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—gt¢ = Hy = (; A— V> O, () =Unp(0) with U, =e 't

additivity property Uy, o U, = Upy 14,

(Uh) (2) = /dy Ki(z,9)¥(y) (Kt(z,y) oG for v = 0)

> Ki(z,y) = / dey Koy, (2,21) Koy (21,3)

= /dxl cooday, Ky, (2, 20) Kty —t, (@0, 1) - Ky (21, 9)
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Kt(Z, y) = /dl‘l 500 dl’n Kt*tn (Z, l‘n)Ktnftn_l (IL’n, l‘nfl) 000 Kt1 (:L'l, y)

n+1

1 i — Ti—1)2
N/dxl...dxnexp<—2z<g;_:11) (ti—ti_1)> for V=0

i=1

z(t)=2

Ko (2:9) = / Do el Sh = / dt (%2-1-1/(:10))

z(0)=y

Similarly in quantum field theory

?l 9oy ==Pout

KZ(¢out7 ¢in) - D¢ e—S[fi’]
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Feynman 1948
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“Evolution” X gives rise to map between spaces of quantum states:

Zys, : Hin — /Houty (ZE(U)) (¢out) = /D¢in KE(¢outa ¢in)n(¢in)

In general, additivity property Uy, o Uy, = Uy, 4+, turns into

gluing axiom Iy 005, = L5, © I3,

-
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A (small) category C has

@ a set of objects Ob(C),

o for every A, B € Ob(C) a set of morphisms Hom(A, B), with special
elements 14 € Hom(A, A),

o for every A, B,C € Ob(C) a map
Hom(B,C) x Hom(A, B) — Hom(A, C)

that is associative and unital.

Examples.

@ points and arrows in directed graphs
@ vector spaces and linear maps
@ manifolds and diffeomorphisms

@ branes and open strings in topological string theory
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Closed topological field theory

Theorem.
Closed TFT (—) <= commutative Frobenius algebra # = (S%).

° <%> : H ® H — H is associative, commutative, unital:

@ symmetric pairing < &D> : H ® H — C is nondegenerate:

1R
1R
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Closed topological field theory

Theorem.
Closed TFT (—) <= commutative Frobenius algebra # = (S%).

Examples.

@ B-twisted sigma models: Let X be Kahler manifold.

H = Hy(X) (a,ﬁ)'—>/XQ/\oz/\ﬁ

o B-twisted Landau-Ginzburg models: Let W € Clz, ..., z,].

d
H=Clzy,...,z]/(OW),  (f,9) — Res [m]



Topological field theory with defects
A TFT with defects is a map

(=) : Bord®{(Dy, D;) — Vect



Topological field theory with defects
A TFT with defects is a map
(=) : Bord®*f(IDy, D;) — Vect

Bord®*f(IDy, D;) = “multi-phase worldsheets with defects”
Dy = set of bulk theories aq,as, ...
ID; = set of defect conditions X1, X, ...



Topological field theory with defects
A TFT with defects is a map

(=) : Bord®{(Dy, D;) — Vect

Bord®*f(IDy, D;) = “multi-phase worldsheets with defects”
Dy = set of bulk theories aq,as, ...
ID; = set of defect conditions X7, Xo,...

objects: circles with points labelled by Dy, segments labelled by Dy
morphisms: bordisms with (isotopy classes of) lines labelled by Dy,
phases labelled by Do



Topological field theory with defects
A TFT with defects is a map

(=) : Bord®{(Dy, D;) — Vect

Bord®*f(IDy, D;) = “multi-phase worldsheets with defects”
Dy = set of bulk theories aq,as, ...
ID; = set of defect conditions X7, Xo,...

objects: circles with points labelled by Dy, segments labelled by Dy
morphisms: bordisms with (isotopy classes of) lines labelled by Dy,
phases labelled by Do

a3 Xo



Topological field theory with defects
A TFT with defects is a map

(=) : Bord®{(Dy, D;) — Vect

Bord®*f(IDy, D;) = “multi-phase worldsheets with defects”
Dy = set of bulk theories aq,as, ...
ID; = set of defect conditions X7, Xo,...

