

The Charge Radius of the Proton

Gil Paz

Department of Physics and Astronomy, Wayne State University

1) Richard. J. Hill, GP	PRD	82	113005 (2010)	arXiv:1008.4619
2) Richard. J. Hill, GP	PRL	107	160402 (2011)	arXiv:1103.4617
3) Bhubanjyoti Bhattacharya, Richard J. Hill, GP	PRD	84	073006 (2011)	arXiv:1108.0423
4) Richard J. Hill, Gabriel Lee, GP, Mikhail P. Solon	PRD		(to appear)	arXiv:1212.4508

Outline

- Introduction: a 5σ discrepancy
- Model independent extraction of the proton charge radius from electron scattering
- Interlude: The axial mass of the nucleon, another discrepancy?
- Model independent analysis of proton structure for hydrogenic bound states
- Conclusions and outlook

Introduction: 5σ discrepancy

Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors $(q = p_f - p_i)$

$$\langle N(p_f)|\sum_{q} e_q \, \bar{q}\gamma^{\mu}q|N(p_i)\rangle = \bar{u}(p_f)\left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q^{\nu}\right]u(p_i)$$

• Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2)$$
 $G_M(q^2) = F_1(q^2) + F_2(q^2)$
 $G_E^{\rho}(0) = 1$ $G_M^{\rho}(0) = \mu_{\rho} \approx 2.793$

• The slope of G_F^p

$$\langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \bigg|_{q^2 = 0}$$

determines the charge radius $r_E^p \equiv \sqrt{\langle r^2
angle_E^p}$

Charge radius from atomic physics

$$\langle p(p_f)|\sum_q e_q \, \bar{q}\gamma^\mu q|p(p_i)\rangle = \bar{u}(p_f)\left[\gamma^\mu F_1^p(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2^p(q^2)q^
u\right]u(p_i)$$

• For a point particle amplitude for $p + \ell \rightarrow p + \ell$

$$\mathcal{M} \propto \frac{1}{a^2} \quad \Rightarrow \quad U(r) = -\frac{Z\alpha}{r}$$

• Including q^2 corrections from proton structure

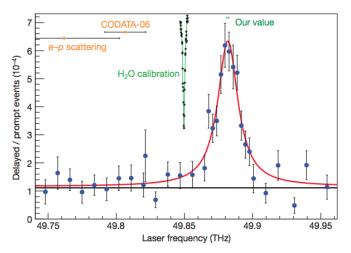
$$\mathcal{M} \propto rac{1}{g^2}q^2 = 1 \quad \Rightarrow \quad U(r) = rac{4\pi Z lpha}{6} \delta^3(r) (r_E^p)^2$$

ullet Proton structure corrections $\left(m_r=m_\ell m_p/(m_\ell+m_p)pprox m_\ell
ight)$

$$\Delta E_{r_E^p} = \frac{2(Z\alpha)^4}{3n^3} m_r^3 (r_E^p)^2 \delta_{\ell 0}$$

• Muonic hydrogen can give the best measurement of r_F^p!

Charge radius from Muonic Hydrogen



• CREMA Collaboration measured for the **first time** $2S_{1/2}^{F=1} - 2P_{3/2}^{F=2}$ transition in Muonic Hydrogen [Pohl et al. Nature **466**, 213 (2010)]

Charge radius from atomic physics

- Lamb shift in muonic hydrogen [Pohl et al. Nature **466**, 213 (2010)] $r_F^p = 0.84184(67)$ fm
- CODATA value [Mohr et al. RMP **80**, 633 (2008)] $r_E^p = 0.8768(69)$ fm extracted mainly from (electronic) hydrogen
- 5σ discrepancy!
- We can also extract it from electron-proton scattering data What does the PDG say?

What does the PDG say?

K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010)

p CHARGE RADIUS

This is the rms charge radius, $\sqrt{\langle r^2 \rangle}$.

VALUE (fm)	DOCUMENT ID		TECN	COMMENT
0.8768±0.0069	MOHR	80	RVUE	2006 CODATA value
	lowing data for ave	rages	, fits, lim	nits, etc. • • •
0.897 ±0.018	BLUNDEN	05		SICK 03 $+$ 2 γ correction
0.8750 ± 0.0068	MOHR	05	RVUE	2002 CODATA value
$0.895 \pm 0.010 \pm 0.013$	SICK	03		$ep \rightarrow ep$ reanalysis
$0.830 \pm 0.040 \pm 0.040$	²⁴ ESCHRICH	01		$ep \rightarrow ep$
0.883 ±0.014	MELNIKOV	00		1S Lamb Shift in H
0.880 ±0.015	ROSENFELDR	.00.		ep + Coul. corrections
0.847 ±0.008	MERGELL	96		ep + disp. relations

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov)

0.877 ± 0.024	WONG	94 reanaly	sis of Mainz <i>e p</i> data
0.865 ± 0.020	MCCORD	91 ep →	ер
0.862 ± 0.012	SIMON	80 <i>e p</i> →	e p
0.880 ± 0.030	BORKOWSKI	74 ep →	ер
0.810 ± 0.020	AKIMOV	72 ep →	e p
0.800 ± 0.025	FREREJACQ	66 ep →	ep (CH ₂ tgt.)
0.805 ± 0.011	HAND	63 <i>e p</i> →	e p
24 ESCHRICH 01 actually	gives $\langle r^2 \rangle = (0.69 \pm$	0.06 ± 0.06) fm ² .	

What does PDG say?

p CHARGE RADIUS

This is the rms charge radius, $\sqrt{\langle r^2 \rangle}$ VALUE (fm) 0.8768 + 0.0060 MOHR RVUE 2006 CODATA value • • • We do not use the following data for averages, fits, limits, etc. • • • 0.897 ±0.018 BLUNDEN SICK 03 + 27 correction 0.8750 ± 0.0068 MOHR RVUE 2002 CODATA value 0.895 ±0.010 ±0.013 SICK ep → ep reanalysis 24 ESCHRICH 0.830 ±0.040 ±0.040 ep → ep 1S Lamb Shift in H 0.883 +0.014 MEI NIKOV

ROSENIELI DR 00

MERGELL

Citation: K. Nakamura et al. (Particle Data Group), JPG 37, 075021 (2010) (URL: http://pdg.lbl.gov) 0.877 ±0.024 WONG reanalysis of Mainz ep data 0.865 ±0.020 MCCORD 0.862 ± 0.012 SIMON ep → ep 0.880 ± 0.030 BORKOWSKI 74 0.810 ± 0.020 AKIMOV $ep \rightarrow ep$ 0.800 ± 0.025 FREREJACO... 66 ep → ep (CH2 tgt.) 0.805 ± 0.011 HAND ep → ep ²⁴ ESCHRICH 01 actually gives $(r^2) = (0.69 \pm 0.06 \pm 0.06)$ fm²

• What does PDG say?

