Introduction Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

Top Quarks and Jet Substructure at the LHC

Michihisa Takeuchi

King's College London

at IPMU, 14th March 2013

Michihisa Takeuchi (King's College London)

Introduction

Top at the LHC Jet substructure HEPTopTagger Applications Summary

Back up

What we know

Standard Model: 12 + 4 + 1 particles, $SU(3) \times SU(2) \times U(1)$

Quarks $U \subset U$ $J \supset D$ Forces $Z \land Y$ $W \supset D$ $E \downarrow U$ $V \downarrow V$ Leptons

 $\alpha_1, \alpha_2, \alpha_3, m_i$, mixings, v, λ 17 parameters Higgs VEV provides all masses

 $m_t \sim 173 \text{ GeV} (1995)$ $m_H \sim 125 \text{ GeV} (2012)$ Many consistent observa

Many consistent observations, only a few deviations Quadratic divergence $\delta m_H \sim \Lambda^2$, $\Lambda \sim M_{pl} = 10^{19} \text{GeV}$?

Introduction

Top at the LHC Jet substructure HEPTopTagger Applications

Back up

What we know

Existence of dark matter Rotation curve Cluster merger N-body simulation WMAP, BAO etc. $\Omega_{cdm}h^2 = 0.113$ not possible to explain in SM all evidence from gravity

- What is dark matter?

WIMP Miracle? (Weakly interacting massive particle) $\Omega_{\chi} \sim \frac{0.1 \text{pb}}{\langle \sigma_A v \rangle}, \langle \sigma_A v \rangle \sim \frac{\alpha^2}{m_{\chi}^2} \sim 10^{-9} \text{GeV}^{-2},$ $\alpha_2 \sim 1/30 \rightarrow m_{\chi} \sim 1 \text{ TeV} \Rightarrow \text{ something new in TeV}?$

Introduction

Top at the LHC Jet substructure HEPTopTagger Applications

- Summary
- Back up

What we expect

- Estimate for the new physics scale $\mathcal{L} = \mathcal{L}_{SM} + \sum_{\Lambda^{P}} \frac{c_{i}}{\Lambda^{P}} \mathcal{O}_{4+p,i}$ New physics $\Lambda > \sim 10 \text{ TeV}$

Something new in TeV \rightarrow some symmetry? Z₂-parity (DM?), supersymmetry \rightarrow partner particles in TeV?

14 TeV pp-collider LHC can search them

Introduction

Top at the LHC Jet substructure HEPTopTagger Applications

Summary

Back up

Collider experiments

Directly produce new particles and analyze them Event rate $\sim | \langle f | e^{i \int \mathcal{L}} | i \rangle |^2$, various pairs of $|i \rangle$, $|f \rangle$ Note: most particles decay, $m_q \langle m_b \ll m_W, m_Z, m_t, m_H$ γ , e, μ , τ and jets (only *b*-quark flavor)

Introduction

- Top at the LHC Jet substructure HEPTopTagger Applications
- Summary
- Back up

Collider experiments

Directly produce new particles and analyze them Event rate $\sim | \langle f | e^{i \int \mathcal{L}} | i \rangle |^2$, various pairs of $|i \rangle$, $|f \rangle$ Note: most particles decay, $m_q \langle m_b \ll m_W, m_Z, m_t, m_H$ γ , e, μ , τ and jets (only *b*-quark flavor)

Clear evidence of particles: simple, obvious, convincing Statistics discriminates models

Introduction

- Top at the LHC Jet substructure HEPTopTagger Applications
- Summary
- Back up

Collider experiments

Directly produce new particles and analyze them Event rate $\sim | \langle f | e^{i \int \mathcal{L}} | i \rangle |^2$, various pairs of $|i \rangle$, $|f \rangle$ Note: most particles decay, $m_q \langle m_b \ll m_W, m_Z, m_t, m_H$ γ , e, μ , τ and jets (only *b*-quark flavor)

Clear evidence of particles: simple, obvious, convincing Statistics discriminates models Why not Higgs found at LEP: 209GeV $< m_Z + m_H$ $m_p \sim 2000m_e$, emission $\propto E/m^2 \Rightarrow$ Hadron Collider: LHC

Introduction

- Top at the LHC Jet substructure HEPTopTagger Applications
- Summary
- Back up

Hadron Collider

- What is the difficulty?
- proton beam: mixed beam of g, u, d, ...
 only p_T conservation

- full reconstruction not possible event by event (different from LEP)
- precision physics possible by statistics
- strong interaction

jets appear anywhere, initial state radiation etc.