objects: circles with points labelled by Dy, segments labelled by Dy
morphisms: bordisms with (isotopy classes of) lines labelled by Dy,
phases labelled by Do

a3 Xo




2d TFTs with defects

Value of correlators only depends on isotopy class of defect lines:




2d TFTs with defects

Value of correlators only depends on isotopy class of defect lines:

Defect fusion gives product, unit = “invisible” defect I

£ \\ //
< pe e )>—<X®



2d TFTs with defects

Value of correlators only depends on isotopy class of defect lines:

Defect fusion gives product, unit = “invisible” defect I
XY 1) =\lxe ] 6L V= ADX ]
\\\ // \\ // \\ : // \\ //
~ ~ S ~a_ ]~

Operator product of fields, unit = identity field
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Bicategories (pretty easy too)

Definition. A bicategory B has

theories
@ objects a, b, ...
defects fields

@ categories B(a,b) of 1-morphism X, Y, ... and 2-morphisms ¢, v, ...

fusion

@ functors ® : B(b,c) x B(a,b) — B(a,c)

invisible defects

@ units I, € B(a,a) and for X € B(a,b) natural isomorphisms
LheX=2X, XL,=2X, (XYV)eZ2=2X®((Y®Z2)

Xl

b o _ a c b a = c a
X\ Y b Y®X

theories  defects fields invisible defect I fusion
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Defect bicategories

Theorem.
Every TFT with defects gives rise to a bicategory “with extra structure”.

Open problem.
What extra structure gives equivalent description?

Attitude.
Some structure known. Study consequences!

Examples of bicategories:
o WZW models: bundle gerbes
A-models: symplectic manifolds, Lagrangian correspondences

B-models: varieties, Fourier-Mukai kernels

o
o
o Landau-Ginzburg models: potentials, matrix factorisations
@ categories, functors, natural transformations

°

algebras, bimodules, bimodule maps

Davydov/Kong/Runkel, Fuchs/Runkel/Schweigert/Suszek/Waldorf, Cald3raru/Willerton, Wehrheim /Woodward, Carqueville/Murfet
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Bicategories

Definition. A bicategory B has

theories
@ objects a, b, ...
defects fields

@ categories B(a,b) of 1-morphism X, Y, ... and 2-morphisms ¢, v, ...

fusion

@ functors ® : B(b,c) x B(a,b) — B(a,c)

invisible defects

@ units I, € B(a,a) and for X € B(a,b) natural isomorphisms
LheX=2X, XL,=2X, (XYV)eZ2=2X®((Y®Z2)

X/

b ¢ _ a @ b a = c a
X\ Y X Y®X

theories  defects fields invisible defect I fusion
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Diagrammatics in bicategories

X Y Z Y v
=1y w* =p: X —>Y i’i =y Qp* *@/ = p®y’
X X X X X'
A X X
¢)\ —¢:XQY — Z px*\ ,,*Ax
XY x 1 P x

Always read diagrams from bottom to top and from right to left.
Xt X

Orientation matters: a % b } a

Xt X
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I
' X Xt
m :eV)(ZXT®X—>I w ZCOGV)(ZI—>X®XT
Xt X !
1
Defects are topological:
X X Xt Xt
1x = = =po(1®ev)o (coev®l) oA =

Xt Xt
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Orientation and adjoints

1
' X Xt
m :eVX:XT®X—>I w :coevX:I—>X®XJr
Xt X I
I
Defects are topological:
X X Xt Xt
1y = = :po(l@ev)o(coev®1)0)\_1 =
X X X el

Definition. A bicategory has adjoints if for each 1-morphism X there is
a 1-morphism XT with 2-morphisms ev x, coevx such that the above
Zorro moves hold.
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@ theories: potentials W € C[zy,. .., Zy)

o defects between W € C[z] and V € C[z]: matrix factorisations of
V — W, i.e. C[z,z]-modules X with

