CP and Flavor Symmetries: Ideas and Models

C. Hagedorn

University of Padua and SISSA, Italy

Feruglio/H/Ziegler: 1211.5560 [hep-ph], 1303.7178 [hep-ph]

ACP Seminar, IPMU, Tokyo, Japan, 08.07.2013

supported by ERC Advanced Grant "DaMeSyFla" (Electroweak Symmetry Breaking, Flavour and Dark Matter: One Solution for Three Mysteries)

Outline

- Lepton mixing: parametrization and experimental results
- Lepton mixing from non-trivial breaking of G_f & CP (Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12))
- Model with S_4 and CP for leptons (Feruglio et al. ('12,'13))
- Conclusions

Lepton mixing

charged lepton mass terms and Majorana neutrino mass terms

$$e_a^c m_{e,ab} l_b$$
 and $\nu_a m_{\nu,ab} \nu_b$

cannot be diagonalized simultaneously

• going to the mass basis

 $U_e^{\dagger} m_e^{\dagger} m_e U_e = \text{diag}(m_e^2, m_{\mu}^2, m_{\tau}^2) \text{ and } U_{\nu}^T m_{\nu} U_{\nu} = \text{diag}(m_1, m_2, m_3)$

leads to non-diagonal charged current interactions

 $\bar{l} W^- U_{PMNS} \nu$ with $U_{PMNS} = U_e^{\dagger} U_{\nu}$

Parametrization of lepton mixing

Parametrization (PDG)

$$U_{PMNS} = \tilde{U} \operatorname{diag}(1, e^{i\alpha/2}, e^{i(\beta/2+\delta)})$$

with

$$\tilde{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

and $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ Jarlskog invariant J_{CP}

$$J_{CP} = \operatorname{Im} \left[U_{PMNS,11} U_{PMNS,13}^* U_{PMNS,31}^* U_{PMNS,33} \right]$$
$$= \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$$

– p. 4/87

Latest global fits (Gonzalez-Garcia et al. ('12))

Latest global fits (Gonzalez-Garcia et al. ('12))

Latest global fits (Gonzalez-Garcia et al. ('12))

Latest global fits (Gonzalez-Garcia et al. ('12))

best fit and 1σ error 3σ range $\sin^2 \theta_{13} = 0.0227^{+0.0023}_{-0.0024}$ $0.0156 < \sin^2 \theta_{13} < 0.0299$ $\sin^2 \theta_{12} = 0.302^{+0.013}_{-0.012}$ $0.267 < \sin^2 \theta_{12} < 0.344$ $\sin^2 \theta_{23} = \begin{cases} 0.413^{+0.037}_{-0.025} \\ 0.594^{+0.021}_{-0.022} \end{cases}$ $0.342 \le \sin^2 \theta_{23} \le 0.667$ $\delta = 300^{\circ + 66^{\circ}}_{-138^{\circ}} \qquad 0^{\circ} \le \delta \le 360^{\circ}$ unconstrained α , β

Latest global fits (Gonzalez-Garcia et al. ('12))

$$||U_{PMNS}|| \approx \left(\begin{array}{cccc} 0.83 & 0.54 & 0.15 \\ 0.50 & 0.59 & 0.64 \\ 0.26 & 0.60 & 0.76 \end{array}\right)$$

 \Downarrow

and no information on the phases

Mismatch in lepton flavor space is large!

- interpret this mismatch in lepton flavor space as mismatch of flavor symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a

- interpret this mismatch in lepton flavor space as mismatch of flavor symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a

- interpret this mismatch in lepton flavor space as mismatch of flavor symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a

- interpret this mismatch in lepton flavor space as mismatch of flavor symmetries G_{ν} and G_{e}
- if we want to predict lepton mixing, we have to derive this mismatch
- let us assume that there is a symmetry, broken to G_{ν} and G_{e}
- this symmetry is in the following a combination of a

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

(Feruglio et al. ('12,'13), Holthausen et al. ('12), Grimus/Rebelo ('95))

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

Idea:

Relate lepton mixing to how G_f and CP are broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f and CP

An example: $\mu\tau$ reflection symmetry (Harrison/Scott ('02,'04), Grimus/Lavoura ('03))

– p. 16/87

Further requirements

- two/three non-trivial mixing angles \Rightarrow irred 3-dim rep of G_f
- "maximize" predictability of approach

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$$

• for X unitary and symmetric

$$\phi \xrightarrow{\mathsf{CP}} X\phi^* \xrightarrow{\mathsf{CP}} XX^*\phi = \phi$$

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$$

• we have to consistently combine G_f and CP

 \Downarrow "closure" relations have to hold

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$$

• assume ϕ transforms as 3-dim rep of G_f , then

$$\phi \xrightarrow{\mathsf{CP}} X\phi^* \xrightarrow{G_f} XA^*\phi^* \xrightarrow{\mathsf{CP}} XA^*X^*\phi = (X^*AX)^*\phi$$
$$\Downarrow$$