PDF, NLO etc. understanding QCD important

Introduction

- Top at the LHC Jet substructure HEPTopTagger
- Applications
- Summary
- Back up

SUSY search

- colored particles produced in pair:
 - \tilde{g}, \tilde{q} expected ~ 1 TeV
- cascade decay $\tilde{g}
 ightarrow \tilde{q} q$ $\tilde{q}
 ightarrow q \tilde{\chi^0}({
 m DM})$
- signal:

multiple jets, missing transverse momentum $\not\!\!E_T$ – BG:

$$W \to l\nu$$

$$Z \to \nu\bar{\nu}$$

$$t \to bW \to bl\nu$$

Introduction

- Top at the LHC Jet substructure
- Applications
- Summary
- Back up

SUSY search

- colored particles produced in pair:
 - \tilde{g}, \tilde{q} expected ~ 1 TeV
- cascade decay $\tilde{g} \rightarrow \tilde{q}q$ $\tilde{q} \rightarrow q \tilde{\chi^0}(\mathrm{DM})$
- signal:
 - multiple jets, missing transverse momentum E_T
- Squark-gluino-neutralino model, $m(\tilde{\chi}_{.}^{0}) = 0$ GeV - BG: S²⁸⁰⁰ 0.2600 ATLAS Preliminary $W \rightarrow l\nu$ 2400 L dt = 5.8 fb¹, (s=8 TeV $Z \rightarrow \nu \bar{\nu}$ 2200 0-lepton combined Observed limit (±1 σ^{SUSY}) 2000 $t \rightarrow bW \rightarrow bl\nu$ -- Expected limit (±1σ_{em}) 1800 Observed limit (4.7 fb⁻¹, 7 TeV) 1600 1400 1200 1000 800 -800 1000 1200 1400 1600 1800 2000 2200 2400 aluino mass [GeV]

Introduction

Top at the LHC Jet substructure HEPTopTagger Applications Summary Back up

Huge difference among the numbers

- To extract signal need subtract larger contributions

- QCD uncertainty ($\alpha \sim 10\%$), NLO, PDF, jets
- Theory cannot predict completely → data driven estimate distribution important: ME+PS matching
- We know SM but not enough yet to extract new physics

Introduction

Top at the LHC Jet substructure HEPTopTagger Applications Summary Back up

Higgs (like particle) found!

Introduction

- Top at the LHC
- HEPTopTagger
- Applications
- Summary
- Back up

My focus

Top sector

- Only the sector not precisely understood (except higgs)
- LHC: top factory
- Strongly coupled to higgs: key for fine tuning
- Anomalies

Jet substructure

- Fine detector resolution
- state-of-the-art
- use information thrown away before \rightarrow optimal use of data

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

Top at the LHC

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling y_t (need $t\bar{t}H$ measurement)

Introduction

Top at the LHC

- Jet substructur
- HEPTopTagger
- Applications
- Summary
- Back up

Top at the LHC

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling y_t (need $t\bar{t}H$ measurement)
- fine tuning problem
 - \rightarrow cancellation via top partner

Introduction

Top at the LHC

- Jet substructure
- HEPTopTagger
- Applications
- Summary
- Back up

Top at the LHC

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling y_t (need $t\bar{t}H$ measurement)
- fine tuning problem
 - \rightarrow cancellation via top partner

- Tevatron anomalies (A_{FB}^t , single top etc.)

Introduction

Jet substructure HEPTopTagger Applications Summary Back up

Single tops at Tevatron

Introduction

Top at the LHC

- Jet substructure
- HEPTopTagger
- Applications
- Summary
- Back up

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling y_t (need $t\bar{t}H$ measurement)
- fine tuning problem

Top at the LHC

- \rightarrow cancellation via top partner
- Tevatron anomalies (A_{FB}^t , single top etc.)

Introduction

Top at the LHC

- Jet substructure
- HEPTopTagger
- Applications
- Summary
- Back up

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling y_t (need $t\bar{t}H$ measurement)
- fine tuning problem

Top at the LHC

- \rightarrow cancellation via top partner
- Tevatron anomalies (A_{FB}^t , single top etc.)
- copiously produced via strong interaction at LHC LHC $\sim 6,000,000 t\bar{t}$

Tevatron $\sim 40,000 t\bar{t}$

 \rightarrow precision physics

Top at the LHC

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling y_t (need $t\bar{t}H$ measurement)
- fine tuning problem

Top at the LHC

- \rightarrow cancellation via top partner
- Tevatron anomalies (A_{FB}^t , single top etc.)
- copiously produced via strong interaction at LHC LHC ~ 6,000,000 $t\bar{t}$
 - Tevatron $\sim 40,000 t\bar{t}$

precision physics

always appear as background

Introduction

Huge difference among the numbers

SM including pQCD, NLO,... describes data well.

Introduction

Top at the LHC

Jet substructure HEPTopTagger Applications Summary Back up

Top as background

W+jets at CDF: second peak around 150 GeV

Need understand top background (also *b*-tag).