1
dX:<% dX)eEnd(X), =V -W)- 1x
% 0

o fields between X and Y: BRST cohomology of

Hom(X,Y) 3 ¢ — dy ¢ — (—=1)¥lypdy

Kontsevich, Kapustin/Li 2002, Lazaroiu 2003, Brunner/Roggenkamp 2007
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o defect fusion: Y @ X, dygx =dy ® 1+ 1®dx
@ invisible defect:

0 r—y
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Topological Landau-Ginzburg models

o defect fusion: Y @ X, dygx =dy ® 1+ 1®dx
@ invisible defect:

0 r—y
Iy = Clw,y|®*,  dp, = (W(m) W) >
Y

Tr—

for n =1, in general:

Iw = /\ (@C[$’y] '91') ) dry, = Z ((xi—yi) '9:+8[i}W'9i>
=1 i=1

Fact. End(ly) = Clz]/(OW) = bulk space

X

*)\X:I®X*»C[x,y]®X _mult., X®I—— X

><—0—><

I X

@ operator product: matrix multiplication
Brunner/Roggenkamp 2007, Kapustin/Rozansky 2004
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Let W € k[zy,...,x,], V € k[z1,...,2m]|, X matrix fact. of V — W
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First main result

Theorem. The bicategory £G of Landau-Ginzburg models has adjoints.
Let W € k[zy,...,x,], V € k[z1,...,2m]|, X matrix fact. of V — W
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First main result

Theorem. The bicategory £G of Landau-Ginzburg models has adjoints.

Let W € k[zy,...,x,], V € k[z1,...,2m]|, X matrix fact. of V — W
y / . : \\\ 0 (dO )T
[ { \ T: A = X
\ | xt=xf] dx = (_opyr )
- Xt
X Xt

v 101...0, — = Z {8[7«_1_1}(1)( ce 8[”]dX}ji e ® e;f
1,7

A — 0V ... 0.,V

a)<---<ay

Dodx ..., dx Dy dx .. O dx ). dz
m:ef@Jej%ZRes{ d X Pla]7X [Z]X}ZJZ]

Oay . Oa,

Proof: homological perturbation, associative Atiyah classes
Carqueville/Murfet 2012

(Note: we suppress various signs)
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Applications

Defect action on bulk fields for defect X between W (z) and V (z):

¢ str(\I/(HiﬁxidX)(Hjﬁz.

dx)) da

J
O, W ... Oy

n

X X X
U =y = Res
Px

Special cases:
@ ¢ =1, ¥ =1 gives the quantum dimension dim(X)
@ V = 0 gives Kapustin-Li disc correlator

@ W = 0 gives boundary-bulk map
BX (W) =str (¥ 0,,dx ...0s,,dx)

ch(X) := B%X(1) is the boundary state or Chern character
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Applications

Theorem. The Cardy condition holds in £G: for matrix factorisations
X, Yof Wand maps ®: X — X, U:Y — Y we have
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Applications

Theorem. The Cardy condition holds in £G: for matrix factorisations
X, Yof Wand maps ®: X — X, U:Y — Y we have

str (‘I’ 81dX 0oo 8nd)() str (\If 81dy 000 8ndy) di.%'

str (\1;77%1,) = Res W . oW

where yme sends a: X — Y to Vad.

Proof:
eVXxigy evy
4
coevy
COEV xtgy coevy coevy

Polishchuk/Vaintrob 2010, Carqueville/Murfet 2012
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Generalised orbifolds

Main result. Let X € B(a,b) have invertible dim(X), set A = XT ® X.
Everything about theory b can be recovered from defect A.
Think of A as ‘generalised symmetry’, replacing orbifold group.

Idea. Introducing X-bubbles in b-correlator is scaling by dim(X).
Blowing up all X-bubbles produces a-correlator with A-defect network.