 $(X^*AX)^* = A'$ with in general $A \neq A'$ and $A, A' \in G_f$

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$$

"closure" relations

 $(X^*AX)^* = A'$ with in general $A \neq A'$ and $A, A' \in G_f$

• realize direct product of $Z_2 \subset G_f$ and CP

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$$

"closure" relations

 $(X^*AX)^* = A'$ with in general $A \neq A'$ and $A, A' \in G_f$

• realize direct product of $Z_2 \subset G_f$ and CP; Z generates Z_2

$$\phi \xrightarrow{\mathsf{CP}} X\phi^{\star} \xrightarrow{Z_2} XZ^{\star}\phi^{\star} \text{ and } \phi \xrightarrow{Z_2} Z\phi \xrightarrow{\mathsf{CP}} ZX\phi^{\star}$$

Consistency conditions have to be fulfilled:

• definition of generalized CP transformation (see e.g. Branco et al. ('11))

$$\phi_i \xrightarrow{\mathsf{CP}} X_{ij} \phi_j^\star$$

"closure" relations

 $(X^*AX)^* = A'$ with in general $A \neq A'$ and $A, A' \in G_f$

• realize direct product of $Z_2 \subset G_f$ and CP; Z generates Z_2

$$XZ^{\star} - ZX = 0$$

Further requirements

- two/three non-trivial mixing angles \Rightarrow irred 3-dim rep of G_f
- "maximize" predictability of approach

• neutrino sector: $Z_2 \times CP$ preserved

neutrino mass term $\nu_a \ m_{\nu,ab} \ \nu_b$ is invariant under $\nu_{\alpha} \to Z_{\alpha\beta} \ \nu_{\beta}$ is invariant under generalized CP transformation $\nu_{\alpha} \to X_{\alpha\beta} \ \nu_{\beta}^{\star}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $Z^T m_{\nu} Z = m_{\nu}$ and $X m_{\nu} X = m_{\nu}^{\star}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

• neutrino sector: $Z_2 \times CP$ preserved and generated by ($\nu = \Omega_{\nu} \nu'$)

$$X = \Omega_{\nu} \Omega_{\nu}^{T}$$
 and $Z = \Omega_{\nu} Z^{diag} \Omega_{\nu}^{\dagger}$
 $Z^{diag} = \text{diag} (-1, 1, -1)$ and Ω_{ν} unitary

• charged lepton sector: Z_N , $N \ge 3$, preserved

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $Z^{diag}[\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]Z^{diag} = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] \text{ and } [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]^{\star}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ is diagonalized by

 $\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ is diagonalized by

 $\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

 $Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ is diagonalized by

 $\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved and generated by

$$\begin{split} Q_e &= \Omega_e Q_e^{diag} \Omega_e^{\dagger} \quad \text{with} \quad \Omega_e \quad \text{unitary} \\ Q_e^{diag} &= \text{diag} \left(\omega_N^{n_e}, \omega_N^{n_{\mu}}, \omega_N^{n_{\tau}} \right) \\ \text{and} \quad n_e \neq n_{\mu} \neq n_{\tau} \quad \text{and} \quad \omega_N = e^{2\pi i/N} \end{split}$$

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ is diagonalized by

 $\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger}(Q_e) m_e^{\dagger} m_e \Omega_e(Q_e)$ is diagonal

• neutrino sector: $Z_2 \times CP$ preserved

ightarrow neutrino mass matrix $m_{
u}$ is diagonalized by

 $\Omega_{\nu}(X,Z)R(\theta)K_{\nu}$

• charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^{\dagger}(Q_e) m_e^{\dagger} m_e \Omega_e(Q_e)$ is diagonal

conclusion: PMNS mixing matrix reads

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}$ in $\bar{l} W^- U_{PMNS} \nu$

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- U_{PMNS} contains one parameter θ
- permutations of rows and columns of U_{PMNS} possible

Predictions:

 \downarrow

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

Study of S_4 and CP

Generators in rep. 3': $(\omega = e^{2\pi i/3})$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} , \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} , \quad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

which fulfill

$$S^{2} = 1$$
, $T^{3} = 1$, $U^{2} = 1$,
 $(ST)^{3} = 1$, $(SU)^{2} = 1$, $(TU)^{2} = 1$, $(STU)^{4} = 1$

Study of S_4 and CP

A transformation X in rep. 3' for Z = S:

$$X_{\mathbf{3}'} = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

which fulfills

$$XX^{\dagger} = XX^{\star} = \mathbb{1}$$
$$(X^{\star}AX)^{\star} = A' , \quad XZ^{\star} - ZX = 0$$

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and our X(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. ('12,'13))

