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Why is this neutrino physics an interesting subject?

Deals with conceptually clear questions.
Neutrino physics allows us to study “new physics”.

It is a field driven by experiment. The findings have
sometimes been surprising:

* Neutrinos are massive

e Flavor mixing is large

It impacts multiple disciplines:
e particle physics

e cosmology

e astrophysics

It is even entering the realm of application:
e reactor monitoring, plutonium diversion
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Particle physics:

Neutrino masses are zero in the minimal Standard Model.
Extensions of the SM naturally give m #0.

Discovery of neutrino oscillations requires adjustments to the
SM. How to build neutrino masses into the Langrangian?

Open guestions:

 What are the values of the neutrino masses?

« Are neutrinos their own anti-particles?

* |s CP-violated for neutrinos?

 What are the values of the 3 mixing angle and CP
phases (one for Dirac three for Majorana)?
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Astrophysics and Cosmology:

Neutrinos are the only probes allowing us to “look” inside
our Sun and Supernovae.

Universe contains 330 v/cm?3 (410 y/cm3), from Big Bang.
m, important ingredient for Dark Matter problem.

Q,/ Q<03 (WMAP) Q,/Qz<3.0 (Tritium decay)
Qg = 0.047 0.006, O, = 0.29+0.07 and Q,, = 1.02+0.02

Laboratory neutrino mass measurements important
consistency check that can be done.
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Observations indicate an unequal number of baryons and
anti-baryons in the universe. To the best of our understanding
all structures in the universe are made from matter:

N. —N-= 10 From big bang nucleo-synthesis predicting
n= B B _ (6_2]_i 0_16)-10_ abundance of D, 3He, 4He and 7Li and the

ny anisotropy of cosmic ray background radiation.

Baryons and anti-baryons should have been created in

equal numbers in big bang — baryon anti-baryon imbalance
must have been created dynamically. This hypothesis is called
baryogenesis. Imbalance poses a puzzle for particle physics.
The SM of particle physics contains the ingredients to explain
the imbalance (Sakharov):

e Baryon number violation

e C and CP violation

 Out of equilibrium dynamics

S. Davidson, E. Nardi, Y. Nir, arXiv:0.802.2962
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Although these ingredients exist no mechanism strong enough
to explain the observed asymmetry has been found.

The observed degree of CP-violation for quarks is insufficient
by many orders of magnitude. New physics such as e.g. CP
violation for leptons is needed.

A mechanism called leptogenesis has been proposed to

solve this problem: heavy right handed Majorana v (inert in SM;
weak singlets) provide CP violation. Their decay in early
universe created a lepton number asymmetry that is transferred
Into a baryon asymmetry by the so-called sphaleron process.
This scenario requires Majorana neutrinos and thus double
beta decay. Some models require: 0.05 eV =m;<0.15 eV.

Perhaps all matter, even our own bodies, are made of the
ashes of heavy neutrinos that decayed in the early universe!
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What do we know about neutrino mass?

Discovery of neutrino flavor oscillations showed that
neutrinos are massive. Oscillation observed with:

e Solar and reactor neutrinos and anti-neutrinos:
*Am?,,, m; <m,, Sin0Q,,

« Atmospheric and accelerator neutrinos: Am2,;, sin0,,

 LSND oscillation evidence not observed in MiniBooNE

Surprisingly small number of parameters suffices to
describe variety of experiments using different methods
and energies.
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How do we weigh a microscopic particle?

 Neutrino flavor oscillations.
U?i Amfj = I’T]i2 — m?
 Measurement of energy distribution of charged Leptons
In weak decays. ) )
(M) =2_|Ual m;

* Neutrino-less double decay (Dirac versus Majorana).

<m>§B =|Zni Usimi

2

It turns out that nuclear double beta decay is the only
practical way to distinguish Dirac from Majorana neutrinos.
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What do we know about neutrino mass assuming
three flavors?

From experiments using solar v and reactor v:
2 2 0.16 -5 2
AmZ, = Am?2, = (7.67'318).10° eV

sol —

sin°0,, =sin“0_, = 0.312" 0.

