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Outline
Introduction

Needs for an accurate theoretical template for the galaxy clustering 

Geometrical & dynamical test using anisotropy in the clustering

Modeling the growth of cosmic density & velocity fields
Nonlinear gravitational evolution

Redshift-space distortions

Connecting galaxies to the cosmic web
Modeling SDSS LRGs

Scale-dependent bias and primordial non-Gaussianities
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Introduction
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Observational cosmology: the current situation

Crisis of ΛCDM cosmology?
New physics?

or just a systematic error in one (three?) 
experiment(s)?

Next generation
Pinning down parameters

Extreme care is needed for 
systematics !!

Hou et al. 2012

a 1.5% distance measurement with BAO

SDSS BOSS
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Baryon Acoustic Oscillations: a geometrical test

Sound wave in photon-baryon fluid
stoled at recombination

imprinted in nearby large-scale structure

BAOs are standard ruler
probe of expansion history

powerful test for dark energy

©G. Chiaki, A. Taruya5



BAOs: how does it work?

Alcock-Paczynski test

“cosmological distortion” because of a 
wrong cosmological assumption

constraints on (DAH)

© A. Taruya

distance measurements in z-space BAOs mark a physical scale

constraints on DV = (DA^2/H)

wavenumber k [h/Mpc]
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Blake+‘11a

WiggleZ Dark Energy Survey

Alcock & Paczinski ‘79, Matsubara & Suto ‘96, Ballinger+ ‘96

e.g., Peebles & Yu ‘70
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Accelerated cosmic expansion
Geometrical tests are not enough

DE/MG can mimic any expansion history 

Dynamical test?
growth rate of structure?

density field? Galaxy bias is a problem.

velocity field? Redshift-space distortions !

Geometrical (background) + Dynamical (perturbation) tests are essential !!

modified gravity dark energy?

f(R), DGP, ...

Gµ� =
8�G

c4
Tµ�
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© A. Taruya

f σ8

linear growth rate

redshift

Blake+‘11b

Redshift-space distortions
f(z) � d lnD(z)

d ln a
� [�m(z)]�

� � 0.55 (�CDM),
� 0.68 (DGP)

Linder 05

position in z-space
position in real space

line-of-sight displacement 
due to peculiar velocity

Both AP & RSD test the anisotropic signal

Accurate modeling in 2D is the key !!

Kaiser ‘87
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Theoretical challenge
How well do we understand 3 nonlinears?

gravitational growth
redshift-space distortions
galaxy bias

Seo & Eisenstein ’05
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Modeling the growth 
of cosmic density & velocity fields
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The strategy

simulations
(fixed cosmology)

sim1

sim2 observation

perturbation
theories

parameter search in >6D space
(cosmology & galaxy properties)

calibration, check accuracy

sim3

sim4

…

ensemble average}
This path is not straight forward.

tests using mocks
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Renormalized PT
“Renormalize” higher-order terms 
back to lower-order

ex. Gamma expansion 
1st × 1st 2nd × 2nd 3rd × 1st

based on Crocce&Scoccimarro06

」 」
2nd × 4th

5th × 1st

3rd × 3rd 2nd × 4th 3rd × 3rd

� = �(1) + �(2) + �(3) + �(4) + . . .

� = �(1) + �(2) + �(3) + �(4) + . . .

Bernardeau + ’09

Crocce & Scoccimarr ’06, Taruya & Hiramatsu ’07, ...

power spectrum P = P (11) + P (22) + P (31) + P (13) + · · ·
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Convergence property

simply chosen at the center of the n-th radial bin, i.e., rn ¼
ðrmin þ rmaxÞ=2.

Equation (4.2) usually suffers from the ambiguity of the
zero-point normalization in the amplitude of two-point
correlation function, because of the lack of the low-k
powers due to the finite boxsize of the simulations. With
the 1; 0243 grids and the boxsize of Lbox ¼ 1h%1 Gpc;
however, we can safely evaluate the two-point correlation
function around the baryon acoustic peak. Comparison
between different computational methods, together with
convergence check of this method, is presented in
Appendix C.

Finally, similar to the estimation of power spectrum, the
finite-mode sampling also affects the calculation of the
two-point correlation function. We thus correct it by sub-
tracting and adding the extrapolated linear density field as
!̂ðrÞ % !̂linðrÞ þ !linðrÞ, where !̂lin is the correlation func-
tion estimated from the Gaussian density field, and !lin is
the linear-theory prediction of two-point correlation
function.

B. Results in real space

1. Power spectrum

Before addressing a quantitative comparison between
the N-body simulation and improved PT, we first discuss
the convergence properties of the improved PT, and con-
sider how well the calculation based on the improved PT
does improve the prediction compared to the standard PT.