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta + i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - i\sqrt{3}\cos\theta \\ -\cos\theta - i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + i\sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

$$\sin^{2} \theta_{13} = \frac{2}{3} \sin^{2} \theta , \quad \sin^{2} \theta_{12} = \frac{1}{2 + \cos 2\theta} , \quad \sin^{2} \theta_{23} = \frac{1}{2}$$

and
 $|\sin \delta| = 1 , \quad |J_{CP}| = \frac{|\sin 2\theta|}{6\sqrt{3}} , \quad \sin \alpha = 0 , \quad \sin \beta = 0$

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and our X

- p. 38/87

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and our X

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and our X

Maximal θ_{23} and δ from $G_e = Z_3$, Z = S and our X

$$heta_{
m bf} pprox 0.185$$
 , $\chi^2_{
m min} pprox 18.4$ for $heta_{23} < \pi/4$

$$\begin{split} \sin^2\theta_{13}(\theta_{\mathsf{bf}}) &\approx 0.023 \ , \quad \sin^2\theta_{12}(\theta_{\mathsf{bf}}) \approx 0.341 \ , \\ |J_{CP}(\theta_{\mathsf{bf}})| &\approx 0.0348 \end{split}$$

Non-trivial Majorana phases from $G_e = Z_3$, Z = S and another X

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} e^{-i\theta} \left(i\sqrt{3} + e^{2i\theta} \right) & 1 & \frac{1}{2} e^{-i\theta} \left(-i\sqrt{3} + e^{2i\theta} \right) \\ -e^{i\theta} & 1 & -e^{i\theta} \\ \frac{1}{2} e^{-i\theta} \left(-i\sqrt{3} + e^{2i\theta} \right) & 1 & \frac{1}{2} e^{-i\theta} \left(i\sqrt{3} + e^{2i\theta} \right) \end{pmatrix} K_{\nu}$$

$$|\sin \delta| = \left| \frac{(4 + \sqrt{3}\sin 2\theta)\cos 2\theta\sqrt{4 - 2\sqrt{3}\sin 2\theta}}{5 + 3\cos 4\theta} \right| , \quad |J_{CP}| = \frac{|\cos 2\theta|}{6\sqrt{3}} ,$$
$$|\sin \alpha| = \left| \frac{\sqrt{3} + 2\sin 2\theta}{2 + \sqrt{3}\sin 2\theta} \right| , \quad |\sin \beta| = \left| \frac{4\sqrt{3}\cos 2\theta}{5 + 3\cos 4\theta} \right|$$

– p. 42/87

Non-trivial Majorana phases from $G_e = Z_3$, Z = S and another X

$$U_{PMNS} = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2} e^{-i\theta} \left(i\sqrt{3} + e^{2i\theta} \right) & 1 & \frac{1}{2} e^{-i\theta} \left(-i\sqrt{3} + e^{2i\theta} \right) \\ -e^{i\theta} & 1 & -e^{i\theta} \\ \frac{1}{2} e^{-i\theta} \left(-i\sqrt{3} + e^{2i\theta} \right) & 1 & \frac{1}{2} e^{-i\theta} \left(i\sqrt{3} + e^{2i\theta} \right) \end{pmatrix} K_{\nu}$$

$$\sin^2 \theta_{13} = \frac{1}{3} \left(1 - \frac{\sqrt{3}}{2} \sin 2\theta \right) , \quad \sin^2 \theta_{12} = \frac{2}{4 + \sqrt{3} \sin 2\theta} ,$$
$$\sin^2 \theta_{23} = \begin{cases} \sin^2 \theta_{12} \\ 1 - \sin^2 \theta_{12} \end{cases}$$

- p. 43/87

Non-trivial Majorana phases from $G_e = Z_3$, Z = S and another X

$$heta_{\sf bf} pprox \pi/4 \; , \;\; \chi^2_{\sf min} \gtrsim 100$$

$$\sin^2 \theta_{13}(\theta_{\text{bf}}) = 0.045 , \quad \sin^2 \theta_{12}(\theta_{\text{bf}}) = 0.349 ,$$
$$\sin^2 \theta_{23}(\theta_{\text{bf}}) = \begin{cases} 0.349 \\ 0.651 \end{cases}$$

$$\sin \delta(\theta_{\mathsf{bf}}) = 0 \ , \ |\sin \alpha|(\theta_{\mathsf{bf}}) = 1 \ , \ \sin \beta(\theta_{\mathsf{bf}}) = 0$$

