Expansion opacity for SN Ia

How to survive when you need to use more than 10 million spectral lines

Elena Sorokina¹, Sergei Blinnikov^{2,1}

¹Sternberg Astronomical Institute, Moscow

 2 Institute for Theoretical and Experimental Physics, Moscow

Opacity for Solar composition

ACP Seminar, IPMU - February 28, 2013 - p. 2

Opacity for Fe–Co–Ni composition

Methods for Light Curve modeling

- Monte Carlo (Lucy; SEDONA–Kasen; Sim, Kromer; Maeda)
- Monochromatic calculation of transfer equations (PHOENIX–Hauschild, Baron; EDDINGTON–Eastman, Pinto; CMFGEN–Hillier, Miller, Dessart)
- Radiative hydrodynamics (STELLA–Blinnikov+)
- Combination of hydrodynamics with MC or monochromatic radiative transport (Noebauer+MPA group)

Sim / STELLA (dashes) / SEDONA (dots)

Sim / STELLA (dashes) / SEDONA (dots)

Sim / STELLA (dashes) / SEDONA (dots)

Expansion opacity

Expansion opacity

For getting correct fluxes with radiative hydro codes, the correct opacity averaged over frequency bin is very important. (See Castor 2007 for references) We use Eastman & Pinto approximation for t = r/v:

$$\chi_{\rm EP} = \frac{\nu}{\Delta\nu} \frac{1}{ct} \sum_{l} \left\{ 1 - \exp\left(-\tau_{\rm Sob\ l}\right) \right\}$$

$$\tau_{\text{Sob }l} = \left(\frac{\pi e^2}{mc}\right) (fg)_l \lambda_l \frac{n_{\text{ion}}}{Z_{\text{part}}} e^{-\frac{E_{\text{low}}}{kT}} / \frac{\partial v}{\partial r}$$

Number of lines

BUT opposite direction!

E & P Light Curves

with additional 450,000 lines

Kasen 2006

IR light curves for different line lists

Different Kurucz line lists (1000 freqs)

Different Kurucz line lists (100 freqs)

155k vs. 26M lines (50 freqs)

26M line list and its sublists

lg λ, Å

W7 light curves with different line lists

Opacity Distribution Function Method

Strom & Kurucz 1966

Sobolev depth distribution function

 $\begin{array}{l} \tau_{3} & \chi_{\mathrm{EP}} \sim \sum_{l} \left\{ 1 - \exp\left(-\tau_{\mathrm{Sob}\ l}\right) \right\} \\ \tau_{2} & \text{Strong lines: } \chi_{\mathrm{EP}} \sim N_{\mathrm{lines}} \\ & \text{Weak lines: } \chi_{\mathrm{EP}} \sim N_{\mathrm{lines}} \tau_{\mathrm{Sob}}^{\mathrm{avg}} \end{array}$

Grid for the tables

It is important to choose such parameters for the tables that make the tables model-independent. $N_{\rm lines}(\nu, \tau_{\rm Sob}/(n_{\rm ion}t, T))$ - a table for each ion is needed $N_{\rm lines}(\nu, \tau_{\rm Sob}/(Y_i \rho t), T, n_e)$ - a table for each

element

Grid for the tables

Parameter	Low limit	High limit	N bins
$ au_{ m Sob}/(Y_{ m at} ho t)$	$3.5 \cdot 10^{-2}$	$3.5\cdot10^{14}$	35
λ	30 Å	50 000 Å	100
T	2 500 K	150 000 K	201
n_e	$10^4 {\rm ~cm^{-3}}$	$10^{16} {\rm ~cm^{-3}}$	49

Opacity: new method vs. LL-calculation

Light curves for W7

Conclusions

- We have developed a new method of opacity calculation for isotropically expanding medium in Sobolev approximation.
- Opacities and light curves calculated with the new method coincide rather good with the results derived with direct line-by-line integration of opacity.
- The light curve code becomes 2–3 orders of magnitude faster: now it requires 2–3 hours to produce a light curve instead of couple of months for the old version (for a line list of 26 million lines).

Conclusions

- We have checked the new method on calculation of SN Ia light curves. The applicability of this method to other types of SNe requires further investigation due to the following reasons:
 - The method is developed for a coasting stage of SN evolution ($\partial v / \partial r = v / r = 1/t$);
 - CCSNe produce mostly elements of the intermediate mass; the statistical method gives less accurate resuls for them;
 - CCSNe need wider range of temperatures and densities tabulated.