< >< Q0 @ )

Carqueville/Runkel 2012
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Generalised orbifolds

Let B be pivotal bicategory with adjoints. Orbifold completion Borb:

@ objects: pairs (a, A) with a € B and A € B(a, a) separable symmetric
Frobenius algebra:

AA A [ T4 Al\é\4
WIN¢ A

e 1- morphlsms X € B(a,b) that are bimodules

° horlzontal composition: tensor product over algebra, I(, a)

@ 2-morphisms: ¢ € Hom(X,Y') that are bimodule maps

Carqueville/Runkel 2012, Frohlich/Fuchs/Runkel /Schweigert 2009, (Fjelstad/Frohlich/)Fuchs/Runkel /Schweigert 200x
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Generalised orbifolds
Theorem.

o B C Borb = (Borb)orb
o If orbifold group G acts on B(a,b), then with Ag = P (La)g:

B(a, b)G = Borb((av AG)a (b7 BG))

Theorem.
A= XT® X is symmetric Frobenius for any X € B(a,b).

If dim(X) is invertible (easy to check for B = LG) then:
e A= X"® X is a also separable.
e X®4 X >0,
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Generalised orbifolds

Theorem.

e B C Borb = (Borb)orb
o If orbifold group G acts on B(a,b), then with Ag = P (La)g:

B(a, b)G = Borb((av AG)a <b7 BG))

Theorem.
A= XT® X is symmetric Frobenius for any X € B(a,b).

If dim(X) is invertible (easy to check for B = LG) then:
e A= X"® X is a also separable.
e X®4 X >0,
e X and XT mutually inverse in By, so X : (a, A) = (b, Ip): XT

Holds for any pivotal bicategory B, e. g. also for B-models — expect
generalisation of homological mirror symmetry!

Carqueville/Runkel 2012



Generalised orbifolds: Landau-Ginzburg examples

@ ‘“ordinary” orbifolds: for finite symmetry group G of W we have

hmf(W)C = £G(0, W)C mod(@f)

geG

Carqueville/Runkel 2012, see also Ashok/Dell’Aquila/Diaconescu 2004, Brunner/Roggenkamp 2007
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@ Zs-orbifold between A- and D-type simple singularities
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Generalised orbifolds: Landau-Ginzburg examples
@ ‘“ordinary” orbifolds: for finite symmetry group G of W we have
hmf(W)€ = £6(0, W)€ = mod (@I )
geG

with or without discrete torsion, Serre functor, Cardy condition
@ Zs-orbifold between A- and D-type simple singularities

o 0 ==y of 0 ztuw
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Generalised orbifolds: Landau-Ginzburg examples
@ ‘“ordinary” orbifolds: for finite symmetry group G of W we have

hmf(W)C = £G(0, W)C mod(@f)

geG

with or without discrete torsion, Serre functor, Cardy condition. ..

@ Zs-orbifold between A- and D-type simple singularities:

o 0 ==y of 0 ztuw
z — u? 0 z—uy 0

is 1-morphism between W, = u?? and Wp = 2% — 29?2 + 22 with
dim(X) =1 = hmf(Wp) = mod(X' ® X)

@ similar equivalences expected e. g. between A- and E-type, and for
Calabi-Yau compactifications
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Generalised orbifolds: Landau-Ginzburg examples
@ ‘“ordinary” orbifolds: for finite symmetry group G of W we have

hmf(W)C = £G(0, W)C mod(@f)

geG

with or without discrete torsion, Serre functor, Cardy condition. ..

@ Zs-orbifold between A- and D-type simple singularities:

o 0 ==y of 0 ztuw
z — u? 0 z—uy 0

is 1-morphism between W, = u?? and Wp = 2% — 29?2 + 22 with
dim(X) =1 = hmf(Wp) = mod(X' ® X)

@ similar equivalences expected e. g. between A- and E-type, and for
Calabi-Yau compactifications

Task. Classify all defects with invertible quantum dimensions!