Trivial CP phases from $G_e = Z_3$, Z = S and again another X

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta - \sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + \sqrt{3}\cos\theta \\ -\cos\theta + \sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - \sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

$$\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta \,, \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta} \,, \quad \sin^2 \theta_{23} = \frac{1}{2} \left(1 - \frac{\sqrt{3} \sin 2\theta}{2 + \cos 2\theta} \right)$$

and

 $\sin\delta=0 \ , \ \sin\alpha=0 \ , \ \sin\beta=0$

Trivial CP phases from $G_e = Z_3$, Z = S and again another X

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta - \sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + \sqrt{3}\cos\theta \\ -\cos\theta + \sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - \sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

$$\theta_{\mathsf{bf}} \approx \begin{cases} 0.184, & \theta_{23} < \pi/4 \\ 2.958, & \theta_{23} > \pi/4 \end{cases}, \quad \chi^2_{\mathsf{min}} \approx 10 : \sin^2 \theta_{13}(\theta_{\mathsf{bf}}) = 0.022 , \\ \sin^2 \theta_{12}(\theta_{\mathsf{bf}}) = 0.341 , \quad \sin^2 \theta_{23}(\theta_{\mathsf{bf}}) = \begin{cases} 0.394 \\ 0.606 \end{cases} \end{bmatrix}$$

- p. 46/87

• left-handed leptons l are unified in $\mathbf{3}'$ of S_4

- left-handed leptons l are unified in 3' of S_4
- right-handed charged leptons are singlets under S_4 ; add Z_3 in order to distinguish them: 1, ω , ω^2

- left-handed leptons l are unified in $\mathbf{3}'$ of S_4
- right-handed charged leptons are singlets under S_4 ; add Z_3 in order to distinguish them: 1, ω , ω^2
- deviation in breaking pattern: $G_e = Z_3^{(D)}$: diagonal subgroup of $Z_3 \subset S_4$ (generated by *T*) and add. Z_3

- left-handed leptons l are unified in $\mathbf{3}'$ of S_4
- right-handed charged leptons are singlets under S_4 ; add Z_3 in order to distinguish them: 1, ω , ω^2
- deviation in breaking pattern: $G_e = Z_3^{(D)}$: diagonal subgroup of $Z_3 \subset S_4$ (generated by *T*) and add. Z_3
- θ small due to small breaking $Z_2 \times Z_2 \times CP \rightarrow Z_2 \times CP$

- left-handed leptons l are unified in 3' of S_4
- right-handed charged leptons are singlets under S_4 ; add Z_3 in order to distinguish them: 1, ω , ω^2
- deviation in breaking pattern: $G_e = Z_3^{(D)}$: diagonal subgroup of $Z_3 \subset S_4$ (generated by *T*) and add. Z_3
- θ small due to small breaking $Z_2 \times Z_2 \times CP \rightarrow Z_2 \times CP$
- (not shown an auxiliary symmetry Z_{16} and $U(1)_R$ for vacuum alignment)

- left-handed leptons l are unified in $\mathbf{3}'$ of S_4
- right-handed charged leptons are singlets under S_4 ; add Z_3 in order to distinguish them: 1, ω , ω^2
- deviation in breaking pattern: $G_e = Z_3^{(D)}$: diagonal subgroup of $Z_3 \subset S_4$ (generated by *T*) and add. Z_3
- θ small due to small breaking $Z_2 \times Z_2 \times CP \rightarrow Z_2 \times CP$

	l	e^{c}	μ^{c}	$ au^c$	h_u	h_d
S_4	3 '	$\mathbf{1'}$	1	1	1	1
Z_3	1	1	ω	ω^2	1	1

- left-handed leptons l are unified in $\mathbf{3}'$ of S_4
- right-handed charged leptons are singlets under S_4 ; add Z_3 in order to distinguish them: 1, ω , ω^2
- deviation in breaking pattern: $G_e = Z_3^{(D)}$: diagonal subgroup of $Z_3 \subset S_4$ (generated by *T*) and add. Z_3
- θ small due to small breaking $Z_2 \times Z_2 \times CP \rightarrow Z_2 \times CP$

	χ_E	$arphi_E$	ξ_N	χ_N	$arphi_N$	ξ_N'
S_4	2	3 '	1	2	3 '	1'
Z_3	ω	ω	1	1	1	1

Remember S, T and U for $\mathbf{3}'$

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} , \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} , \quad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

and our chosen $X_{3'}$

$$X_{\mathbf{3'}} = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

For the other representations the generators S, T and U and X are 1: S = 1, T=1, U = 1, 1': S = 1, T = 1, U = -1. $2: S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad T = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \qquad U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\ 3: S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \qquad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}, \qquad U = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ and $X_{1} = 1$, $X_{1'} = -1$, $X_{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $X_{3} = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Charged lepton sector

• breaking to $G_e = Z_3^{(D)}$ via

$$\langle \chi_E
angle \propto \left(egin{array}{c} 0 \ 1 \end{array}
ight) \ , \ \langle arphi_E
angle \propto \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight)$$

lowest order couplings

 $y_{\tau}(l\varphi_E)\tau^c h_d/\Lambda + y_{\mu,1}(l\varphi_E^2)\mu^c h_d/\Lambda^2 + y_{\mu,2}(l\chi_E\varphi_E)\mu^c h_d/\Lambda^2$