Figure 4 plots the overall behaviors of the nonlinear
power spectrum of density fluctuation, Pðk; zÞ &
P11ðk; zÞ, given at z ¼ 0, adopting the WMAP3 cosmologi-
cal parameters. In the left panel, the results of standard PT
are shown, and the contributions to the total power spec-
trum up to the two-loop diagrams are separately plotted.
On the other hand, the right panel shows the results of the
improved PT. We plot the contributions up to the second-
order Born approximation labeled as MC1 and MC2.
In Fig. 4, there are clear distinctions between standard

and improved PTs. While the loop corrections in standard
PT change their signs depending on the scales and exhibit
an oscillatory feature, the corrections coming from the
Born approximation in the improved PT are all positive
and mostly the smooth function of k. Further, the higher-
order corrections in the improved PT have a remarkable
scale-dependent property compared to those in the stan-
dard PT; their contributions are well localized around some
characteristic wave numbers, and they are shifted to the
higher k modes as increasing the order of PT. These trends
clearly indicate that the improved PTwith closure approxi-
mation has a better convergence property. Qualitative be-
haviors of the higher-order corrections quite resemble the
predictions of RPT by Crocce and Scoccimarro [34].
Now, let us focus on the behavior of BAOs, and

discuss how the convergence properties seen in Fig. 4
affect the predictions of BAO features. In Fig. 5, adopting
the WMAP3 cosmological parameters, we plot the ratio
PðkÞ=Pno-wiggleðkÞ, where the function Pno-wiggleðkÞ is the

FIG. 4 (color online). Convergence properties of standard PT (left) and improved PT (right) expansions in the matter power
spectrum. In each panel, the higher-order contributions to the total power spectrum labeled as Pnl is separately plotted. In the left panel,

one-loop and two-loop corrections in the standard PT P1-loop
11 and P2-loop

11 , are plotted, while in the right panel, the mode-coupling

corrections PðMC1Þ
11 and PðMC2Þ

11 in the improved PT given at Eqs. (3.12) and (3.13), respectively, are shown (labeled as MC1 and MC2),
together with the first term in Eq. (3.11) [labeled as G2P0]. Note that the dashed lines indicate the negative values.

TARUYA et al. PHYSICAL REVIEW D 80, 123503 (2009)

123503-8

Standard PT

positive
positive

Improved PT Pnl(k)
[�(1)]2P0

1-loop
2-loop

(RegPT)

positive

negative

negative

Better convergence

All the terms are 
positive in RegPT
⇔ Alternating series in 
Standard PT

Especially suitable for 
BAO modeling

Taruya, Nishimichi et al. ‘12
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Why Renormalized PTs work well?
(multi-point) propagators

loss of initial memory

separate dynamics from initial condition

asymptotes are known

final state initial state

Crocce & Scoccimarro ’06

2

Note that the formal solution of Φa can be obtained from Eq. (2) and is expressed as (e.g., [2, 3])

Ψa(k; η) = gab(η, η0) φb(k) +
∫ η

η0

dη′gab(η, η′)
∫

d3k1 d3k2

(2π)3
δD(k − k1 − k2) γbcd(k1, k2)Ψc(k1; η′)Ψd(k2; η′). (5)

Here, the quantity φa(k) ≡ Ψa(k, η0) denotes the initial condition, and the quantity gab denotes the linear propagator
satisfying the following equation:

[
δab

∂

∂η
+ Ωab(η)

]
gbc(η, η′) = 0, (6)

with the boundary condition gab(η, η) = δab. The statistical properties of the field Ψa is encoded in the initial field
φa, for which we assume Gaussian statistics. The power spectrum of φa is defined as

〈φa(k)φb(k′)〉 = (2π)3 δD(k + k′)Pab(k). (7)

In what follows, we neglect the decaying modes of linear perturbation, and assumed that only the growing mode is
survived. This implies that the field φa(k) is factorized as φa(k) = δ0(k)ua with ua = (1, 1), and thus the power
spectrum is simply reduced to Pab(k) = P0(k)uaub.

Eq. (2) or (5) is the building block of large-scale structure, and the three quantities γabc, gab and P0uaub introduced
here constitute the basic pieces of standard PT.

B. Γ expansion

〈
Φa(k; η)Φb(k′; η)

〉
= (2π)3 δD(k + k′)Pab(|k|; η) (8)

Ψ(n)
a (k; η) =

∫
d3k1 · · · d3kn

(2π)3(n−1)
Fab1b2···bn(k1, · · · , kn; η)Ψb1(k1) · · ·Ψbn(kn). (9)

1
p!

