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Outline

• Lepton mixing: parametrization and experimental results

• Lepton mixing from non-trivial breaking of Gf & CP
(Harrison/Scott (’02,’04), Grimus/Lavoura (’03), Feruglio et al. (’12))

• Model with S4 and CP for leptons (Feruglio et al. (’12,’13))

• Conclusions
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Lepton mixing

• charged lepton mass terms and Majorana neutrino mass terms

eca me,ab lb and νa mν,ab νb

cannot be diagonalized simultaneously

• going to the mass basis

U †
em

†
emeUe = diag(m2

e,m
2
µ,m

2
τ ) and UT

ν mνUν = diag(m1,m2,m3)

leads to non-diagonal charged current interactions

l̄W−/ UPMNS ν with UPMNS = U †
eUν

– p. 3/87



Parametrization of lepton mixing

Parametrization (PDG)

UPMNS = Ũ diag(1, eiα/2, ei(β/2+δ))

with

Ũ =









c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13









and sij = sin θij , cij = cos θij

Jarlskog invariant JCP

JCP = Im
[

UPMNS,11U
∗
PMNS,13U

∗
PMNS,31UPMNS,33

]

=
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ (1)
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Experimental results on lepton mixing

Latest global fits (Gonzalez-Garcia et al. (’12))
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Experimental results on lepton mixing

Latest global fits (Gonzalez-Garcia et al. (’12))

best fit and 1σ error 3σ range

sin2 θ13 = 0.0227+0.0023
−0.0024 0.0156 ≤ sin2 θ13 ≤ 0.0299

sin2 θ12 = 0.302+0.013
−0.012 0.267 ≤ sin2 θ12 ≤ 0.344

sin2 θ23 =







0.413+0.037
−0.025

0.594+0.021
−0.022

0.342 ≤ sin2 θ23 ≤ 0.667

δ = 300◦+ 66◦

−138◦ 0◦ ≤ δ ≤ 360◦

α , β unconstrained
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Experimental results on lepton mixing

Latest global fits (Gonzalez-Garcia et al. (’12))

||UPMNS || ≈









0.83 0.54 0.15

0.50 0.59 0.64

0.26 0.60 0.76









and no information on the phases

⇓
Mismatch in lepton flavor space is large!
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Origin of lepton mixing

• interpret this mismatch in lepton flavor space as
mismatch of flavor symmetries Gν and Ge

• if we want to predict lepton mixing, we have to derive this
mismatch

• let us assume that there is a symmetry, broken to Gν and Ge

• this symmetry is in the following a combination of a

discrete non-abelian symmetry Gf and CP
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Origin of lepton mixing

• interpret this mismatch in lepton flavor space as
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Non-trivial breaking of Gf and CP

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

(Feruglio et al. (’12,’13), Holthausen et al. (’12), Grimus/Rebelo (’95))

Gf & CP

ւ ց
neutrinos

Gν

charged leptons

Ge
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Non-trivial breaking of Gf and CP

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

assume 3 generations

of Majorana neutrinos

charged leptons

distinguish 3 generations
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Non-trivial breaking of Gf and CP

Idea:

Relate lepton mixing to how Gf and CP are broken
Interpretation as mismatch of embedding of different sub-
groups Gν and Ge into Gf and CP

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

An example: µτ reflection symmetry (Harrison/Scott (’02,’04), Grimus/Lavoura (’03))
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Non-trivial breaking of Gf and CP

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

Further requirements

• two/three non-trivial mixing angles ⇒ irred 3-dim rep of Gf

• "maximize" predictability of approach
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Non-trivial breaking of Gf and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

• for X unitary and symmetric

φ
CP−→ Xφ⋆ CP−→ XX⋆φ = φ
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Non-trivial breaking of Gf and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

• we have to consistently combine Gf and CP

⇓
"closure" relations have to hold
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Non-trivial breaking of Gf and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