Charged lepton sector

lead to non-zero muon and tau lepton mass

$$\begin{split} m_{\mu} &= \left| \left(2 \ y_{\mu,1} v_{\varphi_E} + y_{\mu,2} v_{\chi_E} \right) \ \frac{v_{\varphi_E}}{\Lambda^2} \right| \ \langle h_d \rangle \quad m_{\tau} = \left| y_{\tau} \frac{v_{\varphi_E}}{\Lambda} \right| \ \langle h_d \rangle \\ \text{for} \quad \langle \chi_E \rangle \,, \ \langle \varphi_E \rangle \sim \lambda^2 \Lambda \quad \Rightarrow \quad m_{\mu} / m_{\tau} \approx \lambda^2 \,, \ m_{\tau} \approx \lambda^2 \, \langle h_d \rangle \\ \text{with} \quad \lambda \approx 0.2 \end{split}$$

- electron mass vanishes; generated by higher order terms
- charged lepton mass matrix is diagonal $\Rightarrow \Omega_e = 1$

Neutrino sector

• breaking to $Z_2 \times Z_2(\times CP)$ via

$$\langle \xi_N \rangle = v_{\xi_N} , \quad \langle \chi_N \rangle = v_{\chi_N} \begin{pmatrix} 1 \\ 1 \end{pmatrix} , \quad \langle \varphi_N \rangle = v_{\varphi_N} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

and $v_{\xi_N} \,, \, v_{\chi_N} \,, \, v_{\varphi_N}$ have same phase ($\pm \pi$)

- with $\langle \xi'_N
 angle \in i\mathbb{R}$ breaking to $Z_2 imes \mathsf{CP}$
- lowest order couplings

 $y_{\nu,1}(ll)\xi_N h_u^2/\Lambda^2 + y_{\nu,2}(ll\varphi_N)h_u^2/\Lambda^2 + y_{\nu,3}(ll\chi_N\xi'_N)h_u^2/\Lambda^3$

Neutrino sector

- neutrino mass matrix contains three real parameters $t_{
 u} \propto v_{\xi_N}/\Lambda$, $u_{
 u} \propto v_{\varphi_N}/\Lambda$ and $x_{
 u} \propto \langle \xi'_N \rangle v_{\chi_N}/\Lambda^2$
- they have order: t_{ν} , $u_{\nu} \sim \lambda$ and $x_{\nu} \sim \lambda^2$ for $\langle \Phi_N \rangle \sim \lambda \Lambda$, $\lambda \approx 0.2$
- form of neutrino mass matrix m_{ν}

$$m_{\nu} = \begin{pmatrix} t_{\nu} + 2 u_{\nu} & -u_{\nu} - ix_{\nu} & -u_{\nu} + ix_{\nu} \\ -u_{\nu} - ix_{\nu} & 2 u_{\nu} + ix_{\nu} & t_{\nu} - u_{\nu} \\ -u_{\nu} + ix_{\nu} & t_{\nu} - u_{\nu} & 2 u_{\nu} - ix_{\nu} \end{pmatrix} \frac{\langle h_{u} \rangle^{2}}{\Lambda}$$

Neutrino sector

PMNS mixing matrix from neutrino sector only and is of form

$$U_{PMNS} = \frac{1}{\sqrt{6}} \begin{pmatrix} 2\cos\theta & \sqrt{2} & 2\sin\theta \\ -\cos\theta + i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta - i\sqrt{3}\cos\theta \\ -\cos\theta - i\sqrt{3}\sin\theta & \sqrt{2} & -\sin\theta + i\sqrt{3}\cos\theta \end{pmatrix} K_{\nu}$$

• the parameter θ is

$$\tan 2\theta = \frac{x_{\nu}}{\sqrt{3}u_{\nu}} \sim \lambda$$

and the lepton mixing angles read

$$\sin^2 \theta_{13} \approx \frac{2}{3}\lambda^2$$
, $\sin^2 \theta_{12} \approx \frac{1}{3} + \frac{2}{9}\lambda^2$, $\sin^2 \theta_{23} = \frac{1}{2}$

- p. 60/87

Neutrino sector

• neutrino mass spectrum is normally ordered; masses depend on two parameters t_{ν} and $\tilde{u}_{\nu} = f(u_{\nu}, x_{\nu})$ (in units $\langle h_u \rangle^2 / \Lambda$)

$$m_1 \propto |t_{\nu} + \tilde{u}_{\nu}| \ , \ m_2 \propto |t_{\nu}| \ , \ m_3 \propto |t_{\nu} - \tilde{u}_{\nu}|$$

• for best fit values of $\Delta m^2_{
m atm}$ and $\Delta m^2_{
m sol}$

 $m_1 \approx 0.016 \,\mathrm{eV} \;, \;\; m_2 \approx 0.018 \,\mathrm{eV} \;, \;\; m_3 \approx 0.052 \,\mathrm{eV}$ $0.003 \,\mathrm{eV} \lesssim m_{ee} \lesssim 0.018 \,\mathrm{eV} \;\; \text{and} \;\; m_\beta \approx 0.018 \,\mathrm{eV}$