〈
δpΨa(k, η)

δφc1(k1) · · · δφcp(kp)

〉
= δD(k − k1···p)

1
(2π)3(p−1)

Γ(p)
ac1···cp(k1, · · · , kp; η) (10)

Pab(|k|; η) =
∑

t!
∫

d3q1 · · · d3qt

(2π)3(t−1)
δ(k − q1···t)Γ

(t)
a (q1, · · · , qt; η)Γ(t)

b (q1, · · · , qt; η)P0(q1) · · ·P0(qt) (11)

Γ(t)
a (q1, · · · , qt; η) = Γ(t)

ac1···ct(q1, · · · , qt; η)uc1 · · ·uct (12)

For the matter power spectrum, P (k; η) = P11(k; η),

P (k; η) =
[
Γ(1)(k; η)

]2
P0(k) + 2

∫
d3q

(2π)3
[
Γ(2)(q,k − q; η)

]2
P0(q)P0(|k − q|)

+ 6
∫

d6pd3q

(2π)6
[
Γ(3)(p, q, k − p − q; η)

]2
P0(p)P0(q)P0(|k − p − q|) (13)

with Γ(p) = Γ(p)
1 .
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1 .Directly testable by simulations

Bernardeau, Taruya 
& Nishimichi ‘12

Γ(1
) (k

) /
 D

+
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Widely used model:

2 ingredients
(nonlinear) Kaiser effect

large scale coherent motion

Fingers-of-Gods effect

small scale virial motion

streaming model

Scoccimarro’04

Mapping to z-space

� � f/b1

r-space

Line-of-sight

�

µ � cos �
15
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streaming model

A term ∝ cross-bispectrum of δ & θ
B term ∝ convolutions of Pδθ & Pθθ

m
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Taruya, Nishimichi, Saito ’10

new terms!

TNS model

P (k, µ) = L0(µ)P0(k) + L2(µ)P2(k) + L4(µ)P4(k) + . . .

16

Streaming model fails

Kaiser & FoG are not separable!
go back to exact expression

computed 2 correction terms

multipole moments
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single-stream flow is assumed in PTs
cannot follow the dynamics after shell crossing 

Combine PTs with halo model
halos are the place where shell cross takes place

a consistent formulation to avoid double counting

A wide wavenumber range can be covered
Useful for weak lensing analyses

Limitation of PTs & non-pertubative corrections

Ptot(k) = F2H(1/k)PPT(k) + [P1H(k)� Pc.t.(k)]

Valageas, Sato & Nishimichi 2012a, b

Valageas & Nishimichi 2011a, b

17

○: N-body



Combined theory in z-space

Nishimichi in prep.

P (k, µ) = L0(µ)P0(k) + L2(µ)P2(k) + L4(µ)P4(k) + . . .

Taruya, Nishimichi and Bernardeau ’13

Hexadecapole moment
does carry information !!
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P(k)/Pnw(k)
Δ2(k)=4πk3P(k)

more difficult to model by PTs

more sensitive to 1H term

lines: 1H term



Connecting galaxies to the cosmic web

19



Tests with mocks (subhalos): a naive implementation 
of parametric bias 5 + 3 parameter fit
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current accuracy by BOSS



Modeling Luminous Red Galaxies

simulations
(fixed cosmology)

sim1

sim2 observation

perturbation
theories

parameter search
(cosmology & galaxy properties)

calibration, check accuracy

sim3

sim4

…

ensemble average}
This path is not straight forward.

21

Oka, Nishimichi et al. (in prep.)



Modeling Luminous Red Galaxies

simulations
(fixed cosmology)

sim1

sim2 observation

perturbation
theories

parameter search
(cosmology & galaxy properties)

calibration, check accuracy

sim3

sim4

…

ensemble average}
This path is not straight forward.

simulations
(fixed cosmology)

sim1

sim2 observation
parameter search

(galaxy properties)

sim3

sim4

…

ensemble average}
minimum halo mass & satellite fraction

21

FOF halo

Satellites

Centrals
(≡ most massive in a halo)

Oka, Nishimichi et al. (in prep.)



Halos vs. Subhalos
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dashed: Mmin = 1.77 [1012Msun/h], FS = 0

solid: Mmin = 12.6 [1012Msun/h], FS = 0.25

We need satellites (20~30%) !
centrals cannot explain both P0 & P2 simultaneously

22

Oka, Nishimichi et al. (in prep.)

P (k, µ) = L0(µ)P0(k) + L2(µ)P2(k) + L4(µ)P4(k) + . . .



Multiplicity function
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satellite 25%

+ Reid & Spergel ‘09

fraction of host halos that have N subhalos/galaxies

group finder based 
on count-in-cylinder 

best-fit model reproduces the 
multiplicity function pretty well

a single LRG does not always 
mean a central galaxy !