 0.880 ± 0.015

 0.847 ± 0.008

 $\triangleright \approx 50$ years of e - p scattering data

ep + Coul. corrections

ep + disp, relations

- r_F^p between 0.8 0.9 fm
- Different data sets
- Different extraction methods

"We do not use the following data for averages, fits, limits, etc."

- PDG refuses to say anything...
- What does the Data say?

Model independent extraction of the proton charge radius from electron scattering

Richard J. Hill, GP

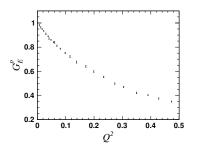
PRD 82 113005 (2010) [arXiv:1008.4619]

First problem: no agreed data set
 Some work in recent years on combining data sets
 [Arrington et al. PRC 76, 035205 (2007)]

- First problem: no agreed data set
 Some work in recent years on combining data sets
 [Arrington et al. PRC 76, 035205 (2007)]
- Second problem: How to extract r_E^p ?

- First problem: no agreed data set
 Some work in recent years on combining data sets
 [Arrington et al. PRC 76, 035205 (2007)]
- Second problem: How to extract r_E^p?
 Is this a problem? why not fit a straight line?

- First problem: no agreed data set
 Some work in recent years on combining data sets
 [Arrington et al. PRC 76, 035205 (2007)]
- Second problem: How to extract r_E^p?
 Is this a problem? why not fit a straight line?



Data from [Arrington et al. PRC 76, 035205 (2007)]

• We don't know the functional form of G_E^p

- How to extract r_E^p from G_E^p ? Usually use either
 - 1) model dependent form for G_E^p , e.g. poles+continuum form problem: how to estimate model dependence?
 - 2) A series expansion

- How to extract r_E^p from G_E^p ? Usually use either
 - 1) model dependent form for G_E^p , e.g. poles+continuum form problem: how to estimate model dependence?
 - 2) A series expansion
- There are several possibilities of series expansion
 - 1) Taylor series

$$G_E^p(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle_E^p + \dots,$$

- How to extract r_E^p from G_E^p ? Usually use either
 - 1) model dependent form for G_E^p , e.g. poles+continuum form problem: how to estimate model dependence?
 - 2) A series expansion
- There are several possibilities of series expansion
 - 1) Taylor series

$$G_E^p(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle_E^p + \dots,$$

2) Continued fraction [Sick PLB 576, 62 (2003)]

$$G_E^p(q^2) = rac{1}{1 + rac{a_1 \, q^2}{1 + rac{a_2 \, q^2}{1 + rac{a_2}{1 + rac}$$

- How to extract r_E^p from G_E^p ? Usually use either
 - 1) model dependent form for G_E^p , e.g. poles+continuum form problem: how to estimate model dependence?
 - 2) A series expansion
- There are several possibilities of series expansion
 - 1) Taylor series

$$G_E^p(q^2) = 1 + \frac{q^2}{6} \langle r^2 \rangle_E^p + \dots,$$

2) Continued fraction [Sick PLB 576, 62 (2003)]

$$G_E^p(q^2) = rac{1}{1 + rac{a_1 \, q^2}{1 + rac{a_2 \, q^2}{1 + 2}}}$$

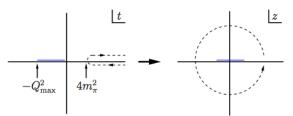
3) z expansion

z expansion

- Analytic properties of $G_E^p(t)$ are known $G_E^p(t)$ is analytic outside a cut $t \in [4m_\pi^2, \infty]$ e-p scattering data is in t<0 region
- We can map the domain of analyticity onto the unit circle

$$z(t, t_{\mathrm{cut}}, t_0) = rac{\sqrt{t_{\mathrm{cut}} - t} - \sqrt{t_{\mathrm{cut}} - t_0}}{\sqrt{t_{\mathrm{cut}} - t} + \sqrt{t_{\mathrm{cut}} - t_0}}$$

where $t_{\mathrm{cut}}=4m_{\pi}^2$, $z(t_0,t_{\mathrm{cut}},t_0)=0$



• Expand G_E^p in a Taylor series in z: $G_E^p(q^2) = \sum_{k=0}^{\infty} a_k z(q^2)^k$

z expansion

- Standard tool in analyzing meson transition form factors
 - Bourrely et al. NPB 189, 157 (1981)
 - Boyd et al. arXiv:hep-ph/9412324
 - Boyd et al. arXiv:hep-ph/9508211
 - Lellouch arXiv:hep-ph/9509358
 - Caprini et al. arXiv:hep-ph/9712417
 - Arnesen et al. arXiv:hep-ph/0504209
 - Becher et al. arXiv:hep-ph/0509090
 - Hill arXiv:hep-ph/0607108
 - Bourrely et al. arXiv:0807.2722 [hep-ph]
 - Bharucha et al. arXiv:1004.3249 [hep-ph]
 - ...
- Not applied to nucleon form factors before

• Does it matter which expansion we use? Let's compare!

- Does it matter which expansion we use? Let's compare!
- Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with $Q^2 < 0.04\,{\rm GeV}^2$, fit the following $(t_{\rm cut}=4m_\pi^2)$

- Does it matter which expansion we use? Let's compare!
- Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with $Q^2 < 0.04\,{\rm GeV}^2$, fit the following $(t_{\rm cut}=4m_\pi^2)$
 - 1) Taylor

$$G_{E}^{p}(q^{2}) = 1 + a_{1} \frac{q^{2}}{t_{\mathrm{cut}}} + a_{2} \left(\frac{q^{2}}{t_{\mathrm{cut}}}\right)^{2} + \dots$$

- Does it matter which expansion we use? Let's compare!
- Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with $Q^2 < 0.04 \, {\rm GeV}^2$, fit the following $(t_{\rm cut} = 4 m_\pi^2)$
 - 1) Taylor

$$G_{E}^{p}(q^{2}) = 1 + a_{1} \frac{q^{2}}{t_{\mathrm{cut}}} + a_{2} \left(\frac{q^{2}}{t_{\mathrm{cut}}}\right)^{2} + \dots$$

2) Continued fraction

$$G_{E}^{p}(q^{2}) = rac{1}{1 + a_{1} rac{q^{2}/t_{\mathrm{cut}}}{1 + a_{2} rac{q^{2}/t_{\mathrm{cut}}}{q^{2}/t_{\mathrm{cut}}}}}$$

- Does it matter which expansion we use? Let's compare!
- Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with $Q^2 < 0.04 \, \mathrm{GeV}^2$, fit the following $(t_{\mathrm{cut}} = 4 m_\pi^2)$
 - 1) Taylor

$$G_{E}^{p}(q^{2}) = 1 + a_{1} \frac{q^{2}}{t_{\mathrm{cut}}} + a_{2} \left(\frac{q^{2}}{t_{\mathrm{cut}}}\right)^{2} + \dots$$

2) Continued fraction

$$G_E^p(q^2) = \frac{1}{1 + a_1 \frac{q^2/t_{\text{cut}}}{1 + a_2 \frac{q^2/t_{\text{cut}}}{1 + a_2}}}$$

