Modeling the nonlinear growth of large scale structure with perturbation theories and N-body simulations: implications to on-going and future surveys

> **Takahiro Nishimichi** (Kavli IPMU; JSPS Fellow)

> > ACP Seminar @Kavli IPMU Feb. 27 2013

Outline

- Introduction
 - Needs for an accurate theoretical template for the galaxy clustering
 - Geometrical & dynamical test using anisotropy in the clustering
- Modeling the growth of cosmic density & velocity fields
 - Nonlinear gravitational evolution
 - Redshift-space distortions
- Connecting galaxies to the cosmic web
 - Modeling SDSS LRGs
 - Scale-dependent bias and primordial non-Gaussianities

Introduction

Observational cosmology: the current situation

- Crisis of ACDM cosmology?
 - New physics?
 - or just a systematic error in one (three?) experiment(s)?
- Next generation
 - Pinning down parameters
 - Extreme care is needed for systematics !!

Baryon Acoustic Oscillations: a geometrical test

Sound wave in photon-baryon fluid

- stoled at recombination
- imprinted in nearby large-scale structure
- BAOs are standard ruler
 - probe of expansion history
 - powerful test for dark energy

BAOs: how does it work?

observer

Alcock-Paczynski test

Alcock & Paczinski '79, Matsubara & Suto '96, Ballinger+ '96

© A. Taruya

- "cosmological distortion" because of a wrong cosmological assumption
- constraints on (DAH)

s mark a physical scale BAO

e.g., Peebles & Yu '70

constraints on $D_V = (D_A^2/H)$

Accelerated cosmic expansion

- Geometrical tests are not enough
 - DE/MG can mimic any expansion history
- Dynamical test?
 - growth rate of structure?
 - density field? Galaxy bias is a problem.
 - velocity field? Redshift-space distortions !

modified gravity dark energy?

f(R), DGP, ...

Geometrical (background) + Dynamical (perturbation) tests are essential !!

Theoretical challenge

- How well do we understand 3 nonlinears?
 - gravitational growth
 - redshift-space distortions
 - galaxy bias

Modeling the growth of cosmic density & velocity fields

The strategy

Renormalized PT

Crocce & Scoccimarr '06, Taruya & Hiramatsu '07, ...

 "Renormalize" higher-order terms back to lower-order

power spectrum $P = P^{(11)} + P^{(22)} + P^{(31)} + P^{(13)} + P^{(13)}$

ex. Gamma expansion

Bernardeau + '09

Convergence property

Taruya, Nishimichi et al. '12

Better convergence

- All the terms are positive in RegPT
 ⇔ Alternating series in Standard PT
- Especially suitable for BAO modeling

Why Renormalized PTs work well?

 $\frac{1}{p!}$

- (multi-point) propagators
 - loss of initial memory
 - Crocce & Scoccimarro '06
 - separate dynamics from initial condition
 - asymptotes are known

Directly testable by simulations

- Widely used model:
- $P(k,\mu) = \underline{D_{f}(k\mu f \sigma_{v})} \text{ streaming model} \\ \times \left[P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k) \right]$
 - Scoccimarro'04

- 2 ingredients
 - (nonlinear) Kaiser effect
 - large scale coherent motion
 - Fingers-of-Gods effect
 - small scale virial motion

r-space

Line-of-sight

 $\mu \equiv \cos \phi$

- Widely used model:
- $P(k,\mu) = \underline{D_{f}(k\mu f \sigma_{v})} \text{ streaming model} \\ \times \left[P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k) \right]$
 - Scoccimarro'04

- 2 ingredients
 - (nonlinear) Kaiser effect
 - large scale coherent motion
 - Fingers-of-Gods effect
 - small scale virial motion

- Widely used model:
- $P(k,\mu) = \frac{D_{f}(k\mu f \sigma_{v})}{\times \left[P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k)\right]}$
 - Scoccimarro'04

- 2 ingredients
 - (nonlinear) Kaiser effect
 - large scale coherent motion
 - Fingers-of-Gods effect
 - small scale virial motion

- Widely used model:
- $P(k,\mu) = \frac{D_{f}(k\mu f \sigma_{v})}{\times \left[P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k)\right]}$
 - Scoccimarro'04

- 2 ingredients
 - (nonlinear) Kaiser effect
 - large scale coherent motion
 - Fingers-of-Gods effect
 - small scale virial motion

TNS model

Taruya, Nishimichi, Saito '10

Streaming model fails

- Kaiser & FoG are not separable!
 - go back to exact expression
 - computed 2 correction terms

 $P(k,\mu) = D_{f}(k \mu f \sigma_{v})$ $\times \left[P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k) \right]$ New terms! +A(k,\mu;f) + B(k,\mu;f)

A term \propto cross-bispectrum of $\delta \& \theta$ B term \propto convolutions of $P_{\delta \theta} \& P_{\theta \theta}$

multipole moments

 $P(k,\mu) = \mathcal{L}_0(\mu) P_0(k) + \mathcal{L}_2(\mu) P_2(k) + \mathcal{L}_4(\mu) P_4(k) + \dots$