From experiments using atmospheric and accelerator v:

2 2 0.11 -3 2

AmZ, = Am?%, = +(2.397%1).10% eV
=2 =2 0.073
Sin“0,, =sin“0, =0.466" i

From experiments using reactor v:
sin°0,, = 0.016 +0.01

G.L. Fogli et al., arXiv:0805:2517v3
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Our knowledge of the v mass
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The measurement of the absolute mass scale,

8,; and the choice of hierarchy
are the next big challenges in neutrino physics
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Atomic mass

Double-beta decay:
second-order process,

detectable if first order f-decay is

energetically forbidden

Candidate nuclei with Q>2 MeV

Atomic number (2)

Candidate Q  Abund.
(MeV) (%)
48Ca—48Ti 4.271 |0.187
6Ge—76Se 2.040 (7.8
825 _»82Kr 2.995 (9.2
967r—9Mo 3.350 |2.8
100Mo—10Ru |3.034 (9.6
110pd—110Cd [2.013 |11.8
116Cd—16Sn  |2.802 [7.5
1245n—124Te | 2.228 |5.64
130Te »130Xe |2.533 |34.5
136Xe—136Bg [ 2.458 |8.9
150Nd—10Sm |3.367 |5.6
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Add nuclear matrix element calculations to make such
measurements quantitative. Decay rates given as:

BR2v-mode: (T12/\2/ )_1 =G%-|M? |

Cancellation of contributions of virtual intermediate states.
Measured for many nuclides.
Not directly relevant to BB0v, calibrates nuclear models

) =c

Nuclear matrix element by calculations. Uncertainty?
spread of all values in literature: factor ~3.

2
MOV\ (my)?
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Rodin, Faessler, Simkovic and Vogel (Nucl. Phys. A793
(2007)213) studied differences of different calculations.

Most nuclear models use 13 parameters which are tuned
to reproduce certain observables (nuclear excitation
patterns, giant resonance, guenching of the axial-vector
coupling constant,...)

In QRPA and RQRPA calculations B2v— and Bp0v—
rates depend on normalized particle-particle interaction
strength g,,,. g,,, fixed to value reproducing Bp2v-rate
stabilizes calculations.

Consistent choice of input parameters and elimination of
clearly off-the-charts calculations results ina 30% spread
of nuclear calculations.
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Decay rate translates into effective Majorana mass. Requires knowledge
of nuclear physics quantities.

(—I-lc;\zz )-1 _G». M

2
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'<mBB>2 <mﬂﬂ> =ZT7iU§imi
A

CP-phases: 1
CP-phases can lead to cancellation. Elements upper _
But how much? Replace masses by row of MNS-matrix

two possible choices of minimal mass
m, or m; and add knowledge of mixing Neutrino masses
and mass splitting from oscillations.

5/20/2009 IPMU



The problem to be solved:
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Oscillation parameters with errors, sin’0,,=0.028
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Decay modes distinguished by measurement of electron sum energy.
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How much isotope is needed to observe a 10 meV neutrino
mass? This Is very expensive.
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Primary Techniques:

» Large amount of decaying material.
* Reduction of intrinsic radioactivity by finding clean materials (VERY DIFFICULT).
» Control cosmogenic activition of materials.
 Passive shielding of cosmic ray showers. (go underground)
» Passive shielding of external radioactivity (ex: lead)
* Active shielding, especially for muons, usually scintillator layers.
— High resolution calorimetry
— Includes ionization, scintillation and bolometers.
With low Backgrounds and no other event discrimination, resolution typically needs
to be below a couple of percent
 Spatial tracking:
— Good single-site discrimination alone can reduce backgrounds significantly.
— Several techniques: high-resolution wire chambers,..., coarse segmentation.
* Residual nucleus identification (EXO)
» Major Distinctions:
— Source is Detector? (Improves intrinsic background, but less versatile)
— Good tracking vs. good calorimetry
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‘Why 1%6Xe?

» Reasonable Q-value of 2457.8+0.4 keV. Based on recent high precision mass
measurement at FSU. M. Redshaw, J.McDaniel, E. Windfield and E.G. Myers,

PRL 98 (2007) 053003

lonization potentials Xe: 12.130 eV, Ba*: 5.212 eV, Ba**: 10.004 eV
— Bp—decay product atom remains charged — opens possibility of Ba removal
and final state tagging through Ba single ion detection

1 XENON Collaboration data IPMU 21



EXO detection strategy

detect the 2 electrons
(lonization + scintillation in xenon
detector)