3) z expansion

$$G_{E}^{p}(q^{2}) = 1 + a_{1}z(q^{2}) + a_{2}z^{2}(q^{2}) + \dots$$

- Does it matter which expansion we use? Let's compare!
- Use data sets tabulated by Rosenfelder [arXiv:nucl-th/9912031] with $Q^2 < 0.04 \, \mathrm{GeV}^2$, fit the following $(t_{\mathrm{cut}} = 4 m_\pi^2)$
 - 1) Taylor

$$G_{E}^{p}(q^{2}) = 1 + a_{1} \frac{q^{2}}{t_{\mathrm{cut}}} + a_{2} \left(\frac{q^{2}}{t_{\mathrm{cut}}}\right)^{2} + \dots$$

2) Continued fraction

$$G_E^p(q^2) = \frac{1}{1 + a_1 \frac{q^2/t_{\text{cut}}}{1 + a_2 \frac{q^2/t_{\text{cut}}}{1 + a_2}}}$$

3) z expansion

$$G_{E}^{p}(q^{2}) = 1 + a_{1}z(q^{2}) + a_{2}z^{2}(q^{2}) + \dots$$

4) z expansion with a constraint on a_k : $|a_k| \le 10$

$$r_E^p$$
 in $10^{-18}m$

polynomial

continued fraction

- z expansion (no bound)
- z expansion $(|a_k| \le 10)$

$$r_E^p$$
 in $10^{-18}m$

$$k_{\rm max} = 1$$

continued fraction
$$882^{+10}_{-10}$$

z expansion (no bound)
$$918^{+9}_{-9}$$

z expansion (
$$|a_k| \le 10$$
) 918^{+9}_{-9}

$$r_E^p$$
 in $10^{-18}m$

$$k_{\text{max}} = 1$$
 2

polynomial
$$836^{+8}_{-9}$$
 867^{+23}_{-24}

continued fraction
$$882^{+10}_{-10}$$
 869^{+26}_{-25}

z expansion (no bound)
$$918^{+9}_{-9}$$
 868^{+28}_{-29}

z expansion (
$$|a_k| \le 10$$
) 918^{+9}_{-9} 868^{+28}_{-29}

$$r_E^p$$
 in $10^{-18}m$

$$k_{\rm max} = 1 \quad 2 \qquad 3$$
 polynomial $836^{+8}_{-9} \quad 867^{+23}_{-24} \quad 866^{+52}_{-56}$ continued fraction $882^{+10}_{-10} \quad 869^{+26}_{-25} \quad z$ expansion (no bound) $918^{+9}_{-9} \quad 868^{+28}_{-29} \quad 879^{+64}_{-69}$ z expansion ($|a_k| \leq 10$) $918^{+9}_{-9} \quad 868^{+28}_{-29} \quad 879^{+38}_{-59}$

$$r_E^p$$
 in $10^{-18}m$

	$k_{\rm max}=1$	2	3	4
polynomial	836_9	867^{+23}_{-24}	866^{+52}_{-56}	959_{-93}^{+85}
continued fraction	882^{+10}_{-10}	869_{-25}^{+26}	_	_
z expansion (no bound)) 918 ⁺⁹	868^{+28}_{-29}	879^{+64}_{-69}	1022^{+102}_{-114}
z expansion $(a_k \le 10)$) 918 ⁺⁹	868+28	879^{+38}_{-59}	880^{+39}_{-61}

$$r_E^p$$
 in $10^{-18}m$

	$k_{\max}=1$	2	3	4	5
polynomial	836^{+8}_{-9}	867_{-24}^{+23}	866^{+52}_{-56}	959^{+85}_{-93}	1122^{+122}_{-137}
continued fraction	$882^{+10}_{-10} \\$	869^{+26}_{-25}	_	_	_
z expansion (no bound)	918^{+9}_{-9}	868^{+28}_{-29}	879_{-69}^{+64}	$1022^{+102}_{-114} \\$	1193^{+152}_{-174}
z expansion ($ a_k < 10$)	918^{+9}	868 ⁺²⁸	879^{+38}	880 ⁺³⁹	880+39

$$r_E^p$$
 in $10^{-18}m$

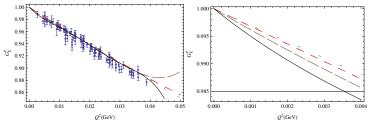
	$k_{\max}=1$	2	3	4	5
polynomial	836^{+8}_{-9}	867_{-24}^{+23}	866^{+52}_{-56}	959_{-93}^{+85}	$1122^{+122}_{-137} \\$
continued fraction	882^{+10}_{-10}	$869^{+26}_{-25} \\$	_	_	_
z expansion (no bound)	918^{+9}_{-9}	868^{+28}_{-29}	879_{-69}^{+64}	$1022^{+102}_{-114} \\$	$1193^{+152}_{-174} \\$
z expansion $(a_k \le 10)$	918^{+9}_{-9}	868^{+28}_{-29}	879_{-59}^{+38}	880_{-61}^{+39}	880_{-62}^{+39}

Conclusions:

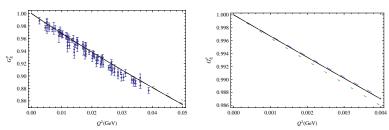
- Fit with two parameters agree well
- As we increase k_{max} the errors for the first three fits grow
- For the continued fraction fit for $k_{\rm max} > 3$ the slope is not positive
- To get a meaningful answer we must constrain a_k . How?

Comparison of Taylor and constrained z fits

Taylor fit



Constrained z fit



See also:

"Constrained curve fitting": Lepage et al. Nucl. Phys. Proc. Suppl. 106 (2002) 12-20

Analytic structure and a_k

• Analytic structure implies: Information about ${\rm Im}\,G_F^p(t+i0)\Rightarrow$ information about a_k

Analytic structure and a_k

$$z(t,t_{\mathrm{cut}},t_0) = rac{\sqrt{t_{\mathrm{cut}}-t}-\sqrt{t_{\mathrm{cut}}-t_0}}{\sqrt{t_{\mathrm{cut}}-t}+\sqrt{t_{\mathrm{cut}}-t_0}} \qquad rac{\left|rac{t}{t}
ight|}{\left|rac{1}{4m_{\pi}^2}
ight|^2}}{\left|rac{1}{4m_{\pi}^2}
ight|^2}
ight.$$

- Analytic structure implies: Information about ${\rm Im}G_E^p(t+i0) \Rightarrow$ information about a_k
- $G(t) = \sum_{k=0}^{\infty} a_k z(t)^k$, z^k are orthogonal over |z| = 1 $a_0 = G(t_0)$ $a_k = \frac{2}{\pi} \int_{t_{\rm cut}}^{\infty} \frac{dt}{t t_0} \sqrt{\frac{t_{\rm cut} t_0}{t t_{\rm cut}}} \operatorname{Im} G(t) \sin[k\theta(t)], \quad k \ge 1$ $\sum_{t=0}^{\infty} a_k^2 = \frac{1}{\pi} \int_{t_{\rm cut}}^{\infty} \frac{dt}{t t_0} \sqrt{\frac{t_{\rm cut} t_0}{t t_{\rm cut}}} |G|^2$
- How to constrain Im G(t)?

