Topological defects and generalised orbifolds

Nils Carqueville

Simons Center

$$-\frac{\partial}{\partial t} \psi = H\psi = \left(\frac{1}{2} \Delta - V\right) \psi$$

$$-\frac{\partial}{\partial t}\,\psi = H\psi = \left(\frac{1}{2}\,\Delta - V\right)\psi\,, \qquad \psi(t) = U_t\psi(0) \quad \text{with} \quad U_t = \mathrm{e}^{-Ht}$$

$$-rac{\partial}{\partial t}\,\psi=H\psi=\left(rac{1}{2}\,\Delta-V
ight)\psi\,,\qquad \psi(t)=U_t\psi(0)\quad {
m with}\quad U_t={
m e}^{-Ht}$$

additivity property
$$U_{t_1} \circ U_{t_2} = U_{t_1+t_2}$$

$$-rac{\partial}{\partial t}\,\psi=H\psi=\left(rac{1}{2}\,\Delta-V
ight)\psi\,,\qquad \psi(t)=U_t\psi(0)\quad {
m with}\quad U_t={
m e}^{-Ht}$$

additivity property
$$U_{t_1} \circ U_{t_2} = U_{t_1+t_2}$$

$$(U_t \psi)(z) = \int dy K_t(z, y) \psi(y) \quad \left(K_t(z, y) \sim e^{-\frac{(z-y)^2}{2t}} \text{ for } V = 0\right)$$

Schrödinger equation in quantum mechanics

$$-\frac{\partial}{\partial t}\,\psi = H\psi = \left(\frac{1}{2}\,\Delta - V\right)\psi\,, \qquad \psi(t) = U_t\psi(0) \quad \text{with} \quad U_t = \mathrm{e}^{-Ht}$$

additivity property $U_{t_1} \circ U_{t_2} = U_{t_1+t_2}$

$$(U_t \psi)(z) = \int dy \, K_t(z, y) \psi(y) \quad \left(K_t(z, y) \sim e^{-\frac{(z-y)^2}{2t}} \text{ for } V = 0 \right)$$

$$\Rightarrow K_t(z, y) = \int dx_1 \, K_{t-t_1}(z, x_1) K_{t_1}(x_1, y)$$

$$= \int dx_1 \dots dx_n \, K_{t-t_n}(z, x_n) K_{t_n-t_{n-1}}(x_n, x_{n-1}) \dots K_{t_1}(x_1, y)$$

$$K_t(z,y) = \int dx_1 \dots dx_n K_{t-t_n}(z,x_n) K_{t_n-t_{n-1}}(x_n,x_{n-1}) \dots K_{t_1}(x_1,y)$$

$$\sim \int dx_1 \dots dx_n \exp\left(-\frac{1}{2} \sum_{i=1}^{n+1} \left(\frac{x_i - x_{i-1}}{t_i - t_{i-1}}\right)^2 (t_i - t_{i-1})\right) \text{ for } V = 0$$

$$K_t(z,y) = \int dx_1 \dots dx_n K_{t-t_n}(z,x_n) K_{t_n-t_{n-1}}(x_n,x_{n-1}) \dots K_{t_1}(x_1,y)$$

$$\sim \int dx_1 \dots dx_n \exp\left(-\frac{1}{2} \sum_{i=1}^{n+1} \left(\frac{x_i - x_{i-1}}{t_i - t_{i-1}}\right)^2 (t_i - t_{i-1})\right) \text{ for } V = 0$$

$$K_{[0,t]}(z,y) = \int_{x(0)=y}^{x(t)=z} \mathcal{D}x e^{-S[x]}$$

$$K_{t}(z,y) = \int dx_{1} \dots dx_{n} K_{t-t_{n}}(z,x_{n}) K_{t_{n}-t_{n-1}}(x_{n},x_{n-1}) \dots K_{t_{1}}(x_{1},y)$$

$$\sim \int dx_{1} \dots dx_{n} \exp\left(-\frac{1}{2} \sum_{i=1}^{n+1} \left(\frac{x_{i}-x_{i-1}}{t_{i}-t_{i-1}}\right)^{2} (t_{i}-t_{i-1})\right) \text{ for } V = 0$$