• assume φ transforms as 3-dim rep of Gf , then

φ
CP−→ Xφ⋆ Gf−→ XA⋆φ⋆ CP−→ XA⋆X⋆φ = (X⋆AX)

⋆
φ

⇓

(X⋆AX)
⋆
= A′ with in general A 6= A′ and A, A′ ∈ Gf

– p. 20/87
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Non-trivial breaking of Gf and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

• "closure" relations

(X⋆AX)⋆ = A′ with in general A 6= A′ and A, A′ ∈ Gf

• realize direct product of Z2 ⊂ Gf and CP ; Z generates Z2

φ
CP−→ Xφ⋆ Z2−→ XZ⋆φ⋆ and φ

Z2−→ Zφ
CP−→ ZXφ⋆
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Non-trivial breaking of Gf and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. (’11))

φi
CP−→ Xijφ

⋆
j

• "closure" relations

(X⋆AX)⋆ = A′ with in general A 6= A′ and A, A′ ∈ Gf

• realize direct product of Z2 ⊂ Gf and CP ; Z generates Z2

XZ⋆ − ZX = 0
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Non-trivial breaking of Gf and CP

Gf & CP

ւ ց
neutrinos

Gν = Z2 × CP

charged leptons

Ge = ZN with N ≥ 3

Further requirements

• two/three non-trivial mixing angles ⇒ irred 3-dim rep of Gf

• "maximize" predictability of approach
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

neutrino mass term νa mν,ab νb

is invariant under να → Zαβ νβ

is invariant under generalized CP transformation να → Xαβ ν
⋆
β

• charged lepton sector: ZN , N ≥ 3, preserved

charged lepton mass term eca me,ab lb

is invariant under lα → Qe,αβ lβ
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν fulfills

ZTmνZ = mν and XmνX = m⋆
ν

• charged lepton sector: ZN , N ≥ 3, preserved

charged lepton mass term eca me,ab lb

is invariant under lα → Qe,αβ lβ
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved and generated by (ν = Ων ν
′)

X = ΩνΩ
T
ν and Z = ΩνZ

diagΩ†
ν

Zdiag = diag (−1, 1,−1) and Ων unitary

• charged lepton sector: ZN , N ≥ 3, preserved

charged lepton mass term eca me,ab lb

is invariant under lα → Qe,αβ lβ
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν fulfills

Zdiag[ΩT
ν mνΩν ]Z

diag = [ΩT
ν mνΩν ] and [ΩT

ν mνΩν ] = [ΩT
ν mνΩν ]

⋆

• charged lepton sector: ZN , N ≥ 3, preserved

charged lepton mass term eca me,ab lb

is invariant under lα → Qe,αβ lβ
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

charged lepton mass term eca me,ab lb

is invariant under lα → Qe,αβ lβ
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Q†
em

†
emeQe = m†

eme
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved and generated by

Qe = ΩeQ
diag
e Ω†

e with Ωe unitary

Qdiag
e = diag (ωne

N , ω
nµ

N , ωnτ

N )

and ne 6= nµ 6= nτ and ωN = e2πi/N
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e(Qe)m

†
emeΩe(Qe) is diagonal
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Non-trivial breaking of Gf and CP

• neutrino sector: Z2 × CP preserved

→ neutrino mass matrix mν is diagonalized by

Ων(X,Z)R(θ)Kν

• charged lepton sector: ZN , N ≥ 3, preserved

→ charged lepton mass matrix me fulfills

Ω†
e(Qe)m

†
emeΩe(Qe) is diagonal

• conclusion: PMNS mixing matrix reads

UPMNS = Ω†
eΩνR(θ)Kν in l̄W−/ UPMNS ν
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Non-trivial breaking of Gf and CP

UPMNS = Ω†
eΩνR(θ)Kν

• 3 unphysical phases are removed by Ωe → ΩeKe

• UPMNS contains one parameter θ

• permutations of rows and columns of UPMNS possible

⇓

Predictions:
Mixing angles and CP phases are predicted

in terms of one parameter θ only,
up to permutations of rows/columns
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Study of S4 and CP