Introduction

Top at the LHC

- Jet substructure
- HEPTopTagger
- Applications
- Summary
- Back up

closest to new physics \rightarrow probe for new physics

- largest yukawa coupling (need $t\bar{t}H$ measurement)
- fine tuning problem

Top at the LHC

- \rightarrow cancellation via top partner
- Tevatron anomalies (A_{FB}^t , single top etc.)
- copiously produced via strong interaction at LHC LHC $\sim 6,000,000 \ t\bar{t}$ \rightarrow precision p
 - Tevatron $\sim 40,000 t\bar{t}$

 \rightarrow precision physics

- always appear as background

Introduction

Top at the LHC

- Jet substructur
- HEPTopTagger
- Applications
- Summary
- Back up

Top at the LHC closest to new physics \rightarrow probe for new physics - largest yukawa coupling (need $t\bar{t}H$ measurement) fine tuning problem \rightarrow cancellation via top partner - Tevatron anomalies (A_{FB}^t , single top etc.) - copiously produced via strong interaction at LHC LHC ~ 6,000,000 $t\bar{t}$ \rightarrow precision physics Tevatron $\sim 40,000 t\bar{t}$

always appear as background

hadronic top $t \rightarrow 3j$

- full momentum reconstruction possible in principle
- top against 10^3 larger QCD, how to identify?
- take 3 jets with simple m_t, m_W condition
 - \rightarrow large combinatorial BG kill us

Introduction

Top at the LHC

Jet substructur

HEPTopTagger

Applications

Summary

Back up

Boosted Tops at the LHC

top looks different

QCD jets

- 2 jet topology dominate QCD jets
- substructure: soft-collinear nature (QCD)

Introduction

Top at the LHC

- Jet substructur
- HEPTopTagger
- Applications
- Summary
- Back up

Boosted Tops at the LHC

top looks different

top as a probe

- new physics search with $\not\!\!\!E_T$
 - \rightarrow need recoil

- \cdot top at rest: not useful
- \cdot boosted tops: carry information on dark matter

Introduction

Top at the LHC

Jet substructur

HEPTopTagger

Applications

Summary

Back up

Boosted Tops at the LHC

top looks different

QCD jets

- 2 jet topology dominate QCD jets
- substructure: soft-collinear nature (QCD)

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet substructure

Michihisa Takeuchi (King's College London)

Top at the LHC Jet substructure

What is a jet?

jet = collimated hadronic activity in the detector

well described by QCD (soft-collinear property)

 $t = E_1 E_2 (1 - \cos \theta)$

Michihisa Takeuchi (King's College London)

 (η,ϕ) plane

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

- Introduction Top at the LHC Jet substructure HEPTopTagger
- Applications
- Summary
- Back up

Jet algorithm

- Introduction Top at the LHC Jet substructure HEPTopTagger Applications
- Back up

Jet algorithm

- Introduction Top at the LHC Jet substructure HEPTopTagger Applications
- Summary
- Back up

before LHC, cone algorithm, q-momentum reconstructed

Michihisa Takeuchi (King's College London)

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

R: jet size

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

R: jet size

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{T_i}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

R: jet size

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$
Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{T_i}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{T_i}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ \ d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

 d_{ij} : distance measure

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{Ti}^2, p_{Tj}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{Ti}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, d_{iB} = p_{Ti}^{-2}$

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

 $\begin{aligned} d_{ij}: \text{ distance measure} \\ R: \text{ jet size} \\ \text{ Cambridge/Aachen } & d_{ij} = \Delta R_{ij}^2/R^2, \quad d_{iB} = 1 \\ \text{ kT } & d_{ij} = \min(p_{T_i}^2, p_{T_j}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = p_{T_i}^2 \\ \text{ anti-kT } & d_{ij} = \min(p_{T_i}^{-2}, p_{T_j}^{-2})\Delta R_{ij}^2/R^2, \quad d_{iB} = p_{T_i}^{-2} \end{aligned}$

Top at the LHC

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

 $d_{ij}: \text{ distance measure}$ R: jet size $Cambridge/Aachen \quad d_{ij} = \Delta R_{ij}^2/R^2, \quad d_{iB} = 1$ $kT \qquad \quad d_{ij} = \min(p_{Ti}^2, p_{Tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = p_{Ti}^2$ $anti-kT \qquad \quad d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \quad d_{iB} = p_{Ti}^{-2}$

Top at the LHC

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

 $\begin{array}{ll} d_{ij} \text{: distance measure} \\ R\text{: jet size} \\ & \text{Cambridge/Aachen} \\ & k\text{T} \\ & k\text{T} \\ & anti-k\text{T} \\ \end{array} \begin{array}{ll} d_{ij} = \Delta R_{ij}^2/R^2, & d_{iB} = 1 \\ & d_{ij} = \min(p_{Ti}^2,p_{Tj}^2)\Delta R_{ij}^2/R^2, & d_{iB} = p_{Ti}^2 \\ & anti-k\text{T} \\ \end{array} \end{array}$

Top at the LHC

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

 $\begin{array}{ll} d_{ij}: \mbox{distance measure} \\ R: \mbox{jet size} \\ & \mbox{Cambridge/Aachen} & d_{ij} = \Delta R_{ij}^2/R^2, \ d_{iB} = 1 \\ & \mbox{kT} & d_{ij} = \min(p_{Ti}^2, p_{Tj}^2)\Delta R_{ij}^2/R^2, \ d_{iB} = p_{Ti}^2 \\ & \mbox{anti-kT} & d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, \ d_{iB} = p_{Ti}^{-2} \end{array}$

Top at the LHC

HEPTopTagger

Applications

Summary

Back up

Jet algorithm

Clustering algorithm

- 1. find smallest d_{ij}, d_{iB}
- 2. if d_{ij} is smallest recombine *i* and *j*, if d_{iB} is smallest call *i* as a jet.
- 3. repeat step 1-2 until no particles left.

dij: distance measure

R: jet size

Cambridge/Aachen	$d_{ij} = \Delta R_{ij}^2 / R^2, d_{iB} = 1$
kT	$d_{ij} = \min(p_{T_i}^2, p_{T_j}^2) \Delta R_{ij}^2 / R^2, \ \ d_{iB} = p_{T_i}^2$
anti-kT	$d_{ij} = \min(p_{Ti}^{-2}, p_{Tj}^{-2})\Delta R_{ij}^2/R^2, d_{iB} = p_{Ti}^{-2}$
	· · · · · · · · · · · · · · · · · · ·

q-momentum reconstructed, additional tree structure.