16

TNS model

Taruya, Nishimichi, Saito '10

Streaming model fails

- Kaiser & FoG are not separable!
 - go back to exact expression
 - computed 2 correction terms

 $P(k,\mu) = D_{f}(k \mu f \sigma_{v})$ $\times \left[P_{\delta\delta}(k) + 2 f \mu^{2} P_{\delta\theta}(k) + f^{2} \mu^{4} P_{\theta\theta}(k) \right]$ new terms! $+A(k,\mu;f) + B(k,\mu;f)$

A term \propto cross-bispectrum of $\delta \& \theta$ B term \propto convolutions of $P_{\delta\theta} \& P_{\theta\theta}$

multipole moments

 $P(k,\mu) = \mathcal{L}_0(\mu) P_0(k) + \mathcal{L}_2(\mu) P_2(k) + \mathcal{L}_4(\mu) P_4(k) + \dots$

Limitation of PTs & non-pertubative corrections

Valageas & Nishimichi 2011a, b

single-stream flow is assumed in PTs

- cannot follow the dynamics after shell crossing
- Combine PTs with halo model
 - halos are the place where shell cross takes place
 - a consistent formulation to avoid double counting

 $P_{\rm tot}(k) = F_{\rm 2H}(1/k)P_{\rm PT}(k) + [P_{\rm 1H}(k) - P_{\rm c.t.}(k)]$

- A wide wavenumber range can be covered
 - Useful for weak lensing analyses

Valageas, Sato & Nishimichi 2012a, b

Combined theory in z-space

Connecting galaxies to the cosmic web

Tests with mocks (subhalos): a naive implementation of parametric bias 5 + 3 parameter fit $b(k) = b \frac{1+Qk^2}{1+Qk} \qquad D_{\text{FoG}}(x) = \left(1+\frac{x^2}{Q}\right)^{-\alpha} x = f\sigma_v k\mu$

Can we recover the true cosmology?

Modeling Luminous Red Galaxies

Modeling Luminous Red Galaxies

Oka, Nishimichi et al. (in prep.)

21

Halos vs. Subhalos

Oka, Nishimichi et al. (in prep.)

 $\label{eq:main} \begin{array}{l} \mbox{dashed: } M_{min} = 1.77 \; [10^{12} M_{sun}/h], \; F_S = 0 \\ \mbox{solid: } M_{min} = 28.3 \; [10^{12} M_{sun}/h], \; F_S = 0 \\ \mbox{solid: } M_{min} = 12.6 \; [10^{12} M_{sun}/h], \; F_S = 0.25 \end{array}$

We need satellites (20~30%) !

• centrals cannot explain both $P_0 \& P_2$ simultaneously $P(k,\mu) = \mathcal{L}_0(\mu)P_0(k) + \mathcal{L}_2(\mu)P_2(k) + \mathcal{L}_4(\mu)P_4(k) + \dots$

22

Multiplicity function

singlet

LRGs

 best-fit model reproduces the multiplicity function pretty well

a single LRG does not always mean a central galaxy ! see also Hikage + '12, who discuss the off-centering of LRGs using correlation + weak lensing signals

Oka, Nishimichi et al. (in prep.)

fraction of host halos that have N subhalos/galaxies

Bias is not always bad!

mulatio

Dalal+08 Slosar+08 Matarrese, Verde08 theory Afshordi, Tolley08 McDonald08 Taruya+09 Giannantonio.Porciani10 Desjacques, Jeong, Schmidt11a, b and more ...

Desjacques+09 Grossi+09 Pillepich+10 and more ..

observation

Scale-dependent bias has been a hot topic

a new window for primordial non-Gaussianities

matter power spec.

halo power spec.

What we are looking at?

What we are looking at?

What we are looking at?

General local-type non-G

Nishimichi '12

New tests

f_{nl} vs **T**nl

Suyama-Yamaguchi inequality

 $au_{nl} \ge \frac{36}{25} f_{nl}^2$ >: multiple sources =: single source

Robust. Just a Cauchy-Schwarz inequality.

- Nishimichi '12
- Generalized SY inequality can be tested using P(k) of biased tracers! $|r_{\rm MF}| \leq 1$
 - shape of P(k) tells us about that

left:
$$f_{nl} = 100$$
, $\tau_{nl} = (36/25)f_{nl}^2$
→ $r_{MF} = 1$

right: $f_{nl} = 0$, $\tau_{nl} = (36/25)f_{nl}^2$ $\rightarrow r_{MF} = 0$

 $P_{\rm h}(k) = b_{\delta}^2 P_{\delta}(k) + \frac{2r_{\rm MF}b_{\delta}b_{\zeta}P_{\delta\zeta}(k)}{2r_{\rm MF}b_{\delta}b_{\zeta}P_{\delta\zeta}(k)} + b_{\zeta}^2 P_{\zeta}(k)$

New tests

Nishimichi '12

 $P_{\rm h}(k) = b_{\delta}^2 P_{\delta}(k) + 2r_{\rm MF} b_{\delta} b_{\zeta} P_{\delta\zeta}(k) + b_{\zeta}^2 P_{\zeta}(k)$

- Approximate Consistency relation btwn Gaussian and non-Gaussian bias factors in case of fnl
 - Multiple tracers
 - different redshifts