- We study the size of a_k using
 - vector dominance ansatz
 - \blacktriangleright $\pi\pi$ continuum
 - $e^+e^- \rightarrow N\bar{N}$ data

- We study the size of a_k using
 - vector dominance ansatz
 - \blacktriangleright $\pi\pi$ continuum
 - $e^+e^- \rightarrow N\bar{N}$ data
- In all of the above $|a_k| \le 10$ appears very conservative

- We study the size of a_k using
 - vector dominance ansatz
 - \blacktriangleright $\pi\pi$ continuum
 - $e^+e^- \rightarrow N\bar{N}$ data
- In all of the above $|a_k| \le 10$ appears very conservative Final results are presented for both $|a_k| \le 5$ and $|a_k| \le 10$

- We study the size of a_k using
 - vector dominance ansatz
 - \blacktriangleright $\pi\pi$ continuum
 - $e^+e^- \rightarrow N\bar{N}$ data
- In all of the above $|a_k| \le 10$ appears very conservative Final results are presented for both $|a_k| \le 5$ and $|a_k| \le 10$
- We extract r_F^p using
 - ▶ Low Q² proton data
 - ▶ Low + High Q^2 proton data
 - proton and neutron data
 - proton, neutron and $\pi\pi$ data

Results

• Using proton low: $Q^2 < 0.04\,{
m GeV^2}$ scattering data from Rosenfelder [arXiv:nucl-th/9912031], we find

$$r_E^p = 0.877^{+0.031}_{-0.049} \pm 0.011\,\mathrm{fm}$$

Rosenfelder gets

$$r_E^p = 0.880 \pm 0.015 \, \mathrm{fm}$$

from the same data!

 Conclusion: not using model independent approach underestimates the error by a factor of two!

Results

• Proton low: $Q^2 < 0.04 \,\mathrm{GeV}^2$

$$r_E^p = 0.877^{+0.031}_{-0.049} \pm 0.011 \,\mathrm{fm}$$

• Proton high: $Q^2 < 0.5 \,\mathrm{GeV}^2$

$$r_E^p = 0.870 \pm 0.023 \pm 0.012 \,\mathrm{fm}$$

Proton and neutron data

$$r_E^p = 0.880^{+0.017}_{-0.020} \pm 0.007 \, \mathrm{fm}$$

• Proton, neutron and $\pi\pi$ data

$$r_F^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002 \,\mathrm{fm}$$

Nuclear form factors: Future directions

- Use recent high precision data from
- A1 experiment at Mainz [PRL 105, 242001 (2010)]
- JLAB [PLB **705**, 59-64 (2011)]
 to improve precision on r_F^p
- Model independent extraction of r_M^p [Epstein, GP, Roy in progress]

PDG 2012:

```
r_M^p = 0.777 \pm 0.16 [Bernauer et al. 2010] r_M^p = 0.876 \pm 0.19 [Borisyuk et al. 2010] r_M^p = 0.854 \pm 0.05 [Belushkin et al. 2007]
```

• Model independent extraction of r_E^n , r_M^n

Model independent determination of the axial mass parameter in quasielastic neutrino-nucleon scattering

Bhubanjyoti Bhattacharya, Richard J. Hill, GP

PRD 84 073006 (2011) [arXiv:1108.0423]

The Axial Mass

- The problem is not unique to the vector form factor!
- The axial current gives rise to the the axial form factor

For axial form factor m_A analogous to r_E^p

$$F_A(q^2) = F_A(0) \left[1 + \frac{2}{m_A^2} q^2 + \dots \right] \implies m_A \equiv \sqrt{\frac{2F_A(0)}{F_A'(0)}}$$

• Charged current quasielastic scattering

$$\nu_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}$$

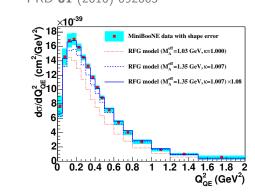
Another discrepancy?

Neutrino scattering:

$$m_{\Delta}^{
m dipole} = 1.35 \pm 0.17 \; {
m GeV}$$

MiniBooNE Collaboration

PRD 81 (2010) 092005

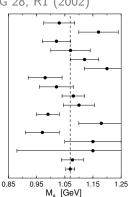


Pion electro-prodcution:

$$m_A^{\mathrm{dipole}} = 1.07 \pm 0.02 \; \mathsf{GeV}$$

Bernard, Elouadrhiri, Meissner

J. Phys. G 28, R1 (2002)



Both use dipole ansatz for axial form factor

$$F_A = F_A(0) \left[1 - q^2/(m_A^{\text{dipole}})^2\right]^{-2}$$

Another Discrepancy?

- Axial mass $m_A^{\rm dipole} = 1.35 \pm 0.17$ GeV [MiniBooNE Collaboration, PRD 81 092005 (2010)] Similar result from other recent ν experiments
- K2K SciFi: $m_A^{\text{dipole}} = 1.20 \pm 0.12 \text{ GeV}$ [K2K Collaboration, PRD **74** 052002 (2006)]
- K2K SciBar $m_A^{\text{dipole}} = 1.144 \pm 0.077 (\text{fit})^{+0.078}_{-0.072} (\text{syst})$ GeV Espinal, Sanchez, AIP Conf. Proc. **967**, 117 (2007)
- Minos $m_A^{\text{dipole}} = 1.19^{+0.09}_{-0.1} (\text{fit})^{+0.12}_{-0.14} (\text{syst}) \text{ GeV}$ [MINOS Collaboration, AIP Conf. Proc. 1189, 133 (2009)]
- Nomad: $m_A^{\text{dipole}} = 1.05 \pm 0.02 \pm 0.06 \text{ GeV}$ [NOMAD Collaboration, EPJ C **63**, 355 (2009)]
- Pion electro-prodcution: $m_A^{\rm dipole} = 1.07 \pm 0.02$ GeV Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)
- ν experiments before 1990: $m_A^{\rm dipole} = 1.026 \pm 0.021$ GeV Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)

What could be the source of the discrepancy?