Generators in rep. 3′:
(

ω = e2πi/3
)

S =
1

3









−1 2 2

2 −1 2

2 2 −1









, T =









1 0 0

0 ω2 0

0 0 ω









, U =









1 0 0

0 0 1

0 1 0









which fulfill

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1
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Study of S4 and CP

A transformation X in rep. 3′ for Z = S:

X3′ =









1 0 0

0 0 1

0 1 0









which fulfills
XX† = XX⋆ = 1

(X⋆AX)
⋆
= A′ , XZ⋆ − ZX = 0
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Study of S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and our X
(Harrison/Scott (’02,’04), Grimus/Lavoura (’03), Feruglio et al. (’12,’13))

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ + i
√
3 sin θ

√
2 − sin θ − i

√
3 cos θ

− cos θ − i
√
3 sin θ

√
2 − sin θ + i

√
3 cos θ









Kν

sin2 θ13 =
2

3
sin2 θ , sin2 θ12 =

1

2 + cos 2θ
, sin2 θ23 =

1

2

and

| sin δ| = 1 , |JCP | =
| sin 2θ|
6
√
3

, sinα = 0 , sinβ = 0
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Study of S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and our X

!!""

##

!

!

!
sin

2
Θ12

sin Θ13

3Σ

3Σ

Θ # 0 Θbf

Θ # Π "4

Θ # Π "6

Θ # Π "3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Study of S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and our X

!!

""

##

!!

!

JCP

sin
2
Θ12

3Σ

Θ # 0

Θbf

Θ # Π "4
Θ # Π "3

Θ # Π "6

Θ # Π "2

__

0.0 0.2 0.4 0.6 0.8 1.0
%0.10

%0.05

0.00

0.05

0.10
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Study of S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and our X

!!

""

##

!!

""

!!

!

sin Θ13

JCP
3Σ

Θ # 0

Θbf

Θ # Π "4Θ # Π "6

Θ # Π "3

Θ # Π "2

__

0.0 0.2 0.4 0.6 0.8 1.0
%0.10

%0.05

0.00

0.05

0.10
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Study of S4 and CP

Maximal θ23 and δ from Ge = Z3, Z = S and our X

θbf ≈ 0.185 , χ2
min ≈ 18.4 for θ23 < π/4

sin2 θ13(θbf) ≈ 0.023 , sin2 θ12(θbf) ≈ 0.341 ,

|JCP (θbf)| ≈ 0.0348

– p. 41/87



[ Study of S4 and CP

Non-trivial Majorana phases from Ge = Z3, Z = S and another X

UPMNS =
1√
3









1
2 e

−iθ (i
√
3 + e2iθ) 1 1

2 e
−iθ (−i

√
3 + e2iθ)

−eiθ 1 −eiθ

1
2 e

−iθ (−i
√
3 + e2iθ) 1 1

2 e
−iθ (i

√
3 + e2iθ)









Kν

| sin δ| =
∣

∣

∣

∣

∣

(4 +
√
3 sin 2θ) cos 2θ

√

4− 2
√
3 sin 2θ

5 + 3 cos 4θ

∣

∣

∣

∣

∣

, |JCP | =
| cos 2θ|
6
√
3

,

| sinα| =
∣

∣

∣

∣

∣

√
3 + 2 sin 2θ

2 +
√
3 sin 2θ

∣

∣

∣

∣

∣

, | sinβ| =
∣

∣

∣

∣

∣

4
√
3 cos 2θ

5 + 3 cos 4θ

∣

∣

∣

∣

∣
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Study of S4 and CP

Non-trivial Majorana phases from Ge = Z3, Z = S and another X

UPMNS =
1√
3









1
2 e

−iθ (i
√
3 + e2iθ) 1 1

2 e
−iθ (−i

√
3 + e2iθ)