136Xe — + ’(+ 2Ve)

positively identify daughter via
optical spectroscopy of Ba*

[M. Moe, Phys. Rev. C 44 (1991) R931]

other Ba™ identification strategies are also being *

iInvestigated within the EXO collaboration

observe

single ion
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Xe offers a qualitatively new tool against background:
136Xe — 1365Bg** e- e final state can be identified
using optical spectroscopy (M.Moe PRC44 (1991) 931)

Ba* system best studied
(Neuhauser, Hohenstatt,
Toshek, Dehmelt 1980)

Very specific signature
“shelving”
Single ions can be detected
from a photon rate of 107/s

*Important additional
constraint

*Drastic background
reduction

5/20/2009
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EXO Road Map

» Goal: build 1 to 10 ton high resolution tracking TPC using enriched 13¢Xe.
Equip with Ba-final state tagging. — This should result in extremely small
if not zero random background.
Envisaged sensitivity 10 meV, covers mass range allowed for inverted hierarchy.
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‘ EXO Technical Preparation

Build and operate a smaller scale TPC to demonstrate that required energy
resolution and background can be achieved. Demonstrate feasibility of large
scale enrichment of 136Xe.

5/20/2009 IPMU
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EXO-200:
An intermediate detector without Ba
tagoing using 200 kg liquid xenon,
isotopically enriched to 80%

136Xe
(-108° C, 3.02 g/cm?)

5/20
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EXO-200

Scientific goals:

1) Measurement of yet unobserved Bp2v decay of 36Xe.
Task: T,, > 1022y, ~67 dcs / (d 100 kg).
Important background for EXO.

2) Test of the Heidelberg evidence for B0v decay.
Expectation for 136Xe [Ge range (1.92-2.67)-102° y, (2006)]:
Ty, = (1.02-1.41)-10%° y [Rodin et al. NPA 793 (07) RQRPA]

17 — 24 dcs / (y 100 kg)
= (0.38-0.53)-10%° y [Caurier et al. arXiv:0709.2137 (07) SM]
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200 kg °°Xe test productlon completed sprlng '03 (enr. 80%)
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Lab preparation
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EXO-200 schedule and location

e Jun, 2006 Cryostat and lower Pb installed (Stanford)

» Sep, 2006 First empty cool-down (Stanford)

* May, 2007 Replace super insulation (Stanford)

* June, 2007 Move clean rooms to WIPP

» 2008 Finish underground manufacturing of TPC
components. E-beam weld pressure vessel.

« 2009 Assemble and install TPC and veto at WIPP.

WIPP Facility and Stratigraphic Sequence

SALT ETDRAGE PILES
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October 2007: clean-
rooms and gowning area
Installed at WIPP.

Staging container for
component pre-cleaning
Installed at WIPP.
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‘ December 2008

Installation of veto

support.
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Background control
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Natural, cosmogenic and anthropogenic radioactivity content of
all construction materials quantified using various techniques.
EXO testing program: more than 450 material measurements.
Techniques:

Low background y-counting (Th/U): 1 ppb (UA) 10 ppt (Bern)
Mass spec (Th/U): 10 ppt GDMS, 1 ppt ICPMS (INMS Canada)
NAA utilizing MIT reactor (Th/U): 0.02 to 0.3 ppt (UA)

a counting for 21°Pb analysis of shielding lead (via
210pPo): 5 Bg/kg (UA)

Rn counting, PIN diode with electrostatic collection:
10 atoms (Laurentian, Canada)

Keep track of results through an elog data base.

D. Leonard et al., Nucl. Inst. Meth. A 591 (2008) 3.



Calculate the hit efficiency in terms of events per decay
for cuts on energy deposit, track length, and distance from
detector boundary.

Parametric Monte Carlo: spatial and energy resolution are
Implemented by folding with energy deposit.

Detalled source generators take into account particle
correlations to not over estimate effectiveness of cuts.

Our design goal: the sum of all background contributions
and limits will not exceed 20 / y for Bp0v—analysis and 10 /d
for BB2v—analysis. Conservative as not all materials for
which we have limits will be at or close to the limits.

We keep running log of all backgrounds during installation.
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Measurement of radioactivity

at ultra trace concentration:
1 ppt Th: 4 uBg/kg or 2.8 days/(decay-kqg)

1 ppt U: 12 uBg/kg or 0.9 days/(decay-kg)
BP2v-decay of 80% enriched 13¢Xe:

for T,, > 1022 y specific activity <8 uBg/kg
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The TPC
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‘ Charge Detection

Double-ended TPC chamber with ~20 cm drift regions. In
Xe about 50 e/keV — at 2480 keV results in 124,000 e-,
Into 1 pF equivalent charge amplifier 20 mV signal —
amplify by factor 10 using shaping amplifier. Estimated
noise is 500 e.