- Theoretical studies focus on nuclear modeling For MiniBooNE neutrinos scatter of carbon ⇒ need behavior of nucleons in nucleus
- MiniBooNE use "Relativistic Fermi Gas" (RFG) model [Smith, Moniz, NPB **43**, 605 (1972)] Model validity and parameters from quasi-elastic e-nuclei scattering Moniz, Sick, Whitney, Ficenec, Kephart, Trower, PRL 26, 445 (1971)

Theoretical studies focus on nuclear modeling

Modify nuclear model

[Butkevich, PRC **82**, 055501 (2010); Benhar, Coletti, Meloni, PRL **105**, 132301 (2010); Juszczak, Sobczyk, Zmuda, PRC **82**, 045502 (2010)]

Include multi-nucleon emission

[Martini, Ericson, Chanfray, Marteau PRC **80**, 065501 (2009), PRC **81**, 045502 (2010); Amaro, Barbaro, Caballero, Donnelly, Williamson PLB **696**, 151 (2011), PRD **84**, 033004 (2011); Nieves, Ruiz Simo, Vicente Vacas PRC **83**, 045501 (2011), arXiv:1106.5374]

- Modify G_M for bound nucleons but not G_E or F_A
 [Bodek, Budd, EPJ C 71, 1726 (2011)]
- All use dipole form factor

$$F_A = F_A(0) \left[1 - q^2/(m_A^{\text{dipole}})^2\right]^{-2}$$

m_A^{dipole} is not $m_A!$

• The physical parameter is

$$m_A \equiv \sqrt{\frac{2F_A(0)}{F_A'(0)}}$$

• Everyone extracts m_A^{dipole} from

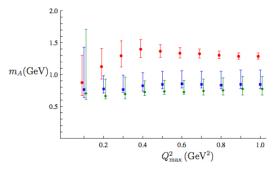
$$F_A = F_A(0) \left[1 - q^2/(m_A^{\text{dipole}})^2\right]^{-2}$$

- ullet When extractions of $m_A^{
 m dipole}$ disagree is it
- A problem of the use of the dipole model?
- Real disagreement between experiments?
- Need to extract m_A in a model independent way!
 [Bhubanjyoti Bhattacharya, Richard J. Hill, GP,
 PRD 84 073006 (2011)]

Neutrino: Model independent approach

Our z expansion fit to MiniBooNE data (Assuming RFG):

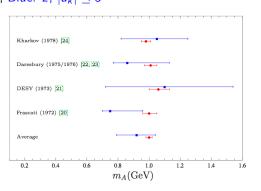
Red: dipole, Blue: z, $|a_k| \le 5$, Green: z, $|a_k| \le 10$



• Our fit using z expansion: $m_A = 0.85^{+0.22}_{-0.07} \pm 0.09 \text{ GeV}$ Our fit using dipole model: $m_A^{\text{dipole}} = 1.29 \pm 0.05 \text{ GeV}$ MiniBooNE's fit: $m_A^{\text{dipole}} = 1.35 \pm 0.17 \text{ GeV}$

Pion Electro-production: Model independent approach

• Is there a discrepancy with pion electro-production data? Red: dipole, Blue: z, $|a_k| \le 5$



• Our fit using z expansion: $m_A = 0.92^{+0.12}_{-0.13} \pm 0.08 \text{ GeV}$ Our fit using dipole model: $m_A^{\text{dipole}} = 1.00 \pm 0.02 \text{ GeV}$ Bernard et. al. fit using dipole model: $m_A^{\text{dipole}} = 1.07 \pm 0.02 \text{ GeV}$ Bernard, Elouadrhiri, Meissner, J. Phys. G 28, R1 (2002)

Model independent approach

• MiniBooNE (Assuming RFG):

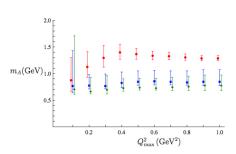
$$m_A = 0.85^{+0.22}_{-0.07} \pm 0.09 \text{ GeV}$$

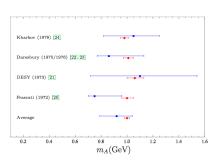
 $m_A^{ ext{dipole}} = 1.29 \pm 0.05 \text{ GeV}$

• Pion electro-prodcution:

$$m_A = 0.92^{+0.12}_{-0.13} \pm 0.08 \text{ GeV}$$

 $m_A^{\text{dipole}} = 1.00 \pm 0.02 \text{ GeV}$





Discrepancy is an artifact of the use of the dipole form factor!

Axial form factor: Future directions

- Extract m_A from other ν experiments, e.g. Miner ν a
- Is m_A consistent between experiments?
- m_A from pion electro-production data, extrapolated from soft π limit Extract m_A in a model-independent way
- ν experiments need F_A , extract it from another source
- After F_A is under control, discuss nuclear models
- Impact on θ_{13} ? [Bhattacharya, Hill, GP in progress]

Axial form factor: Future directions

- Extract m_A from other ν experiments, e.g. Miner ν a
- Is m_A consistent between experiments?
- m_A from pion electro-production data, extrapolated from soft π limit Extract m_A in a model-independent way
- ν experiments need F_A , extract it from another source
- After F_A is under control, discuss nuclear models
- Impact on θ_{13} ? [Bhattacharya, Hill, GP in progress]
- But wait, what about the 5σ discrepancy ?

The recent discrepancy

• Based on a model-independent approach using scattering data from proton, neutron and $\pi\pi$ [Hill, GP PRD **82** 113005 (2010)] $r_E^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002 \,\mathrm{fm}$

• CODATA value (extracted mainly from electronic hydrogen) [Mohr et al. RMP **80**, 633 (2008)] $r_E^p = 0.8768(69)$ fm

• Lamb shift in muonic hydrogen [Pohl et al. Nature **466**, 213 (2010)] $r_F^p = 0.84184(67)$ fm

Our results are more consistent with the CODATA value

Lamb shift in muonic hydrogen

• CREMA measured [Pohl et al. Nature 466, 213 (2010)]

$$\Delta E = 206.2949 \pm 0.0032 \text{ meV}$$

Comparing to the theoretical expression

$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$$

They got

$$r_E^p = 0.84184(67) \text{ fm}$$

• How reliable is the theoretical prediction?

Model independent analysis of proton structure for hydrogenic bound states

Richard J. Hill, GP

PRL 107 160402 (2011) [arXiv:1103.4617]

How reliable is the theoretical prediction?

The theoretical calculation was redone

Jentschura, Annals Phys. **326**, 500-515 (2011) Carlson, Vanderhaeghen PRA **84**, 020102 (2011)

Confirmed the muonic hydrogen result

How reliable is the theoretical prediction?

The theoretical calculation was redone

```
Jentschura, Annals Phys. 326, 500-515 (2011)
Carlson, Vanderhaeghen PRA 84, 020102 (2011)
```

Confirmed the muonic hydrogen result

- Inadequate treatment of proton structure effects?
 - 1) De Rujula, PLB 693, 555 (2010)
 - 2) Miller, Thomas, Carroll, Rafelski, PRA 84, 020101(R) (2011)

How reliable is the theoretical prediction?

• The theoretical calculation was redone

```
Jentschura, Annals Phys. 326, 500-515 (2011)
Carlson, Vanderhaeghen PRA 84, 020102 (2011)
```

Confirmed the muonic hydrogen result

- Inadequate treatment of proton structure effects?
 - 1) De Rujula, PLB 693, 555 (2010)
 - 2) Miller, Thomas, Carroll, Rafelski, PRA 84, 020101(R) (2011)

Ruled out by data:

- 1) Electron-proton: Distler, Bernauer, Walcher PLB 696, 343 (2011)
- 2) Compton scattering: Carlson, Vanderhaeghen arXiv:1109.3779
- New Physics?

New Physics?