−eiθ 1 −eiθ

1
2 e

−iθ (−i
√
3 + e2iθ) 1 1

2 e
−iθ (i

√
3 + e2iθ)









Kν

sin2 θ13 =
1

3

(

1−
√
3

2
sin 2θ

)

, sin2 θ12 =
2

4 +
√
3 sin 2θ

,

sin2 θ23 =







sin2 θ12

1− sin2 θ12
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Study of S4 and CP

Non-trivial Majorana phases from Ge = Z3, Z = S and another X

θbf ≈ π/4 , χ2
min & 100

sin2 θ13(θbf) = 0.045 , sin2 θ12(θbf) = 0.349 ,

sin2 θ23(θbf) =







0.349

0.651

sin δ(θbf) = 0 , | sinα|(θbf) = 1 , sinβ(θbf) = 0
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Study of S4 and CP

Trivial CP phases from Ge = Z3, Z = S and again another X

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ −
√
3 sin θ

√
2 − sin θ +

√
3 cos θ

− cos θ +
√
3 sin θ

√
2 − sin θ −

√
3 cos θ









Kν

sin2 θ13 =
2

3
sin2 θ , sin2 θ12 =

1

2 + cos 2θ
, sin2 θ23 =

1

2

(

1−
√
3 sin 2θ

2 + cos 2θ

)

and

sin δ = 0 , sinα = 0 , sinβ = 0

– p. 45/87



Study of S4 and CP

Trivial CP phases from Ge = Z3, Z = S and again another X

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ −
√
3 sin θ

√
2 − sin θ +

√
3 cos θ

− cos θ +
√
3 sin θ

√
2 − sin θ −

√
3 cos θ









Kν

θbf ≈







0.184, θ23 < π/4

2.958, θ23 > π/4
, χ2

min ≈ 10 : sin2 θ13(θbf) = 0.022 ,

sin2 θ12(θbf) = 0.341 , sin2 θ23(θbf) =







0.394

0.606
]
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4

• right-handed charged leptons are singlets under S4;
add Z3 in order to distinguish them: 1, ω, ω2
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4

• right-handed charged leptons are singlets under S4;
add Z3 in order to distinguish them: 1, ω, ω2

• deviation in breaking pattern: Ge = Z
(D)
3 : diagonal subgroup

of Z3 ⊂ S4 (generated by T ) and add. Z3
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4

• right-handed charged leptons are singlets under S4;
add Z3 in order to distinguish them: 1, ω, ω2

• deviation in breaking pattern: Ge = Z
(D)
3 : diagonal subgroup

of Z3 ⊂ S4 (generated by T ) and add. Z3

• θ small due to small breaking Z2 × Z2 × CP → Z2 × CP
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4

• right-handed charged leptons are singlets under S4;
add Z3 in order to distinguish them: 1, ω, ω2

• deviation in breaking pattern: Ge = Z
(D)
3 : diagonal subgroup

of Z3 ⊂ S4 (generated by T ) and add. Z3

• θ small due to small breaking Z2 × Z2 × CP → Z2 × CP

• (not shown an auxiliary symmetry Z16 and U(1)R for vacuum
alignment)
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4

• right-handed charged leptons are singlets under S4;
add Z3 in order to distinguish them: 1, ω, ω2

• deviation in breaking pattern: Ge = Z
(D)
3 : diagonal subgroup

of Z3 ⊂ S4 (generated by T ) and add. Z3

• θ small due to small breaking Z2 × Z2 × CP → Z2 × CP

l ec µc τ c hu hd

S4 3
′

1
′

1 1 1 1

Z3 1 1 ω ω2 1 1
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SUSY model with S4 and CP for leptons

• left-handed leptons l are unified in 3
′ of S4

• right-handed charged leptons are singlets under S4;
add Z3 in order to distinguish them: 1, ω, ω2