Top at the LHC

- Jet substructure
- HEPTopTagger
- Applications
- Summary
- Back up

Jet substructure

top or qcd?

- QCD jet \rightarrow soft-collinear singularity

- top jet \rightarrow collects collinear decay products by boost

Top at the LHC

- HEPTopTagger
- Applications
- Summary
- Back up

Jet substructure

top or qcd?

- QCD jet \rightarrow soft-collinear singularity

- top jet \rightarrow collects collinear decay products by boost

undoing clustering

- expect: clustering history \sim shower history
- no soft-collinear singularity for decay of boosted object \rightarrow mass drop

 $j = j_1 + j_2$, $m_j \gg m_{j1}, m_{j2}$ (massive particle) $\mapsto m_j \sim m_{j1} \gg m_{j2}$ (QCD)

Introduction Top at the LHC Jet substructure HEPTopTagger Applications Summary

Back up

Boosted Tops at the LHC

top looks different

QCD jets

- 2 jet topology dominate QCD jets
- substructure: soft-collinear nature (QCD)

several top taggers available: focus on $p_T > 500$ GeV.

[Kaplan, Rehermann, Schwartz, Tweedie] [Thaler, Wang] [Almeida, Lee, Perez, Sterman, Sung]

- Introduction Top at the LHC Jet substructure
- Applications
- Summary
- Back up

Moderately Boosted Tops at the LHC top p_T distribution

- $-p_T > 500$ GeV: not many in SM $\sigma_{>200{
 m GeV}} \sim 50\sigma_{>500{
 m GeV}}$
- need top tagger valid down to

low p_T range \rightarrow testable

- Introduction Top at the LHC Jet substructure HEPTopTagger Applications
- Summary
- Back up

Moderately Boosted Tops at the LHC top p_T distribution

- $-p_T > 500$ GeV: not many in SM $\sigma_{>200 \text{GeV}} \sim 50 \sigma_{>500 \text{GeV}}$
- need top tagger valid down to

low p_T range \rightarrow testable

 light top partners also provide tops in the same range

we focus on $p_T > 200 \text{GeV}$

 \rightarrow need fat jet with R = 1.5

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 T. Plehn, M. Spannowsky, D. Zerwas, MT] [Phys.Rev. D85 (2012) 034029, arXiv:1111.5034]

1. fat jets – C/A with R = 1.5, $p_T^{\text{fatjet}} > 200 \text{ GeV}$

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 T. Plehn, M. Spannowsky, D. Zerwas, MT] [Phys.Rev. D85 (2012) 034029, arXiv:1111.5034]

1. fat jets – C/A with
$$R = 1.5$$
, $p_T^{\text{fatjet}} > 200 \text{ GeV}$

2. find subjets by mass drop criterion

Top at the LHC

HEPTopTagger

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 T. Plehn, M. Spannowsky, D. Zerwas, MT] [Phys.Rev. D85 (2012) 034029, arXiv:1111.5034]

1. fat jets - C/A with R = 1.5, $p_T^{\text{fatjet}} > 200 \text{ GeV}$

2. find subjets by mass drop criterion

- keep j_1 and j_2 for $m_{i_1} < 0.8m_i$ until $m_i < 50$ GeV

3. take 3 subjets with best filtered mass

$$|m_{jjj}^{\text{filt}} - m_t| < 25 \text{ GeV} \rightarrow \text{top candidate}$$

filtering [Butterworth et al.]

- effect of pile-up, underlying events
- reduce effective area

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 T. Plehn, M. Spannowsky, D. Zerwas, MT] [Phys.Rev. D85 (2012) 034029, arXiv:1111.5034]

1. fat jets – C/A with
$$R = 1.5$$
, $p_T^{\text{fatjet}} > 200 \text{ GeV}$

2. find subjets by mass drop criterion

– keep j_1 and j_2 for $m_{j_1} < 0.8 m_j$ until $m_j < 50$ GeV

3. take 3 subjets with best filtered mass

- $|m_{jjj}^{\text{filt}} m_t| < 25 \text{ GeV} \rightarrow \text{top candidate}$
- 4. check mass ratios
- 3 subjets: $p_1, p_2, p_3 \rightarrow m_{12}, m_{13}, m_{23}$
- $m_t^2 = m_{123}^2 = m_{12}^2 + m_{13}^2 + m_{23}^2 \rightarrow 2$ D mass ratios