- New particle that couples to nucleons and μ (but not e or τ) [Barger, Chiang, Keung, Marfatia PRL **106** (2011) 153001] **Assuming** same coupling to Υ , η , π rules this out
- New MeV particle that couples to protons (g_p) and muons (g_μ) [Tucker-Smith, Yavin PRD **83** (2011) 101702] Can explain r_F^p and muon g-2 but $g_p \approx g_n$ is problematic
- New U(1) that couples only to right-handed muons [Batell, McKeen, Pospelov PRL ${f 107}$ (2011) 011803] Constrained by missing mass in $K \to \mu \nu$ decays [Barger, Chiang, Keung, Marfatia, PRL ${f 108}$ (2012) 081802]

The Theoretical Prediction

• Is there a problem with the theoretical prediction?

[Pachucki PRA **60**, 3593 (1999), Borie PRA **71**(3), 032508 (2005)]
$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.0347(r_E^p)^3 \text{ meV}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \text{where does}$$

$$\mu \text{ QED} \qquad \text{discussed} \qquad \text{this term}$$

$$\text{come from?}$$

Two-photon amplitude: "standard" calculation

- "Standard" calculation: separate to proton and non-proton
- For proton
 - Insert form factors into vertices: $\mathcal{M}=\int_0^\infty\,dq^2\,f(\textit{G}_{\textit{E}},\textit{G}_{\textit{M}})$
 - Using a "dipole form factor": $G_i(q^2)/G_i(0) \approx [1-q^2/\Lambda^2]^{-2}$
 - \mathcal{M} is a function of $\Lambda \Rightarrow (r_F^p)^3$ term
 - $\Lambda^2=0.71\,{
 m GeV}^2\Rightarrow \Delta E\approx 0.018$ meV [Pachucki, PRA 53, 2092 (1996)]
- Need 0.258(90) meV (scattering) or 0.311(63) meV (spec.)
 to explain discrepancy
- Look more carefully at the calculation
 [Richard J. Hill, GP PRL 107 160402 (2011)]

NRQED

Model Independent approach: use NRQED
 [Caswell, Lepage PLB 167, 437 (1986); Kinoshita Nio PRD 53, 4909 (1996); Manohar PRD 56, 230 (1997)]

$$\begin{split} \mathcal{L}_{p} &= \psi_{p}^{\dagger} \bigg\{ iD_{t} + \frac{\mathbf{D}^{2}}{2m_{p}} + \frac{\mathbf{D}^{4}}{8m_{p}^{3}} + c_{F}e\frac{\boldsymbol{\sigma} \cdot \mathbf{B}}{2m_{p}} + c_{D}e\frac{[\boldsymbol{\partial} \cdot \mathbf{E}]}{8m_{p}^{2}} \\ &+ ic_{S}e\frac{\boldsymbol{\sigma} \cdot \left(\mathbf{D} \times \mathbf{E} - \mathbf{E} \times \mathbf{D}\right)}{8m_{p}^{2}} + c_{W1}e\frac{\{\mathbf{D}^{2}, \boldsymbol{\sigma} \cdot \mathbf{B}\}}{8m_{p}^{3}} \\ &- c_{W2}e\frac{D^{i}\boldsymbol{\sigma} \cdot \mathbf{B}D^{i}}{4m_{p}^{3}} + c_{p'p}e\frac{\boldsymbol{\sigma} \cdot \mathbf{D}\mathbf{B} \cdot \mathbf{D} + \mathbf{D} \cdot \mathbf{B}\boldsymbol{\sigma} \cdot \mathbf{D}}{8m_{p}^{3}} \\ &+ ic_{M}e\frac{\{\mathbf{D}^{i}, [\boldsymbol{\partial} \times \mathbf{B}]^{i}\}}{8m_{p}^{3}} + c_{A1}e^{2}\frac{\mathbf{B}^{2} - \mathbf{E}^{2}}{8m_{p}^{3}} - c_{A2}e^{2}\frac{\mathbf{E}^{2}}{16m_{p}^{3}} + \ldots \bigg\}\psi_{p} \end{split}$$

Need also

$$\mathcal{L}_{\mathrm{contact}} = d_1 rac{\psi_p^\dagger oldsymbol{\sigma} \psi_p \cdot \psi_l^\dagger oldsymbol{\sigma} \psi_l}{m_l m_p} + d_2 rac{\psi_p^\dagger \psi_p \psi_l^\dagger \psi_l}{m_l m_p}$$

NRQED

• From c_i and d_i determine proton structure correction, e.g.

$$\delta E(n,\ell) = \delta_{\ell 0} \frac{m_r^3 (Z\alpha)^3}{\pi n^3} \left(\frac{Z\alpha\pi}{2m_p^2} c_D^{\rm proton} - \frac{d_2}{m_I m_p} \right)$$

- Matching
- Operators with one photon coupling: c_i given by $F_i^{(n)}(0)$
- Operators with only two photon couplings:
 c_{Ai} given by forward and backward Compton scattering
- d_i from two-photon amplitude

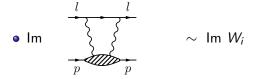
Two-photon amplitude: matching

$$\frac{1}{2} \sum_{s} i \int d^4 x \, e^{iq \cdot x} \langle \mathbf{k}, s | T \{ J_{\text{e.m.}}^{\mu}(x) J_{\text{e.m.}}^{\nu}(0) \} | \mathbf{k}, s \rangle
= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) W_1 + \left(k^{\mu} - \frac{k \cdot q \, q^{\mu}}{q^2} \right) \left(k^{\nu} - \frac{k \cdot q \, q^{\nu}}{q^2} \right) W_2$$

Matching

$$\begin{split} &\frac{4\pi m_{r}}{\lambda^{3}} - \frac{\pi m_{r}}{2m_{l}m_{p}\lambda} - \frac{2\pi m_{r}}{m_{p}^{2}\lambda} \left[F_{2}(0) + 4m_{p}^{2}F_{1}'(0) \right] \\ &- \frac{2}{m_{l}m_{p}} \left[\frac{2}{3} + \frac{1}{m_{p}^{2} - m_{l}^{2}} \left(m_{l}^{2} \log \frac{m_{p}}{\lambda} - m_{p}^{2} \log \frac{m_{l}}{\lambda} \right) \right] + \frac{d_{2}(Z\alpha)^{-2}}{m_{l}m_{p}} \\ &= -\frac{m_{l}}{m_{p}} \int_{-1}^{1} dx \sqrt{1 - x^{2}} \int_{0}^{\infty} dQ \frac{Q^{3}}{(Q^{2} + \lambda^{2})^{2} (Q^{2} + 4m_{l}^{2}x^{2})} \\ &\times \left[(1 + 2x^{2}) W_{1}(2im_{p}Qx, Q^{2}) - (1 - x^{2}) m_{p}^{2} W_{2}(2im_{p}Qx, Q^{2}) \right] \end{split}$$

• In order to determine d_2 need to know W_i



can be extracted from on-shell quantities:

Proton form factors and Inelastic structure functions

• To find W_i from Im W_i , need dispersion relations

Dispersion relation

• Dispersion relations ($\nu=2k\cdot q,\ Q^2=-q^2$)

$$W_1(\nu,Q^2) = W_1(0,Q^2) + rac{
u^2}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_1(
u',Q^2)}{
u'^2(
u'^2-
u^2)}$$

$$W_2(\nu,Q^2) = rac{1}{\pi} \int_{
u_{
m cut}(Q^2)^2}^{\infty} d
u'^2 rac{{
m Im} W_2(
u',Q^2)}{
u'^2 -
u^2}$$

- W₁ requires subtraction...
- $\operatorname{Im} W_i^p$ from form factors
- $\operatorname{Im} W_i^c$ from DIS
- What about $W_1(0, Q^2)$?