• deviation in breaking pattern: Ge = Z
(D)
3 : diagonal subgroup

of Z3 ⊂ S4 (generated by T ) and add. Z3

• θ small due to small breaking Z2 × Z2 × CP → Z2 × CP

χE ϕE ξN χN ϕN ξ′N

S4 2 3
′

1 2 3
′

1
′

Z3 ω ω 1 1 1 1
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SUSY model with S4 and CP for leptons

Remember S, T and U for 3′

S =
1

3









−1 2 2

2 −1 2

2 2 −1









, T =









1 0 0

0 ω2 0

0 0 ω









, U =









1 0 0

0 0 1

0 1 0









and our chosen X3′

X3′ =









1 0 0

0 0 1

0 1 0









– p. 54/87



SUSY model with S4 and CP for leptons

For the other representations the generators S, T and U and X are
1 : S = 1 , T = 1 , U = 1 ,

1
′ : S = 1 , T = 1 , U = −1 ,

2 : S =





1 0

0 1



 , T =





ω 0

0 ω2



 , U =





0 1

1 0



 ,

3 : S = 1

3









−1 2 2

2 −1 2

2 2 −1









, T =









1 0 0

0 ω2 0

0 0 ω









, U = −









1 0 0

0 0 1

0 1 0









and X1 = 1 , X1′ = −1 , X2 =





0 1

1 0



 , X3 = −









1 0 0

0 0 1

0 1 0








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SUSY model with S4 and CP for leptons

Charged lepton sector

• breaking to Ge = Z
(D)
3 via

〈χE〉 ∝





0

1



 , 〈ϕE〉 ∝









0

1

0









• lowest order couplings

yτ (lϕE)τ
chd/Λ + yµ,1(lϕ

2
E)µ

chd/Λ
2 + yµ,2(lχEϕE)µ

chd/Λ
2

– p. 56/87



SUSY model with S4 and CP for leptons

Charged lepton sector

• lead to non-zero muon and tau lepton mass

mµ =
∣

∣

∣
(2 yµ,1vϕE

+ yµ,2vχE
)
vϕE

Λ2

∣

∣

∣
〈hd〉 mτ =

∣

∣

∣
yτ

vϕE

Λ

∣

∣

∣
〈hd〉

for 〈χE〉 , 〈ϕE〉 ∼ λ2 Λ ⇒ mµ/mτ ≈ λ2 , mτ ≈ λ2 〈hd〉
with λ ≈ 0.2

• electron mass vanishes; generated by higher order terms

• charged lepton mass matrix is diagonal ⇒ Ωe = 1
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SUSY model with S4 and CP for leptons

Neutrino sector

• breaking to Z2 × Z2(×CP) via

〈ξN 〉 = vξN , 〈χN 〉 = vχN





1

1



 , 〈ϕN 〉 = vϕN









1

1

1









and vξN , vχN
, vϕN

have same phase (±π)

• with 〈ξ′N 〉 ∈ iR breaking to Z2 × CP

• lowest order couplings

yν,1(ll)ξNh2
u/Λ

2 + yν,2(llϕN )h2
u/Λ

2+yν,3(llχN ξ′N )h2
u/Λ

3
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SUSY model with S4 and CP for leptons

Neutrino sector

• neutrino mass matrix contains three real parameters
tν ∝ vξN /Λ, uν ∝ vϕN

/Λ and xν ∝ 〈ξ′N 〉vχN
/Λ2

• they have order: tν , uν ∼ λ and xν ∼ λ2 for 〈ΦN 〉 ∼ λΛ, λ ≈ 0.2

• form of neutrino mass matrix mν

mν =









tν + 2uν −uν−ixν −uν+ixν

−uν−ixν 2uν+ixν tν − uν

−uν+ixν tν − uν 2uν−ixν









〈hu〉2
Λ
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SUSY model with S4 and CP for leptons