- electron mass is generated
 - ... through operators with five fields Φ_N , e.g. $le^c \xi_N^3 \chi_N \varphi_N h_d / \Lambda^5$, if we consider shifts in $\langle \Phi_N \rangle$

- electron mass is generated
 - ... through operators with five fields Φ_N , e.g. $le^c \xi_N^3 \chi_N \varphi_N h_d / \Lambda^5$, if we consider shifts in $\langle \Phi_N \rangle$
 - ... through operators with six fields Φ_N , e.g. $le^c \xi_N^4 \xi'_N \varphi_N h_d / \Lambda^6$ with LO VEVs

- electron mass is generated
 - ... through operators with five fields Φ_N , e.g. $le^c \xi_N^3 \chi_N \varphi_N h_d / \Lambda^5$, if we consider shifts in $\langle \Phi_N \rangle$
 - ... through operators with six fields Φ_N , e.g. $le^c \xi_N^4 \xi'_N \varphi_N h_d / \Lambda^6$ with LO VEVs
 - $\langle \Phi_N \rangle \sim \lambda \Lambda \text{ and } \delta \langle \chi_N \rangle \sim \lambda \langle \chi_N \rangle \quad \Rightarrow \quad m_e \approx \lambda^6 \langle h_d \rangle$

- electron mass is generated
 - ... through operators with five fields Φ_N , e.g. $le^c \xi_N^3 \chi_N \varphi_N h_d / \Lambda^5$, if we consider shifts in $\langle \Phi_N \rangle$
 - ... through operators with six fields Φ_N , e.g. $le^c \xi_N^4 \xi'_N \varphi_N h_d / \Lambda^6$ with LO VEVs
 - $\langle \Phi_N \rangle \sim \lambda \Lambda \text{ and } \delta \langle \chi_N \rangle \sim \lambda \langle \chi_N \rangle \implies m_e \approx \lambda^6 \langle h_d \rangle$
- charged lepton mass matrix is non-diagonal at NLO; however, induced mixing angles are very small: $\theta_{ij}^l \sim \lambda^4$

NLO contributions for neutrinos

• largest correction from VEV shift of field χ_N

$$\langle \chi_N \rangle = v_{\chi_N} \left(\begin{array}{c} 1 + i \, \alpha \, \lambda \\ 1 - i \, \alpha \, \lambda \end{array} \right) , \ \alpha \in \mathbb{R}$$

which still preserves $Z_2 \times CP \implies \text{parameter } p_{\nu} \sim \lambda^3$:

NLO contributions for neutrinos

• largest correction from VEV shift of field χ_N

$$\langle \chi_N \rangle = v_{\chi_N} \left(\begin{array}{c} 1 + i \, \alpha \, \lambda \\ 1 - i \, \alpha \, \lambda \end{array} \right) , \ \alpha \in \mathbb{R}$$

which still preserves $Z_2 \times CP \implies \text{parameter } p_{\nu} \sim \lambda^3$:

$$m_{\nu}^{\rm NLO} = \begin{pmatrix} t_{\nu} + 2u_{\nu} & -u_{\nu} - ix_{\nu} + p_{\nu} & -u_{\nu} + ix_{\nu} + p_{\nu} \\ -u_{\nu} - ix_{\nu} + p_{\nu} & 2u_{\nu} + ix_{\nu} + p_{\nu} & t_{\nu} - u_{\nu} \\ -u_{\nu} + ix_{\nu} + p_{\nu} & t_{\nu} - u_{\nu} & 2u_{\nu} - ix_{\nu} + p_{\nu} \end{pmatrix} \frac{\langle h_u \rangle^2}{\Lambda}$$

NLO contributions for neutrinos

• largest correction from VEV shift of field χ_N

$$\langle \chi_N \rangle = v_{\chi_N} \left(\begin{array}{c} 1 + i \, \alpha \, \lambda \\ 1 - i \, \alpha \, \lambda \end{array} \right) , \ \alpha \in \mathbb{R}$$

which still preserves $Z_2 \times CP \implies$ parameter $p_{\nu} \sim \lambda^3$: no effect on mixing; small shift in neutrino masses

NLO contributions for neutrinos

• largest correction from VEV shift of field χ_N

$$\langle \chi_N \rangle = v_{\chi_N} \left(\begin{array}{c} 1 + i \, \alpha \, \lambda \\ 1 - i \, \alpha \, \lambda \end{array} \right) , \ \alpha \in \mathbb{R}$$

which still preserves $Z_2 \times CP \implies$ parameter $p_{\nu} \sim \lambda^3$: no effect on mixing; small shift in neutrino masses

• other corrections to m_{ν} are max. order λ^6 in units $\langle h_u \rangle^2 / \Lambda$... negligible