$W_1(0, Q^2)$

- Can calculate in two limits: [Hill, GP, PRL 107 160402 (2011)]
- $Q^2 \ll m_p^2$ The photon sees the proton "almost" like an elementary particle Use NRQED to calculate $W_1(0,Q^2)$ upto $\mathcal{O}(Q^2)$ (including)

$$W_1(0, Q^2) = 2(c_F^2 - 1) + 2\frac{Q^2}{4m_p^2} (c_{A_1} + c_F^2 - 2c_F c_{W1} + 2c_M)$$

- $Q^2\gg m_p^2$ The photon sees the quarks inside the proton Use OPE to find $W_1(0,Q^2)\sim 1/Q^2$ for large Q^2
- In between you will have to model!
 Current calculation **pretends** there is no model dependence
 How big is the model dependence?

Bound State Energy

1) Proton: Im W_i^p using dipole form factor

$$\Delta E = -0.016 \text{ meV}$$

2) Continuum: Im W_i^c [Carlson, Vanderhaeghen PRA 84 020102 (2011)]

$$\Delta E = 0.0127(5) \text{ meV}$$

3) What about $W_1(0, Q^2)$?

"Sticking In Form Factors" (SIFF) model

$$W_1^{\text{SIFF}}(0, Q^2) = 2F_2(2F_1 + F_2) \quad F_i \equiv F_i(Q^2)$$

SIFF

• "Sticking In Form Factors" (SIFF) model

$$W_1^{\text{SIFF}}(0, Q^2) = 2F_2(2F_1 + F_2) \quad F_i \equiv F_i(Q^2)$$

Notice that for large Q^2 , $W_1^{\rm SIFF}(0,Q^2) \propto 1/Q^8$ In contradiction to OPE

• There is **no** local Lagrangian that has a Feynman rule

$$\gamma_{\mu}F_1(q^2) + rac{i\sigma_{\mu
u}}{2m}F_2(q^2)q_{
u}$$

• Numerically using the dipole form factor

$$\Delta E^{\mathrm{SIFF}} = 0.034 \; \mathrm{meV}$$

Model Dependence

• How big is the model dependence?

$$\begin{array}{cccc} 0.018\,\mathrm{meV} & & -0.016\,\mathrm{meV} & + & 0.034\,\mathrm{meV} \\ & & \uparrow & & \uparrow \\ & & \text{Model independent} & & \text{Model dependent} \end{array}$$

- The model dependent piece is the dominant one!
- ullet Experimental discrepancy \sim 0.3 meV
- It is possible that the true $W_1(0, Q^2)$ explains (or reduces) the discrepancy
- Can we extract d₂ in a different way?
 The MUon proton Scattering Experiment (MUSE) at PSI
 How to extract d₂? [Gonderinger, GP in progress]

Two photon amplitude: summary

- To determine two photon amplitude need
- $\operatorname{Im} W_i$ which can be extracted from data
- $W_1(0, Q^2)$ which currently cannot be extracted from data
- Unlike Im W_i , $W_1(0, Q^2)$ cannot be written model independently as a sum of "proton" and "non-proton" terms
- Model independent properties of $W_1(0, Q^2)$:
- Low Q² via NRQED
- High Q^2 via OPE Intermediate region poorly constrained
- Lack of theoretical control over $W_1(0, Q^2)$ introduces theoretical uncertainties not taken into account in the literature

Beyond the 5 σ discrepancy:

- Established NRQED as a tool to analyze nucleon structure effects
- Systematically separate perturbative/non perturbative
- Easy derivation of low energy theorems of Compton scattering
- [Low, Phys. Rev. 96, 1428 (1954);
 Gell-Mann, Goldberger, Phys. Rev. 96, 1433 (1954)]
 Carefully expand Green's functions
- NRQED: few tree level diagrams
 [Hill, GP in preparation]
- Bound state energy in the small lepton mass limit
 [Hill, Lee, GP, Solon arXiv:1212.4508, to appear in PRD]

Conclusions and Outlook

Conclusions

 Recent discrepancy in the extraction the proton charge radius between muonic and regular hydrogen

Conclusions

- Recent discrepancy in the extraction the proton charge radius between muonic and regular hydrogen
- We presented model independent extraction of the charge radius from e-p scattering data using the z expansion
- using scattering data from proton, neutron and $\pi\pi$ $r_F^p=0.871\pm0.009\pm0.002\pm0.002\,\mathrm{fm}$
- Previous extractions have underestimated the error
 Similar problem for the axial form factor
- Results are compatible with CODATA value of $r_E^p = 0.8768(69)$ fm

Conclusions

- Analyzed proton structure effects in hydrogen-like systems using NRQED
- Isolated model-**dependent** assumptions in previous analyses: $W_1(0, Q^2)$ was calculated by "Sticking In Form Factors" model
- Model **independent** calculation of $W_1(0, Q^2)$: low Q^2 via NRQED, high Q^2 via OPE
- Possibility for a significant new effects in the two-photon amplitude
- Beyond the 5 σ discrepancy: NRQED as a tool to analyze nucleon structure effects

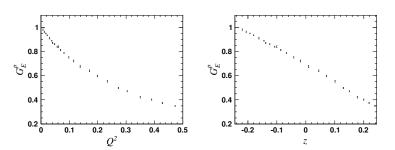
Future Directions

- Applying z expansion to other form-factors
- Analyze spin dependent effects
- Application to deuterium
- Connect muon-proton scattering data to muonic hydrogen
- Resolution of the discrepancy?

Backup

z expansion

• The curvature is smaller in the z variable



Data from [Arrington et al. PRC 76, 035205 (2007)]

• Using low $Q^2 < 0.04 \, \mathrm{GeV}^2$ data we find

$$r_E^p = 0.877^{+0.031}_{-0.049} \pm 0.011 \,\mathrm{fm}$$

How did [Rosenfelder PLB 479, 381 (2000) (arXiv:nucl-th/9912031)]
 get

$$r_F^p = 0.880 \pm 0.015 \,\mathrm{fm}$$

from the same data?

• Using low $Q^2 < 0.04 \, \mathrm{GeV}^2$ data we find

$$r_E^p = 0.877^{+0.031}_{-0.049} \pm 0.011 \,\mathrm{fm}$$

How did [Rosenfelder PLB 479, 381 (2000) (arXiv:nucl-th/9912031)]
 get

$$r_F^p = 0.880 \pm 0.015 \, \mathrm{fm}$$

from the same data?