Neutrino sector

• PMNS mixing matrix from neutrino sector only and is of form

UPMNS =
1√
6









2 cos θ
√
2 2 sin θ

− cos θ + i
√
3 sin θ

√
2 − sin θ − i

√
3 cos θ

− cos θ − i
√
3 sin θ

√
2 − sin θ + i

√
3 cos θ









Kν

• the parameter θ is

tan 2θ = xν√
3uν

∼ λ

• and the lepton mixing angles read

sin2 θ13 ≈ 2
3λ

2 , sin2 θ12 ≈ 1
3 + 2

9 λ
2 , sin2 θ23 = 1

2
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SUSY model with S4 and CP for leptons

Neutrino sector

• neutrino mass spectrum is normally ordered;
masses depend on two parameters tν and ũν = f(uν , xν)

(in units 〈hu〉2/Λ)

m1 ∝ |tν + ũν | , m2 ∝ |tν | , m3 ∝ |tν − ũν |

• for best fit values of ∆m2
atm and ∆m2

sol

m1 ≈ 0.016 eV , m2 ≈ 0.018 eV , m3 ≈ 0.052 eV

0.003 eV . mee . 0.018 eV and mβ ≈ 0.018 eV
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SUSY model with S4 and CP for leptons

NLO contributions for charged leptons

• electron mass is generated
• ... through operators with five fields ΦN ,

e.g. lecξ3NχNϕNhd/Λ
5, if we consider shifts in 〈ΦN 〉
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SUSY model with S4 and CP for leptons

NLO contributions for charged leptons

• electron mass is generated
• ... through operators with five fields ΦN ,

e.g. lecξ3NχNϕNhd/Λ
5, if we consider shifts in 〈ΦN 〉

• ... through operators with six fields ΦN ,
e.g. lecξ4Nξ′NϕNhd/Λ

6 with LO VEVs
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SUSY model with S4 and CP for leptons

NLO contributions for charged leptons

• electron mass is generated
• ... through operators with five fields ΦN ,

e.g. lecξ3NχNϕNhd/Λ
5, if we consider shifts in 〈ΦN 〉

• ... through operators with six fields ΦN ,
e.g. lecξ4Nξ′NϕNhd/Λ

6 with LO VEVs
• 〈ΦN 〉 ∼ λΛ and δ〈χN 〉 ∼ λ 〈χN 〉 ⇒ me ≈ λ6 〈hd〉
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SUSY model with S4 and CP for leptons

NLO contributions for charged leptons

• electron mass is generated
• ... through operators with five fields ΦN ,

e.g. lecξ3NχNϕNhd/Λ
5, if we consider shifts in 〈ΦN 〉

• ... through operators with six fields ΦN ,
e.g. lecξ4Nξ′NϕNhd/Λ

6 with LO VEVs
• 〈ΦN 〉 ∼ λΛ and δ〈χN 〉 ∼ λ 〈χN 〉 ⇒ me ≈ λ6 〈hd〉

• charged lepton mass matrix is non-diagonal at NLO;
however, induced mixing angles are very small: θlij ∼ λ4
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SUSY model with S4 and CP for leptons

NLO contributions for neutrinos

• largest correction from VEV shift of field χN

〈χN 〉 = vχN





1 + i α λ

1− i α λ



 , α ∈ R

which still preserves Z2 × CP ⇒ parameter pν ∼ λ3:
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SUSY model with S4 and CP for leptons

NLO contributions for neutrinos

• largest correction from VEV shift of field χN

〈χN 〉 = vχN





1 + i α λ

1− i α λ



 , α ∈ R

which still preserves Z2 × CP ⇒ parameter pν ∼ λ3:

mNLO
ν =









tν + 2uν −uν − ixν+pν −uν + ixν+pν

−uν − ixν+pν 2uν + ixν+pν tν − uν

−uν + ixν+pν tν − uν 2uν − ixν+pν









〈hu〉2
Λ
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SUSY model with S4 and CP for leptons