Mid-plane cathode biased at -75 kV

38 Inductive “Y” wires per side at -4 kV, 100% charge
transparent.

38 “X” wires at virtual ground to collect the charge.
LXE electron mobility ~2000 cm?/(Vs)

Saturation velocity ~ 0.28 cm/us

Electron lifetime goal of 3 ms — 2.4% loss at 20 cm.
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‘ Light Detection

516 16 mm (active area) APD’s (Avalanche Photo
Diodes).

QE measured to be 120% at 175 nm by NIST.

Geometrical photo-coverage ~17%. Compared to PMTs
with about 30% QE corresponds to 70% coverage.

Read-out: gangs of seven APD’s

Yield enhanced by reflective Teflon reflectors in TPC.
Chare amplifier 5 pF per gang of seven.

Low gain (compared to PMT'’s), of ~100.

Clean materials, mostly refined silicon.

Connections made by contact springs for easy
maintenance.
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APD delivery status

= 815 APDs delivered
out of 849.

= 812 tested.
= 596 working (relative

QE > 0.7, noise < 3000
electrons).

= 516 needed
o 258 at each end
= 36 gangs of 7, one gang of 6.
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APD Voltage for 100 Gain |
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Thin walled

Cu pressure
vessel.

Active parts
(wires, APDs)
are attached
to a removable
Inner structure.
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TPC internal structure

5/20/2009 IPMU 48



49

IPMU

5/20/2009



4

5/20/2009




5/20/2009




5/20/2009




5/20/2009

IPMU

53



The Cryostat
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a4 Etching with
dilute HNO3
after receipt

| in 2006.
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5/20/2009

Superinsulation

= Application of

new Sl after
it was found
that original S
was too radio-
active (2007).

Required
design of a
large extraction
device.
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Lead Shield
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May 2008: installation of the
“barrel section” of the lead,
y at WIPP.
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The Cosmic Ray Muon Veto
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EXO-200 is being installed at WIPP at a depth of 665 m of
rock/salt. The corresponding overburden is 1585 mw.w.

The vertical muon intensity has been measured to be:
268+6 m= d* srl by Esch et al., astro-ph/0408486.

The flux through a horizontal surface is 332 m=2 d-!

Monte Carlo estimated muon related background:

BBOv: 15 cnts/year

BB2v: 1100 cnts/year

These are due to secondaries with the muon missing the TPC.

Muon veto with at least 90% efficiency needed to meet
background goal.
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5/20/2009

EXO-200 active scintillation muon veto

IPMU

Geometrical
placement is
optimized by
Monte Carlo.

To stay within
background
budget we need
90% efficiency.

For the chosen
design we estimate
99.2% efficiency.
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31 large plastic scintillator panels, left over from the concluded
KAREMEN neutrino oscillation experiment, have been
acquired.

They have been refurbished, tested, and calibrated at UA.
Includes gain matching of about 280 PMTs.

Ve ;f: -.\' U’

(X
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Photo Electrons
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Assemble roof
supports first.












Add panel tracks for south

face loading.









Lowest =~
edge of
all
panels
IS 5”
above
the
bottom
of Mod.
1
support
frame.
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Assemble West face shelves
and panels.






Protective
covers









Lifting jig concept for South face loading

of roof panels.
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Install south face shelves
and panels.
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Install overlapping shelves
and panels.












EXO-200 Majorana mass sensitivity

Assumptions:
1) 200kg of Xe enriched to 80% in 136

2) o(E)/E =1.4% obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201
3) Low but finite radioactive background:

20 events/year in the 2o interval centered around the 2.46MeV endpoint

4) Negligible background from 2vBB (T,,>1-10%?yr R.Bernabei et al. measurement)

Case |Mass| Eff. | Run | oc/E @ |Radioactive| T,,% Majorana mass
(ton)| (%) | Time | 2.5MeV |Background| (yr, (meV)

(yr) (%) (events) | 90%CL) |QRPAT  NSM?

E;gg' 0.2 | 70 2 1.6" 40 6.4 1025 | 133 186

1) Rodin, et. al., Nucl. Phys. A 793 (2007) 213-215
2) Caurier, et. al., arXiv:0709.2137v2
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What if the Heidelberg signal is due to gB0v-decay ?