Flavon superpotential: main ingredients

- a $U(1)_R$ symmetry
- so-called driving fields with R charge +2

	$\xi^0_E, ilde{\xi}^0_E$	χ^0_E	ξ^0_N	χ^0_N	$arphi_N^0$	$\widetilde{\xi}^0_N$
S_4	1	2	1	2	3 '	1
Z_3	ω	ω	1	1	1	1

Flavon superpotential: main ingredients

- a $U(1)_R$ symmetry
- so-called driving fields with R charge +2
- flavons have R charge 0

Flavon superpotential: main ingredients

- a $U(1)_R$ symmetry
- so-called driving fields with R charge +2
- flavons have R charge 0
- flavor and CP symmetries broken at high energies, SUSY still intact

Flavon superpotential: main ingredients

- a $U(1)_R$ symmetry
- so-called driving fields with R charge +2
- flavons have R charge 0
- flavor and CP symmetries broken at high energies, SUSY still intact
- F-terms of driving fields need to be set to zero

$$\frac{\partial w}{\partial \Phi^0} = 0$$

these equations determine the flavons' VEVs

Flavon superpotential:

- a $U(1)_R$ symmetry
- so-called driving fields with R charge +2
- flavons have R charge 0
- typical terms in superpotential are of the form

 $M^2 \Phi^0 + \tilde{M} \Phi^0 \Psi + a \, \Phi^0 \Psi \Sigma$

form of F-terms is particularly simple

$$M^2 + \tilde{M}\Psi + a\,\Psi\Sigma = 0$$

Flavon superpotential:

- a $U(1)_R$ symmetry
- so-called driving fields with R charge +2
- flavons have R charge 0
- typical terms in superpotential are of the form

$$M^2 \Phi^0 + \tilde{M} \Phi^0 \Psi + a \, \Phi^0 \Psi \Sigma$$

here flavon superpotential can be divided into three parts

$$w_{fl} = w_{fl,e} + w_{fl,\nu} + w_{fl,\xi}$$

Flavon superpotential:

- a $U(1)_R$ symmetry
- so-called driving fields

	$\xi^0_E, ilde{\xi}^0_E$	χ^0_E	ξ^0_N	χ^0_N	$arphi_N^0$	$ ilde{\xi}^0_N$
S_4	1	2	1	2	3 '	1
Z_3	ω	ω	1	1	1	1

• flavon superpotential can be divided into three parts

$$w_{fl} = w_{fl,e} + w_{fl,\nu} + w_{fl,\xi}$$

Flavon superpotential:

- a $U(1)_R$ symmetry
- so-called driving fields

	$\xi^0_E, ilde{\xi}^0_E$	χ^0_E	ξ^0_N	χ^0_N	$arphi_N^0$	$ ilde{\xi}^0_N$
S_4	1	2	1	2	3 '	1
Z_3	ω	ω	1	1	1	1

• part I

 $w_{fl,e} = a_e \, \xi_E^0(\chi_E \chi_E) + \tilde{a}_e \, \tilde{\xi}_E^0(\varphi_E \varphi_E) + b_e \left(\chi_E^0 \chi_E \chi_E \chi_E\right) + c_e \left(\chi_E^0 \varphi_E \varphi_E\right)$

Flavon superpotential:

- a $U(1)_R$ symmetry
- so-called driving fields

	$\xi^0_E, ilde{\xi}^0_E$	χ^0_E	ξ^0_N	χ^0_N	$arphi_N^0$	$ ilde{\xi}^0_N$
S_4	1	2	1	2	3 '	1
Z_3	ω	ω	1	1	1	1

• part I

 $w_{fl,\nu} = a_{\nu} \xi_{N}^{0} \xi_{N}^{2} + \tilde{a}_{\nu} \xi_{N}^{0} \tilde{\xi}_{N}^{2} + \bar{a}_{\nu} \xi_{N}^{0} \xi_{N} \tilde{\xi}_{N} + b_{\nu} \xi_{N}^{0} (\chi_{N} \chi_{N}) + c_{\nu} \xi_{N}^{0} (\varphi_{N} \varphi_{N})$ $+ d_{\nu} (\chi_{N}^{0} \chi_{N} \chi_{N}) + e_{\nu} (\chi_{N}^{0} \varphi_{N} \varphi_{N}) + f_{\nu} \tilde{\xi}_{N} (\varphi_{N}^{0} \varphi_{N}) + g_{\nu} (\varphi_{N}^{0} \varphi_{N} \varphi_{N})$

Flavon superpotential:

- a $U(1)_R$ symmetry
- so-called driving fields

	$\xi^0_E, ilde{\xi}^0_E$	χ^0_E	ξ^0_N	χ^0_N	$arphi_N^0$	$ ilde{\xi}^0_N$
S_4	1	2	1	2	3 '	1
Z_3	ω	ω	1	1	1	1