NLO contributions for neutrinos

• largest correction from VEV shift of field χN

〈χN 〉 = vχN





1 + i α λ

1− i α λ



 , α ∈ R

which still preserves Z2 × CP ⇒ parameter pν ∼ λ3:
no effect on mixing; small shift in neutrino masses
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SUSY model with S4 and CP for leptons

NLO contributions for neutrinos

• largest correction from VEV shift of field χN

〈χN 〉 = vχN





1 + i α λ

1− i α λ



 , α ∈ R

which still preserves Z2 × CP ⇒ parameter pν ∼ λ3:
no effect on mixing; small shift in neutrino masses

• other corrections to mν are max. order λ6 in units 〈hu〉2/Λ
... negligible
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SUSY model with S4 and CP for leptons

Flavon superpotential: main ingredients

• a U(1)R symmetry

• so-called driving fields with R charge +2

ξ0E , ξ̃0E χ0
E ξ0N χ0

N ϕ0
N ξ̃0N

S4 1 2 1 2 3
′

1

Z3 ω ω 1 1 1 1
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SUSY model with S4 and CP for leptons

Flavon superpotential: main ingredients

• a U(1)R symmetry

• so-called driving fields with R charge +2

• flavons have R charge 0
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SUSY model with S4 and CP for leptons

Flavon superpotential: main ingredients

• a U(1)R symmetry

• so-called driving fields with R charge +2

• flavons have R charge 0

• flavor and CP symmetries broken at high energies,
SUSY still intact
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SUSY model with S4 and CP for leptons

Flavon superpotential: main ingredients

• a U(1)R symmetry

• so-called driving fields with R charge +2

• flavons have R charge 0

• flavor and CP symmetries broken at high energies,
SUSY still intact

• F-terms of driving fields need to be set to zero

∂w

∂Φ0
= 0

• these equations determine the flavons’ VEVs
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SUSY model with S4 and CP for leptons

Flavon superpotential:

• a U(1)R symmetry

• so-called driving fields with R charge +2

• flavons have R charge 0

• typical terms in superpotential are of the form

M2Φ0 + M̃Φ0Ψ+ aΦ0ΨΣ

• form of F-terms is particularly simple

M2 + M̃Ψ+ aΨΣ = 0
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SUSY model with S4 and CP for leptons

Flavon superpotential:

• a U(1)R symmetry

• so-called driving fields with R charge +2

• flavons have R charge 0

• typical terms in superpotential are of the form

M2Φ0 + M̃Φ0Ψ+ aΦ0ΨΣ

• here flavon superpotential can be divided into three parts

wfl = wfl,e + wfl,ν + wfl,ξ

– p. 75/87



SUSY model with S4 and CP for leptons

Flavon superpotential:

• a U(1)R symmetry

• so-called driving fields

ξ0E , ξ̃0E χ0
E ξ0N χ0

N ϕ0
N ξ̃0N

S4 1 2 1 2 3
′

1

Z3 ω ω 1 1 1 1

• flavon superpotential can be divided into three parts

wfl = wfl,e + wfl,ν + wfl,ξ
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SUSY model with S4 and CP for leptons

Flavon superpotential:

• a U(1)R symmetry

• so-called driving fields

ξ0E , ξ̃0E χ0
E ξ0N χ0

N ϕ0
N ξ̃0N

S4 1 2 1 2 3
′

1

Z3 ω ω 1 1 1 1

• part I

wfl,e = ae ξ
0
E(χEχE)+ãe ξ̃

0
E(ϕEϕE)+be (χ

0
EχEχE)+ce (χ

0
EϕEϕE)
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SUSY model with S4 and CP for leptons

Flavon superpotential:

• a U(1)R symmetry

• so-called driving fields

ξ0E , ξ̃0E χ0
E ξ0N χ0

N ϕ0
N ξ̃0N

S4 1 2 1 2 3
′

1

Z3 ω ω 1 1 1 1

• part I|

wfl,ν = aν ξ
0
Nξ2N + ãν ξ

0
N ξ̃2N + āν ξ

0
NξN ξ̃N + bν ξ

0
N (χNχN ) + cν ξ

0
N (ϕNϕN )

+dν (χ
0
NχNχN ) + eν (χ

0
NϕNϕN ) + fν ξ̃N (ϕ0

NϕN ) + gν (ϕ
0
NϕNϕN )
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SUSY model with S4 and CP for leptons