LRGs

doublet ３つ

singlet

triplet 0.8 Mpc/h

20
 M

pc
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Oka, Nishimichi et al. (in prep.)

Nsub / NLRG

see also Hikage + ’12,
who discuss the off-centering of LRGs
using correlation + weak lensing signals



Bias is not always bad!

halo power spec.
Nishimichi, Taruya, 
Koyama, Sabiu’10

matter power spec.

Dalal+08
Slosar+08
Matarrese,Verde08
Afshordi,Tolley08
McDonald08
Taruya+09
Giannantonio,Porciani10
Desjacques,Jeong,Schmidt11a,b
and more ...

Desjacques+09
Grossi+09
Pillepich+10
and more ...

Slosar+08

-29 < fnl < 69 (QSOs+more)

theory

simulation

observation

Scale-dependent bias has been a hot topic
a new window for primordial non-Gaussianities

24



ζ: curvature perturbation

What we are looking at?

initial final (matter)
PS PS

BSBS
PS

final (galaxy)

primord. 
non-Gs

WMAP9 (Hinshaw+’13)

local-type non-G.

fnl = 37± 20 (68%CL)

25

fnl

B�(k1, k2, k3) =
6
5
fnl[P�(k1)P�(k2) + (2 perms.)]
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Bispectrum
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General local-type non-G

Ph(k) = b2
�P�(k) + 2rMFb�b�P��(k) + b2

�P�(k)

Curvature perturbation is expressed as
a Taylor series of multiple Gaussian fields

includes higher-order coupling at any order

The resultant halo P(k) is very generic !
Ptot

bδ2Pδ

2bδbζrMFPδζ

bζ2Pζ

0.001 0.01 0.10.002 0.020.005 0.05
10+3

10+4

10+5

10+6

k [h Mpc−1]

P h
(k

)
Figure 1. Example plot of the halo power spectrum (Eq. 3.23) in case of bδ = 2, bζ = 100 and
rMF = 1. We plot the total power spectrum by solid line, while the three terms in that equation are
respectively shown in dashed, dotted and dot-dashed lines.

with the fraction in the power spectrum amplitude of the n-th field denoted as αn that satisfy
∑

n

αn = 1. (3.31)

Equation (3.28) can be regarded as a generalization of the multi-variate biasing in case of
the single-field models discussed in [27].

We show an example halo power spectrum in Fig. 1. We can see how each of the three
terms in Eq. (3.23) contributes to the total power spectrum. The non-Gaussian corrections
are prominent on large scales ( <∼ 0.01hMpc−1). The parameters, bζ and rMF as well as bδ

can be determined from observed power spectrum with a sufficient survey volume thanks to
the different k-dependence of the three terms. We propose to use these parameters as direct
observables from the measurements of the scale-dependent halo bias instead of popular non-
Gaussian parameters such as fnl and gnl, because the latter set of parameters have degeneracy
in many cases. We will see how these three parameters help us to test different class of non-
Gaussian models in next section.

3.3 Comparison with previous studies

It is worth comparing our results with the predictions in the literature. In case of single-field
models, it is straightforward to show rMF = 1 or −1 (see Sec. 4.1 for more discussion on
rMF). Then, Eq. (3.23) can be rewritten as

Ph(k) = [bδ + ∆b(k)]2Pδ(k), (3.32)
∆b(k) ≡ bζM−1(k). (3.33)

This is consistent with the original idea of the scale-dependent bias in the sense that the
halo power spectrum is obtained by replacing a constant bias factor with a k-dependent
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New tests fnl vs τnl

Suyama-Yamaguchi inequality

Robust. Just a Cauchy-Schwarz inequality.

�nl �
36
25

f2
nl

>: multiple sources
=: single source |rMF| � 1

Ph(k) = b2
�P�(k) + 2rMFb�b�P��(k) + b2

�P�(k)

Generalized SY inequality can be 
tested using P(k) of biased tracers!

shape of P(k) tells us about that

k [h Mpc-1]

left: fnl = 100, τnl = (36/25)fnl2

right: fnl = 0, τnl = (36/25)fnl2
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→ rMF = 1

→ rMF = 0



New tests fnl vs gnl

Ph(k) = b2
�P�(k) + 2rMFb�b�P��(k) + b2

�P�(k)

Approximate Consistency 
relation btwn Gaussian and 
non-Gaussian bias factors 
in case of fnl

Multiple tracers

different redshifts
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quadratic (fnl = 100)
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Summary
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※ when bias is controlled
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current status

future
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I am here !!
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