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 T. Plehn, M. Spannowsky, D. Zerwas, MT] [Phys.Rev. D85 (2012) 034029, arXiv:1111.5034]

1. fat jets – C/A with R = 1.5, $p_T^{\text{fatjet}} > 200 \text{ GeV}$

2. find subjets by mass drop criterion

- keep j_1 and j_2 for $m_{j_1} < 0.8m_j$ until $m_j < 50$ GeV
- 3. take 3 subjets with best filtered mass

$$|m_{iji}^{\text{filt}} - m_t| < 25 \text{ GeV} \rightarrow \text{top candidate}$$

4. check mass ratios

- 3 subjets:
$$p_1, p_2, p_3 \rightarrow m_{12}, m_{13}, m_{23}$$

- $m_t^2 = m_{123}^2 = m_{12}^2 + m_{13}^2 + m_{23}^2 \rightarrow 2D$ mass ratios

Introduction Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

HEPTopTagger [JHEP 1010:078,2010. arXiv:1006.2833 T. Plehn, M. Spannowsky, D. Zerwas, MT]

efficiency

- efficiency $\sim 30\%$ for hadronic tops, $2\sim 4\%$ mis-tag rate
- momentum well reconstructed
- validation with ATLAS experimentalists in Heidelberg

[G. Kasieczka, S. Schätzel, A. Schöning]

Validation by ATLAS [ATLAS-CONF-2012-065]

Michihisa Takeuchi (King's College London)

Michihisa Takeuchi

Top at the LHC

HEPTopTagger

Back up

Top Mass [GeV]

Michihisa Takeuchi (King's College London)

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

Applications

Michihisa Takeuchi (King's College London)

Introduction Top at the LHC

Let substructur

HEPTopTagger

Applications

Summary

Back up

Scalar Top Pairs at 14 TeV

hadronic mode [T. Plehn, M. Spannowsky, MT, D. Zerwas]

$$- \tilde{t}_1 \tilde{t}_1^* \rightarrow (t \tilde{\chi}_1^0) (\bar{t} \tilde{\chi}_1^0)$$
: $m_{\chi} = 100 \text{ GeV}$

_	main	BG:	tt+jets,	W+jets	and QCD
---	------	-----	----------	--------	---------

events in 1 fb ⁻¹		1	$\tilde{t}_1 \tilde{t}_1^*$			tī	QCD	W+jets	Z+jets	S/B	$S/\sqrt{B}_{10 \text{ fb}} - 1$
$m_{\tilde{t}}$ [GeV]	390	440	490	540	640						390
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	$1.6 \cdot 10^{5}$	n/a	$\sim 10^{-5}$	
$\vec{E}_T > 150 \text{ GeV}$	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710	2240	$ \sim 10^{-3}$	
first top tag	91	75	57	42	15	743	7590	90	114	0.01	
second top tag	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	0.07	
b-tag for 1st top tag	7.4	6.3	5.0	3.8	1.4	19	2.6	$\lesssim 0.2$	$\lesssim 0.05$	0.34	5.0
$m_{T2} > 250 { m GeV}$	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	$\lesssim 0.1$	$\lesssim 0.03$	1.0	7.1

W+jets, Z+jets negligible with 2 top tag

QCD negligible with additional *b*-tag

 $t\bar{t}$ reduced with m_{T2} cut

Introduction Top at the LHC

- let substructure
- HEPTopTagger

Applications

Summary

Back up

Scalar Top Pairs at 14 TeV

hadronic mode [T. Plehn, M. Spannowsky, MT, D. Zerwas]

$$- \tilde{t}_1 \tilde{t}_1^* \rightarrow (t \tilde{\chi}_1^0) (\bar{t} \tilde{\chi}_1^0)$$
: $m_{\chi} = 100 \text{ GeV}$

_	main	BG:	tt+j	jets,	W+jets	and	QCD
---	------	-----	------	-------	--------	-----	-----

events in 1 fb ⁻¹		1	$\tilde{t}_1 \tilde{t}_1^*$			tī	QCD	W+jets	Z+jets	S/B	$S/\sqrt{B}_{10 \text{ fb}} - 1$
$m_{\tilde{t}}$ [GeV]	390	440	490	540	640						390
$p_{T,i} > 200 \text{ GeV}, \ell \text{ veto}$	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	$1.6 \cdot 10^{5}$	n/a	$\sim 10^{-5}$	
$\vec{E}_T > 150 \text{ GeV}$	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710	2240	$ \sim 10^{-3}$	
first top tag	91	75	57	42	15	743	7590	90	114	0.01	
second top tag	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	0.07	
b-tag for 1st top tag	7.4	6.3	5.0	3.8	1.4	19	2.6	$\lesssim 0.2$	$\lesssim 0.05$	0.34	5.0
$m_{T2} > 250 \text{ GeV}$	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	$\lesssim 0.1$	$\lesssim 0.03$	1.0	7.1