Flavon superpotential:

• a U(1)R symmetry

• so-called driving fields

ξ0E , ξ̃0E χ0
E ξ0N χ0

N ϕ0
N ξ̃0N

S4 1 2 1 2 3
′

1

Z3 ω ω 1 1 1 1

• part I||

wfl,ξ = ξ̃0NM2 + aξ ξ̃
0
N (ξ′Nξ′N )
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SUSY model with S4 and CP for leptons

Flavon superpotential: dominant NLO terms

• are

sν,1 ξN (χ0
Nξ′NχN )/Λ+s̃ν,1 ξ̃N (χ0

Nξ′NχN )/Λ+sν,2 (ϕ
0
Nξ′NχNϕN )/Λ

• correct the VEVs of the fields χN,i

〈χN 〉 = vχN





1 + i α λ

1− i α λ



 , α ∈ R

• other NLO terms give much smaller contributions; thus rest
of shifts in VEVs is of relative order λ4
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Conclusions

• Scenarios with Gf and CP predict mixing angles and CP
phases in terms of one parameter θ

• Explicit model with S4 and CP ...
• predicts θ23 and δ maximal as well as α and β trivial due

to symmetry breaking pattern
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Conclusions

• Scenarios with Gf and CP predict mixing angles and CP
phases in terms of one parameter θ

• Explicit model with S4 and CP ...
• explains θ13 small via naturally small θ,
• leads to normally ordered light neutrino masses,
• predicts absolute neutrino mass scale,
• generates charged lepton masses of correct order
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Conclusions

• Scenarios with Gf and CP predict mixing angles and CP
phases in terms of one parameter θ

• Explicit model with S4 and CP constructed

• Consider models with other Gf? Extension to quarks?

Thank you for your attention.
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Back up
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Study of S4 and CP –Flavon superpotential
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SUSY model with S4 and CP for leptons

Flavon superpotential: F-terms of driving fields with index E

∂wfl

∂ξ0E
= 2ae χE,1χE,2

∂wfl

∂ξ̃0E
= ãe (ϕ

2
E,1 + 2ϕE,2ϕE,3)

∂wfl

∂χ0
E,1

= be χ
2
E,1 + ce (ϕ

2
E,3 + 2ϕE,1ϕE,2)

∂wfl

∂χ0
E,2

= be χ
2
E,2 + ce (ϕ

2
E,2 + 2ϕE,1ϕE,3)
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SUSY model with S4 and CP for leptons

Flavon superpotential: F-terms of the driving fields ξ0N , χ0
N and ϕ0

N

∂wfl

∂ξ0
N

= aν ξ2N + ãν ξ̃2N + āν ξN ξ̃N + 2 bν χN,1χN,2 + cν (ϕ2

N,1 + 2ϕN,2ϕN,3)

∂wfl

∂χ0

N,1

= dν χ2

N,1 + eν (ϕ2

N,3 + 2ϕN,1ϕN,2)

∂wfl

∂χ0

N,2

= dν χ2

N,2 + eν (ϕ2

N,2 + 2ϕN,1ϕN,3)

∂wfl

∂ϕ0

N,1

= fν ξ̃NϕN,1 + 2 gν (ϕ2

N,1 − ϕN,2ϕN,3)

∂wfl

∂ϕ0

N,2

= fν ξ̃NϕN,3 + 2 gν (ϕ2

N,2 − ϕN,1ϕN,3)

∂wfl

∂ϕ0

N,3

= fν ξ̃NϕN,2 + 2 gν (ϕ2

N,3 − ϕN,1ϕN,2)
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