phi) + \alpha \phi^2 + \beta \phi^4 \right)$$

$$\alpha = \frac{1}{2} \left(\left(-3\frac{\omega \omega'}{\nu} + \omega'^2 + \omega \omega'' \right) \ln \omega - \frac{3}{2}\frac{\omega \omega'}{\nu} + \frac{3}{2}\omega'^2 + \frac{1}{2}\omega \omega'' \right)$$

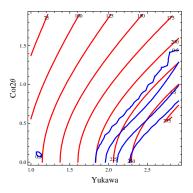
$$\beta = \frac{1}{4\nu^2} \left(\left(\frac{\omega \omega'}{\nu} - \omega'^2 - \omega \omega'' \right) \ln \omega + \frac{1}{2}\frac{\omega \omega'}{\nu} - \frac{3}{2}\omega'^2 - \frac{1}{2}\omega \omega'' \right)$$

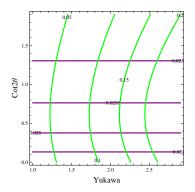
where
$$\omega=m_i^2(v)$$
 and $\omega'=\left.\frac{d}{d\,\phi}m_i^2(\phi)
ight|_{\phi=v}$, and so on

()

- Again, Supersymmetry protect the potential against instability
- Step function beta coefficient

$$\frac{1}{\sqrt{2}}y\psi^{\mp(0)}\phi\chi^{\pm(0)} + \frac{1}{\sqrt{2}}y\chi^{\mp(0)}\phi\psi^{\pm(0)} = -\frac{1}{\sqrt{2}}y\sin 2\theta(\varphi)F_1^{\mp(0)}\phi F_1^{\pm(0)} + \text{term with } F_2^{\mp(0)}$$

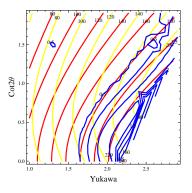

By combinatorics, the 4 F_1 leg diagram, or the quartic RGE running from M_{F_1} to M_{F_2} , is suppressed by $\sin^4 2\theta(\varphi)$


- Scalar "soft" mass can be solved with how much the quartic coupling runs
- The heavy bosonic ones are not very separated in scale, also contribute to PT strength

< ロ > < 同 > < 三 > < 三

Leptonic Model

With $\mu_{\gamma\gamma}=1.5$ and $\Delta\lambda=-0.5\lambda_0$



・ロト ・回ト ・ヨト

- Blue: $\frac{\langle \phi(T_n) \rangle}{T_n}$;
- Red: Lightest fermion mass;
- Green: Oblique parameter T;
- Purple: Oblique parameter S.

Wino-Higgsino Like Model

With $\mu_{\gamma\gamma}=1.5$ and $\Delta\lambda=-0.5\lambda_0$

- Blue: $\frac{\langle \phi(T_n) \rangle}{T_n}$;
- Red: Lightest charged fermion mass;
- Yellow: Lightest neutral fermion mass;
- $\bullet\,$ More degree of freedom contributing to Higgs potential $\rightarrow\,$ better EW baryogenesis

Image: A matrix and a matrix

- Complete in the minimal sense, no stability problem
- Fermionic and bosonic degree of freedom both contributing, reduce the Yukawa coupling from 4, perturbativity OK
- Not relying on high T expansion
- A generic study of the parameter region of model with vector-like/soft mass

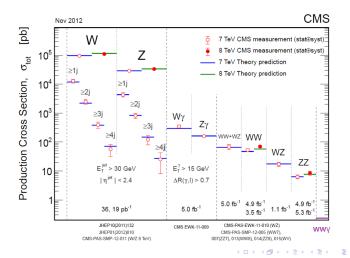
()

What If Diphoton Really Die?

With $\mu_{\gamma\gamma} = 1.3$ and $\Delta\lambda = -0.5\lambda_0$

- Blue: $\frac{\langle \phi(T_n) \rangle}{T_n}$;
- Red: Lightest fermion mass;
- Green: Oblique parameter T;
- Purple: Oblique parameter S.

Image: A matrix and a matrix


- A series of models can be constructed to fit diphoton data, using systematic low energy theorem approach.
- As shown in our $SU(2) \otimes SU(2)$ model, we can get enhanced diphoton branching ratio, desired Higgs mass with consistent electroweak precision observable and collider constraints.
- Baryogenesis seems fine with all the constraints, in a generic setup.

• • • • • • • • • • • • •

Back Up Slide

Outline Introduction $W^+W^-\gamma$ triple boson production with pure leptonic decays Anomalous $WW\gamma\gamma$ anomalous quartic gauge 000 000

CMS results for gauge boson production cross sections

Some Implications of Higgs Diphoton Excess