Introduction Top at the LHC

- Let substructur
- HEPTopTagger

Applications

Summary

Back up

Scalar Top Pairs at 14 TeV

hadronic mode [T. Plehn, M. Spannowsky, MT, D. Zerwas]

$$- \tilde{t}_1 \tilde{t}_1^* \rightarrow (t \tilde{\chi}_1^0) (\bar{t} \tilde{\chi}_1^0)$$
: $m_{\chi} = 100 \text{ GeV}$

_	main	BG:	tt+j	ets,	W+jets	and	QCD
---	------	-----	------	------	--------	-----	-----

events in 1 fb ⁻¹		1	$\tilde{t}_1 \tilde{t}_1^*$			tī	QCD	W+jets	Z+jets	S/B	$S/\sqrt{B}_{10 \text{ fb}}-1$
$m_{\tilde{t}}$ [GeV]	390	440	490	540	640						390
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	$1.6 \cdot 10^{5}$	n/a	$\sim 10^{-5}$	
$\vec{E}_T > 150 \text{ GeV}$	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710	2240	$ \sim 10^{-3}$	
first top tag	91	75	57	42	15	743	7590	90	114	0.01	
second top tag	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	0.07	
b-tag for 1st top tag	7.4	6.3	5.0	3.8	1.4	19	2.6	$\lesssim 0.2$	$\lesssim 0.05$	0.34	5.0
$m_{T2} > 250 { m GeV}$	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	$\lesssim 0.1$	$\lesssim 0.03$	1.0	7.1

 $S/B = 1, S/\sqrt{B} > 5$ at 14 TeV with 10fb⁻¹

- stop mass from $m_{T2}(m_{\tilde{\chi}_1^0})$ endpoint [C. G. Lester, D. J. Summers] like sleptons or sbottoms

Introduction Top at the LHC

- Jet substructure
- HEPTopTagger
- Applications
- Summary

Back up

Scalar Top Pairs at 14 TeV

hadronic mode [T. Plehn, M. Spannowsky, MT, D. Zerwas]

$$- \tilde{t}_1 \tilde{t}_1^* \rightarrow (t \tilde{\chi}_1^0) (\bar{t} \tilde{\chi}_1^0)$$
: $m_{\chi} = 100 \text{ GeV}$

_	main	BG:	tī+jets,	W+jets	and QCD
---	------	-----	----------	--------	---------

events in 1 fb ⁻¹		1	$\tilde{t}_1 \tilde{t}_1^*$			tī	QCD	W+jets	Z+jets	S/B	$S/\sqrt{B_{10 \text{ fb}}-1}$
$m_{\tilde{t}}$ [GeV]	390	440	490	540	640						390
$p_{T,j} > 200 \text{ GeV}, \ell \text{ veto}$	447	292	187	124	46	87850	$2.4 \cdot 10^{7}$	$1.6 \cdot 10^{5}$	n/a	$\sim 10^{-5}$	
$\not\!$	234	184	133	93	35	2245	$2.4 \cdot 10^{5}$	1710	2240	$ \sim 10^{-3}$	
first top tag	91	75	57	42	15	743	7590	90	114	0.01	
second top tag	12.4	11	8.4	6.3	2.3	32	129	5.7	1.4	0.07	
b-tag for 1st top tag	7.4	6.3	5.0	3.8	1.4	19	2.6	$\lesssim 0.2$	$\lesssim 0.05$	0.34	5.0
$m_{T2} > 250 {\rm GeV}$	5.0	4.9	4.2	3.2	1.2	4.2	$\lesssim 0.6$	$\lesssim 0.1$	$\lesssim 0.03$	1.0	7.1

 $S/B = 1, S/\sqrt{B} > 5$ at 14 TeV with 10fb⁻¹

- stop mass from $m_{T2}(m_{\tilde{\chi}_1^0})$ endpoint [C. G. Lester, D. J. Summers] like sleptons or sbottoms

semi-leptonic mode [JHEP 1105 (2011) 135 [arXiv:1102.0557], T. Plehn, M. Spannowsky, MT]

boosted leptonic top $S/B \sim 2, S/\sqrt{B} > 5$ at 14 TeV with 10fb⁻¹

- Introduction Top at the LHC
- Jet substructure
- HEPTopTagger

Applications

- Summary
- Back up

- Scalar Top Pairs at 8TeV [arXiv:1205.2696 T. Plehn, M. Spannowsky, MT] - $\sigma^{8\text{TeV}} \sim \frac{1}{10}\sigma^{14\text{TeV}}$: both for $t\bar{t}$ and $\tilde{t}_1\tilde{t}_1^*$
 - 2 boosted tops: not enough signal left $S/B \sim 0.8, S/\sqrt{B} \sim 1.5$ (two top tag)
 - $-t\bar{t}$: dominant background at the end

- 1 boosted top and 1 non-boosted top

- · hadronic mode: 1 hadronic top-tag + b-jet + $\not\!\!E_T$
- · semi-leptonic mode: 1 hadronic top-tag + ℓ , $\not\!\!E_T$

Introduction Top at the LHC Jet substructure HEPTopTagger Applications

~

Back up

 $t\bar{t} \rightarrow t_h + b\ell\nu$ negligible with $m_T(\ell, \not\!\!E_T) > 150 \text{ GeV}$ $t\bar{t} \rightarrow b\bar{b} + \tau_h\ell + 2\nu$

fake hadronic top tag with ISR or τ_h \rightarrow subjet id: *b*-tag, τ_h rejection.