Carqueville/Runkel 2012, Brunner/Carqueville/Plencner 2013
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and supersymmetry



Generalised orbifolds
Theorem. (B(7)),, = (=)
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Generalised orbifolds

Theorem. (B<_>)0rb ~ B In other words,
symmetric separable Frobenius algebras <=- Pachner moves:

AT O A= Yo

What if the algebra is not symmetric?

Lemma. A is symmetric iff its Nakayama automorphism

is the identity.

Carqueville/Runkel 2012



Generalised orbifolds

Fix bicategory with adjoints B. Orbifold completion Bg,:

@ objects: pairs (a, A) with a € B and A € B(a, a) symmetric separable
Frobenius algebra:

ASA—A |1l —sA Al\ (5\ 4--h
m L N O (UL

@ 1-morphisms: X € B(a,b) that are bimodules

LoAd 4 N A

@ horizontal composition: tensor product over algebra, [(, 4) = A

@ 2-morphisms: ¢ € Hom(X,Y) that are bimodule maps

Carqueville/Runkel 2012, Frohlich/Fuchs/Runkel /Schweigert 2009, (Fjelstad/Frohlich/)Fuchs/Runkel /Schweigert 200x



Generalised orbifolds

Fix bicategory with adjoints B. Oebifold Equivariant completion Beq:

@ objects: pairs (a, A) with a € B and A € B(a,a) symwetfic separable
Frobenius algebra:

AoA—sA [ d #Mﬂ
MN 07| P

e 1- morphlsms X € B(a,b) that are bimodules

@ horizontal composition: tensor product over algebra, /¢, 4) = A

@ 2-morphisms: ¢ € Hom(X,Y) that are bimodule maps

Carqueville/Runkel 2012, Frohlich/Fuchs/Runkel /Schweigert 2009, (Fjelstad/Frohlich/)Fuchs/Runkel /Schweigert 200x
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“NS” and “R” sectors

Motivation. IR fixed points of Landau-Ginzburg models have equivalence
{ RR ground states } = { (c,c) fields }, but not necessarily their orbifolds.

Let (a, A) € Beq. Consider C-algebra Hom(/,, A) with

o-f= Q[J\B (o B o) = < /j\s >

Two ways to “wrap A around " give projectors

(cc e @ Co— @

For ordinary LG orbifolds (A = Ag) their images recover (c,c) fields and
RR ground states!

Brunner/Carqueville/Plencner 2013
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“NS” and “R” sectors

Theorem. 7T1(4C7C) and 8 compute Hochschild (co)homology:
im(r("?) & HH*(A) = Homy (A, A)
im(r ) & HH,e(A) = Homaa(Sy 4, A)

HH,4(A) is a module over HH®*(A) and has a nondegenerate pairing.
HH,(A) = HH*(A) if A is symmetric (Calabi-Yau condition).

Question. What if B “is” not supersymmetric?

Relation between the projectors: mht(a) = @ = 4 Q)

So HH*(A) and HH,(A) are the special cases n =0 and n = 1 of

Hﬁ:im< I>—> A ) neZz
«

Brunner/Carqueville/Plencner 2013



Many sectors

n __ ;3 n
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o
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Many sectors

(07

o

wants to be the image of framed circle S} under extended 2d TFT
Bordgl’o — /8y

Evidence: H'y x H'} — Hm+"

[m]@ [m + n] @

Brunner/Carqueville/Plencner 2013
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Conclusions
“2d TFT with defects = bicategory + ="

Theorem. The bicategory of Landau-Ginzburg models has adjoints.
@ conceptual construction, yet very “computable”
@ encode all open/closed TFT data (and more!)

@ easy proof of Hirzebruch-Riemann-Roch theorem for LG models

Generalised orbifolds
@ natural description of conventional orbifolds

@ information about NS and R sectors via defects; extended TFT

@ give rise to new equivalences

Outlook.
@ more generalised orbifolds
@ generalisation of homological mirror symmetry
o refined link invariants: compute so(2n) from sl(n)



Summary

extended
2d TFT"

2d TFT®
with defects

Hochschild
(co)homology