• part I||

$$w_{fl,\xi} = \tilde{\xi}_N^0 M^2 + a_{\xi} \tilde{\xi}_N^0(\xi'_N \xi'_N)$$

Flavon superpotential: dominant NLO terms

• are

 $s_{\nu,1}\,\xi_N\,(\chi_N^0\xi'_N\chi_N)/\Lambda + \tilde{s}_{\nu,1}\,\tilde{\xi}_N\,(\chi_N^0\xi'_N\chi_N)/\Lambda + s_{\nu,2}\,(\varphi_N^0\xi'_N\chi_N\varphi_N)/\Lambda$

• correct the VEVs of the fields $\chi_{N,i}$

$$\langle \chi_N \rangle = v_{\chi_N} \left(\begin{array}{c} 1 + i \, \alpha \, \lambda \\ 1 - i \, \alpha \, \lambda \end{array} \right) \quad , \; \alpha \, \in \, \mathbb{R}$$

• other NLO terms give much smaller contributions; thus rest of shifts in VEVs is of relative order λ^4

Conclusions

- Scenarios with G_f and CP predict mixing angles and CP phases in terms of one parameter θ
- Explicit model with S_4 and CP ...
 - predicts θ_{23} and δ maximal as well as α and β trivial due to symmetry breaking pattern

Conclusions

- Scenarios with G_f and CP predict mixing angles and CP phases in terms of one parameter θ
- Explicit model with S_4 and CP ...
 - explains θ_{13} small via naturally small θ ,
 - leads to normally ordered light neutrino masses,
 - predicts absolute neutrino mass scale,
 - generates charged lepton masses of correct order

Conclusions

- Scenarios with G_f and CP predict mixing angles and CP phases in terms of one parameter θ
- Explicit model with S_4 and CP constructed
- Consider models with other G_f ? Extension to quarks?

Thank you for your attention.

Back up

Study of S_4 and CP –Flavon superpotential

Flavon superpotential: F-terms of driving fields with index E

$$\frac{\partial w_{fl}}{\partial \xi_E^0} = 2a_e \chi_{E,1} \chi_{E,2}$$

$$\frac{\partial w_{fl}}{\partial \tilde{\xi}_E^0} = \tilde{a}_e \left(\varphi_{E,1}^2 + 2\varphi_{E,2}\varphi_{E,3}\right)$$

$$\frac{\partial w_{fl}}{\partial \chi_{E,1}^0} = b_e \chi_{E,1}^2 + c_e \left(\varphi_{E,3}^2 + 2\varphi_{E,1}\varphi_{E,2}\right)$$

$$\frac{\partial w_{fl}}{\partial \chi_{E,2}^0} = b_e \chi_{E,2}^2 + c_e \left(\varphi_{E,2}^2 + 2\varphi_{E,1}\varphi_{E,3}\right)$$

Flavon superpotential: F-terms of the driving fields ξ_N^0 , χ_N^0 and φ_N^0

$$\begin{aligned} \frac{\partial w_{fl}}{\partial \xi_N^0} &= a_{\nu} \, \xi_N^2 + \tilde{a}_{\nu} \, \tilde{\xi}_N^2 + \bar{a}_{\nu} \, \xi_N \tilde{\xi}_N + 2 \, b_{\nu} \, \chi_{N,1} \chi_{N,2} + c_{\nu} \left(\varphi_{N,1}^2 + 2\varphi_{N,2} \varphi_{N,3}\right) \\ \frac{\partial w_{fl}}{\partial \chi_{N,1}^0} &= d_{\nu} \, \chi_{N,1}^2 + e_{\nu} \left(\varphi_{N,3}^2 + 2\varphi_{N,1} \varphi_{N,2}\right) \\ \frac{\partial w_{fl}}{\partial \chi_{N,2}^0} &= d_{\nu} \, \chi_{N,2}^2 + e_{\nu} \left(\varphi_{N,2}^2 + 2\varphi_{N,1} \varphi_{N,3}\right) \\ \frac{\partial w_{fl}}{\partial \varphi_{N,1}^0} &= f_{\nu} \, \tilde{\xi}_N \varphi_{N,1} + 2 \, g_{\nu} \left(\varphi_{N,1}^2 - \varphi_{N,2} \varphi_{N,3}\right) \\ \frac{\partial w_{fl}}{\partial \varphi_{N,2}^0} &= f_{\nu} \, \tilde{\xi}_N \varphi_{N,3} + 2 \, g_{\nu} \left(\varphi_{N,2}^2 - \varphi_{N,1} \varphi_{N,3}\right) \\ \frac{\partial w_{fl}}{\partial \varphi_{N,3}^0} &= f_{\nu} \, \tilde{\xi}_N \varphi_{N,2} + 2 \, g_{\nu} \left(\varphi_{N,3}^2 - \varphi_{N,1} \varphi_{N,2}\right) \end{aligned}$$