Central value T,, (Ge) = 2.23%044 ., -10%°, (:30) (MPL A 1547 (06)

A Ge and Xe experiment have the neutrino mass in common:

2

Ov Ov

B GGe ) |\/IGe
Ov Ov
GXe' I\/IXe

ov Ov
5 'T1/2,Ge = (X'T1/2,Ge

In 200 kg EXQO, after 2 yrs of life time:

Best case (NSM, lower limit, a=0.20):
170 events on top of 40 bkgd = 11.7 o
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Ba single ion detection

Out of time?
Skip to end
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BB decay observables

L - 1 Energy deposition from two
0.6} f..-"_‘--,\ \ ] e-
. I / 4 \\.\ i
czé 04f  / \ﬁﬁlv \ :
L J’f ‘\\ -
0.2} Frf ‘\\ H
/ N
|—-f1' \\'\. N
1 1 1 1 {}fj L B | ; I e - e
(T1+T2)/ QBB Ve Je

136
Daughter nucleus Xe
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Ba Grabber
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Problem: efficiently remove Ba++ ion from Xenon and
release it into an ion trap for laser detection.

Several approaches have been explored, field emission,
Ice coating, resonance ionization...

It turns out that not the “attraction” part is the biggest
problem but the release. Answer: cover a charged tip with
a very thin layer of Xe ice (few mono-layers) which is
thawed for release.
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Cryogenic dipstick
«Capture ion on SXe
coating

. He cooling (~20K) to
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Prototype grabber and
linear ion trap at Stanford.
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LHe cryostat

Actuator

SXe-coated

tip !
.

b L

i

LXe cell

.

S=
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Single lon Detection
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Stable laser tagging system
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Ba* Linear lon Trap

Vcos(Qt) + U

DC potential [V]

 High ion loading efficiency observéd.

° Ba
° Buffer gas

 lons loaded at one end will travel to the other.

* lons can be manipulated by changing DC

potential configuration.

0 Volts

-5 Volts




lon fluorescence time series

lon signal as a function of time as ions are loaded and unloaded from
the linear trap. The quantized structure demonstrates our ability to

lon fluorescence signal [counts/sec]
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detect single atoms in a buffer gas with high S/N.
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Frequency

Histogram of ion fluorescence signal. With a 5 sec integration the
signal from 1 ion is distinguishable from background at the 8.7c
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Fluorescence rate histogram |
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Assumptions:

EXO neutrino effective mass sensitivity

1) 80% enrichment in 136
2) Intrinsic low background + Ba tagging eliminate all radioactive background
3) Energy res only used to separate the Ov from 2v modes:

Select Ov events in a £20 interval centered around the 2.46 MeV endpoint
4) Use for 2vBB T,,> 1-1022yr (Bernabei et al. measurement)

Case | Mass | Eff. | Run | oc/E @ 2vpp T,,,% | Majorana mass
(ton) | (%) | Time | 2.5MeV | Background |  (yr., (meV)
(yr) | (%) (events) | 907%CL) | QRPA! NSM?
forea 1 | 70 | 5 | 1.6" |0.5(use1)| 2*1077 | 24 | 33
Aogressl 10 | 70 | 10 1t | 0.7 (use 1) |4.1*1028| 5.3 | 7.3

* s(E)/E = 1.4% obtained in EXO R&D, Conti et al Phys Rev B 68 (2003) 054201

T s(E)/E = 1.0% considered as an aggressive but realistic guess with large light
collection area
1 Rodin, et. al., Nucl. Phys. A 793 (2007) 213-215
2) Caurier, et. al., arXiv:0709.2137v2

5/20/2009

IPMU

109




‘ Conclusion

The next generation Bp—experiments hope to observe this decay.

®
s
}'\ 3
-

Unarnbiguous evidence will be irmmportant for making a clear cas
Neutrinos are Vajorana particles.

To achieve this we will need experirnents using different methods and
different nuclides. In case of success this would give some handie on
the rmatrix element calculations and their spre

o
}l

This goal requires both high resolution calorirmetric and tracking detectors.
£XO is the only project with an independent decay tag.

Soth EXO-200 and the atorn tagging technique are under active developrment.
£X0-200 is fully funded and under construction.

d! First cdata will cormne soon.
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