$\sqrt{s} = 8$ TeV, $R = 1.5$			ĩ1ĩ1*	*			tī	S/B	$S/\sqrt{B}_{10\text{fb}}-1$
$m_{\tilde{t}}$ [GeV]	350	400	450	500	600	700			400
cross section [fb]	760	337	160	80.5	23.0	7.19	$2.34 \cdot 10^{5}$		
$n_{\ell} = 1, \not\!$	104.37	61.49	34.81	19.54	6.28	2.11	5631		
$n_{\text{tag}} = 1$	13.09	9.02	5.80	3.60	1.33	0.50	788.79		
$m_T > 150 \text{ GeV}$	4.63	4.27	3.25	2.19	0.94	0.38	3.28	1.0	6.5
$\overline{j_b} = b$	1.47	1.38	1.06	0.70	0.31	0.13	0.63	2.1	5.4
$(j_b, j_{W1}, j_{W2}) = (b, j, j)$	1.33	1.27	0.96	0.65	0.29	0.12	0.50	2.4	5.5
$(j_b, j_{W1}, j_{W2}) = (b, j, j)$, reject τ_h	1.20	1.16	0.88	0.60	0.27	0.11	0.25	4.1	6.9

- Introduction Top at the LHC
- HEPTopTagger
- Applications
- Summary
- Back up

Scalar Top Pairs at 8TeV

For scalar top mass 400 GeV for 10 fb^{-1}

- fully hadronic mode: statistically limited $S/B \sim 0.8, S/\sqrt{B} \sim 1.5$ (two top tag) $S/B \sim 1, S/\sqrt{B} \sim 3$ (one top tag)
- semi-leptonic mode:

$$S/B \sim 4, S/\sqrt{B} \sim 7$$

- di-lepton mode: not conclusive $S/B \sim 6, S/\sqrt{B} \sim 16$
 - 95% C.L. exclusion up to $\sim 600~GeV$

Introduction Top at the LHC Jet substructure HEPTopTagger

- Applications
- Summary
- Back up

Scalar Top Pairs at 8TeV

2013 Moriond: up to 660 GeV excluded 95% C.L.

Introduction Top at the LHC Jet substructure HEPTopTagger Applications

Summary

Back up

Introduction

Top at the LHC

Jet substructure

HEPTopTagger

Applications

Summary

Back up

Single tops at 8TeV

- no lepton, 2 fat jets

- one top tag
- $-\Delta m^{\text{prune}}$, *b*-tag in top tag
 - $\rightarrow t\bar{t}$ becomes main BG

8 TeV: rates in fb	t-ch.	s-ch.	tī	tW	QCD	W+jets	S/BS	\sqrt{AB}
0. cross section	$8.72 \cdot 10^4$	$5.55 \cdot 10^{3}$	$2.34 \cdot 10^{5}$	$4.06 \cdot 10^4$	$6.58 \cdot 10^8$	$1.57 \cdot 10^{6}$	-	-
1. $n_{\ell} = 0, 2$ fat-j	$1.57 \cdot 10^{3}$	230	$1.88 \cdot 10^4$	$1.63 \cdot 10^{3}$	$6.67 \cdot 10^{6}$	$4.81 \cdot 10^4$	0.0002	1.9
2. one top tag	204	28.2	3070	227	$6.38 \cdot 10^4$	1297	0.003	2.5
3. Δm^{prune} cut	110	13.9	1421	102	$9.71 \cdot 10^{3}$	530	0.009	3.2
4. <i>b</i> -tag in top tag	44.3	5.29	524	37.4	97.1	5.30	0.07	5.4

Introduction Top at the LHC Jet substructure HEPTopTagger

Applications

Summary

Back up

Single tops at 8TeV [arXiv:1207.4787 F. Kling, T. Plehn, MT] - *tj*-system momentum ($\leftarrow t\bar{t}$ not balanced) t-channel P_{T6} [GeV] D_T_10 200 P_{T,ij} [GeV] 20 20 100 100 100 2000 p____[GeV] 2000 2000 p_{L,ti} [GeV] p_ [GeV]

 $p_{T,tj} < \frac{p_{L,tj}}{60} + 10$ GeV to reduce $t\bar{t}$

8 TeV: rates in fb	<i>t</i> -ch.	s-ch.	tī	tW	QCD	W+jets	S/BS	\sqrt{B}
0. cross section	8.72.104	$5.55 \cdot 10^3$	$2.34 \cdot 10^{5}$	$4.06 \cdot 10^4$	$6.58 \cdot 10^8$	$1.57 \cdot 10^{6}$	-	_
1. $n_{\ell} = 0, 2$ fat-j	$1.57 \cdot 10^{3}$	230	$1.88 \cdot 10^4$	$1.63 \cdot 10^{3}$	$6.67 \cdot 10^{6}$	$4.81 \cdot 10^4$	0.0002	1.9
2. one top tag	204	28.2	3070	227	$6.38 \cdot 10^4$	1297	0.003	2.5
3. Δm^{prune} cut	110	13.9	1421	102	$9.71 \cdot 10^{3}$	530	0.009	3.2
4. <i>b</i> -tag in top tag	44.3	5.29	524	37.4	97.1	5.30	0.07	5.4
5. p_{tj} cut	15.3	1.34	11.1	1.12	12.4	1.27	0.57	9.3