Rosenfelder used a taylor series

$$G_{E}^{p}(q^{2}) = 1 + a_{1} \frac{q^{2}}{t_{\text{cut}}} + a_{2} \left(\frac{q^{2}}{t_{\text{cut}}}\right)^{2} + \dots$$

but a_2 was not fitted, instead it was taken from higher Q^2 data [Borkowski et al. NPA 222, 269 (1974)]: $a_2^{\rm Taylor}/t_{\rm cut}^2=0.014(4)\,{\rm fm}^4$ (similar procedure was used in [Simon et al. NPA 333, 381 (1980)])

• But a_2 was not fitted, instead it was taken from higher Q^2 data [Borkowski et al. NPA 222, 269 (1974)]

$$a_2^{
m Taylor}/t_{
m cut}^2=0.014(4)\,{
m fm}^4$$

• But a_2 was not fitted, instead it was taken from higher Q^2 data [Borkowski et al. NPA 222, 269 (1974)]

$$a_2^{\rm Taylor}/t_{\rm cut}^2=0.014(4)\,{\rm fm}^4$$

• We find from [Arrington et al. PRC **76**, 035205 (2007)], $Q_{\rm max}^2 = 1\,{\rm GeV}^2$

$$a_2^{
m Taylor}/t_{
m cut}^2 = 0.014^{+0.016}_{-0.013} \pm 0.005\,{
m fm}^4$$

• But a_2 was not fitted, instead it was taken from higher Q^2 data [Borkowski et al. NPA 222, 269 (1974)]

$$a_2^{\mathrm{Taylor}}/t_{\mathrm{cut}}^2 = 0.014(4)\,\mathrm{fm}^4$$

• We find from [Arrington et al. PRC **76**, 035205 (2007)], $Q_{\rm max}^2 = 1\,{\rm GeV}^2$

$$a_2^{
m Taylor}/t_{
m cut}^2 = 0.014^{+0.016}_{-0.013} \pm 0.005\,{
m fm}^4$$

Using this value we find

$$r_E^p = 0.878 \pm 0.008^{+0.047}_{-0.039}$$
 Taylor

errors are from data and $a_2^{
m Taylor}/t_{
m cut}^2$ only

Compatible with

$$r_{\rm F}^{\rm p} = 0.877_{-0.049}^{+0.031} \pm 0.011 \, {\rm fm}$$
 z expansion

Using the continued fraction expansion
 Sick and Blunden and Sick have found

[Sick PLB **576**, 62 (2003)] :
$$r_E^p = 0.895 \pm 0.010 \pm 0.013 \,\mathrm{fm}$$

[Blunden, Sick PRC **72**, 057601 (2005)] $r_F^p = 0.897 \pm 0.018 \,\mathrm{fm}$

- Their error estimate relies on model datasets
- We find the expansion becomes unstable when including more then 2 parameters

Two-photon amplitude: "standard" calculation

- "standard" calculation: separate to proton and non-proton
- non-proton \leftrightarrow DIS
- For proton
- Insert form factors into vertices

$$\mathcal{M} = \int_0^\infty dq^2 f(G_E, G_M)$$

- Using a "dipole form factor"

$$G_i(q^2) \approx G_i(q^2)/G_i(0) \approx [1 - q^2/\Lambda^2]^{-2}$$

- \mathcal{M} is a function of $\Lambda \Rightarrow (r_F^p)^3$ term
- Using, $\Lambda^2 = 0.71 \, \mathrm{GeV}^2 \Rightarrow \Delta E \approx 0.018 \, \mathrm{meV}$ [Pachucki, PRA **53**, 2092 (1996)]

Two-photon amplitude: "standard" calculation

- Why is the insertion of form factors in vertices valid?
- Even if it was, result looks funny two-photon amplitude
 ⇔ the charge radius only for one parameter model for G_E and G_M
- Improvement?
 Treat the "proton" part of two-photon amplitude as a new parameter
- "Zemach" approximation: m_l , $\langle q \rangle \ll m_p$ [Friar Annals Phys. 122, 151 (1979), Eides et al. Theory of Light Hydrogenic Bound states, Springer]

$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.00913 \langle r^3 \rangle_{(2)} \text{ meV}$$

Third Zemach Moment

$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.00913 \langle r^3 \rangle_{(2)} \text{ meV}$$

- The formula for the Lamb shift has two unknowns \Rightarrow use the CODATA value of r_E^p and solve for $\langle r^3 \rangle_{(2)}$
- The result [De Rújula PLB 693, 555 (2010)]

$$[\langle r^3 \rangle_{(2)}]^{1/3} = 3.32 \pm 0.21 \; {
m fm} \quad$$
 muonic hydrogen

Third Zemach Moment

$$\Delta E = 209.9779(49) - 5.2262(r_E^p)^2 + 0.00913 \langle r^3 \rangle_{(2)} \text{ meV}$$

- The formula for the Lamb shift has two unknowns \Rightarrow use the CODATA value of r_E^p and solve for $\langle r^3 \rangle_{(2)}$
- The result [De Rújula PLB 693, 555 (2010)]

$$[\langle r^3 \rangle_{(2)}]^{1/3} = 3.32 \pm 0.21 ~\mathrm{fm}$$
 muonic hydrogen

• Looks fine until we compare it to e - p scattering data

$$[\langle r^3
angle_{(2)}]^{1/3} = 1.39 \pm 0.02~\mathrm{fm}$$
 scattering data

[Sick, Friar PRA 72, 040502(R) (2005)]

Much more than $5\sigma...$ there is still a discrepancy

"Standard" Calculation: Summary

Using

```
r_E^p = 0.871(10) fm [Hill, GP PRD 82 113005 (2010)] or r_E^p = 0.8768(69) fm [Mohr et al. RMP 80, 633 (2008)]
```

- The measured interval in muonic hydrogen lies
 0.258(90) meV or 0.311(63) meV above theory.
- Using $\Lambda^2=0.71\,{\rm GeV^2},$ the proton contribution from the two-photon amplitude
- 0.018 meV to E(2p) E(2s)
- 0.021 meV to E(2p) E(2s) in the "Zemach" limit [K. Pachucki, PRA **53**, 2092 (1996)]
- Is there a problem with the theoretical prediction?

Zemach?

- "Zemach" approximation: $m_l, \langle q \rangle \ll m_p$ but for $\Lambda^2 = 0.71 \, {\rm GeV}^2$ $\Lambda \approx 0.84 \, {\rm GeV}$ is not small compared to m_p
- Even worse
- Proton pole term

$$E(2p) - E(2s) = -0.016 \text{ meV}$$

- Using the Zemach approximation for proton pole term

$$E(2p) - E(2s) = +0.021 \text{ meV}$$

 \Rightarrow Thought to be an approximation only because $W_1^{\rm SIFF}(0,Q^2)!$