Back up

Top at the LHC Jet substructure

HEPTopTagger

Applications

Summary

Back up

Single tops at 8TeV

s-channel: need additional cuts for recoil jet $-\cos \theta^* > -0.5$ -b-tag in recoil jet $-E_j^{R<0.2}/E_{\text{fat}} > 0.85$ and $m_j < 65$ GeV $-\psi_T < 40$ GeV

8 TeV: rates in fb	t-ch.	s-ch.	tī	tW	QCD	W+jets	S/B	S/\sqrt{B}
1-5. one top tag, <i>b</i> -tag, p_{tj} cut	15.3	1.34	11.1	1.12	12.4	1.27	-	-
6. $\cos \theta^* > -0.5$	6.75	1.27	9.52	0.97	9.06	1.06	0.05	1.2
7. <i>b</i> -tag in recoil jet	0.07	0.64	1.94	0.18	0.09	0.01	0.28	2.1
8. $E_i^{R<0.2}/E_{\text{fat}}, m_j < 65 \text{ GeV}$	0.04	0.35	0.11	0.02	0.03	-	1.75	3.9
9. $p_T < 40 \text{GeV}$	0.04	0.32	0.07	0.02	0.03	-	2.00	4.0

s-channel $\rightarrow S/B = 2, S/\sqrt{B} = 4$ for 25fb⁻¹

Introduction

- Top at the LHC
- Jet substructure
- HEPTopTagger
- Applications
- Summary

Back up

Summary

HEPTopTagger available on http://www.thphys.uni-heidelberg.de/~plehn/

- top closest to new physics
- moderate p_T tops (> 200GeV) \rightarrow testable in SM
- fat jets kill combinatorics
- jet substructure
 - information thrown away \rightarrow use all available infomation
- momentum well reconstructed
- general idea: tops at LHC identified just like bottoms

Applications

- stop pairs at 14 TeV (2 boosted tops)
- stop pairs at 8 TeV
- single tops at 8 TeV

 $-A_{FB}^{t}$

Introduction

- Top at the LHC
- Jet substructure
- HEPTopTagger

Applications

Summary

Back up

Top forward backward asymmetry A_{FB}^{t}

[Phys.Rev. D84 (2011) 054005 arXiv:1103.4618, J. L. Hewett, J. Shelton, M. Spannowsky, T.M.P. Tait, MT]

- QCD A_{FB}^t : small NLO effect (~ 6%)
- D0 and CDF observed anomalously large A_{FB}^t especially in large m_{tt}
- LHC (pp collider):

charge asymmetry in forward-central region

anti-tops are more central

- Introduction
- Top at the LHC
- Jet substructure
- HEPTopTagger
- Applications
- Summary
- Back up

Top forward backward asymmetry A_{FB}^{t}

[Phys.Rev. D84 (2011) 054005 arXiv:1103.4618, J. L. Hewett, J. Shelton, M. Spannowsky, T.M.P. Tait, MT]

- semi-leptonic mode: $t\bar{t} \rightarrow (bjj)(bl\nu)$
 - one isolated lepton & one hadronic top tag
 - *b*-tag in top tag \rightarrow *W*+jets negligible
 - top charge determined by lepton

- BSM: with 4 quark contact interactions for Tevatron 5σ after $2\text{fb}^{-1}(14\text{TeV})$ 2.8σ after 10fb^{-1} (7TeV)

Introduction Top at the LHC Jet substructure HEPTopTagger Applications Summary

Back up

Scalar Top Pairs at 8TeV

- di-lepton mode

$$t\bar{t} \rightarrow b\bar{b} + \ell\ell + 2\nu$$

negligible with $m_{T2}^{\ell\ell} > 100 \text{ GeV}$
 $m_{T2} = \min_{\vec{k}_T \ split} \left[\max\{m_T^{\ell_1}, m_T^{\ell_2}\} \right]$

$\sqrt{s} = 8 \text{ TeV}$	$\tilde{t}1\tilde{t}1^*$					tī	tτZ	S/B	$S/\sqrt{B}_{10\text{fb}^{-1}}$	
$m_{\tilde{t}}$ [GeV]	350	400	450	500	600	700				400
$n_\ell = 2$	30.98	14.27	7.07	3.58	1.04	0.33	7650.88	n.a.		
$\not\!\!\!E_T > 100 { m GeV}$	19.04	9.99	5.40	2.94	0.91	0.30	1312.74	0.35		
$m_{T2}^{\ell\ell} > 100 \text{GeV}$	6.05	4.30	2.70	1.65	0.56	0.20	0.65	0.09	5.8	16
$m_{T2}^{\tilde{\ell}\tilde{\ell}} > 150 \text{ GeV}$	0.81	1.21	1.06	0.81	0.34	0.14	0.00	0.02	60	27