$$K_{[0,t]}(z,y) = \int_{x(0)=y}^{x(t)=z} \mathcal{D}x \, e^{-S[x]} , \qquad S[x] = \int dt \, \left(\frac{\dot{x}^2}{2} + V(x)\right)$$

$$K_t(z,y) = \int dx_1 \dots dx_n K_{t-t_n}(z,x_n) K_{t_n-t_{n-1}}(x_n,x_{n-1}) \dots K_{t_1}(x_1,y)$$

$$\sim \int dx_1 \dots dx_n \exp\left(-\frac{1}{2} \sum_{i=1}^{n+1} \left(\frac{x_i - x_{i-1}}{t_i - t_{i-1}}\right)^2 (t_i - t_{i-1})\right) \text{ for } V = 0$$

$$K_{[0,t]}(z,y) = \int_{x(0)=y}^{x(t)=z} \mathcal{D}x \ e^{-S[x]}, \qquad S[x] = \int dt \left(\frac{\dot{x}^2}{2} + V(x)\right)$$

Similarly in quantum field theory

$$K_{\Sigma}(\phi_{\mathsf{out}},\phi_{\mathsf{in}}) = \int_{\phi|_{\partial_{\mathsf{out}}\Sigma} = \phi_{\mathsf{out}}}^{\phi|_{\partial_{\mathsf{out}}\Sigma} = \phi_{\mathsf{out}}} \mathcal{D}\phi \,\,\mathrm{e}^{-S[\phi]}$$

"Evolution" $\boldsymbol{\Sigma}$ gives rise to map between spaces of quantum states:

$$Z_{\Sigma}: \mathcal{H}_{\mathsf{in}} \longrightarrow \mathcal{H}_{\mathsf{out}}, \qquad \left(Z_{\Sigma}(\eta)\right)(\phi_{\mathsf{out}}) = \int \mathcal{D}\phi_{\mathsf{in}} \, K_{\Sigma}(\phi_{\mathsf{out}}, \phi_{\mathsf{in}}) \eta(\phi_{\mathsf{in}})$$

"Evolution" Σ gives rise to map between spaces of quantum states:

$$Z_\Sigma: \mathcal{H}_{\mathsf{in}} \longrightarrow \mathcal{H}_{\mathsf{out}}\,, \qquad \big(Z_\Sigma(\eta)\big)(\phi_{\mathsf{out}}) = \int \mathcal{D}\phi_{\mathsf{in}}\,K_\Sigma(\phi_{\mathsf{out}},\phi_{\mathsf{in}})\eta(\phi_{\mathsf{in}})$$

In general, additivity property $U_{t_1} \circ U_{t_2} = U_{t_1+t_2}$ turns into

gluing axiom
$$Z_{\Sigma_1 \infty \Sigma_2} = Z_{\Sigma_1} \circ Z_{\Sigma_2}$$

Categories (are really easy)

A (small) category $\mathcal C$ has

- ullet a set of *objects* $\mathrm{Ob}(\mathcal{C})$,
- for every $A,B\in \mathrm{Ob}(\mathcal{C})$ a set of *morphisms* $\mathrm{Hom}(A,B)$, with special elements $1_A\in \mathrm{Hom}(A,A)$,
- \bullet for every $A,B,C\in \mathrm{Ob}(\mathcal{C})$ a map

$$\operatorname{Hom}(B,C)\times\operatorname{Hom}(A,B)\longrightarrow\operatorname{Hom}(A,C)$$

that is associative and unital.

Categories (are really easy)

A (small) category $\mathcal C$ has

- a set of *objects* Ob(C),
- for every $A, B \in \mathrm{Ob}(\mathcal{C})$ a set of *morphisms* $\mathrm{Hom}(A,B)$, with special elements $1_A \in \mathrm{Hom}(A,A)$,
- for every $A, B, C \in \mathrm{Ob}(\mathcal{C})$ a map

$$\operatorname{Hom}(B,C)\times\operatorname{Hom}(A,B)\longrightarrow\operatorname{Hom}(A,C)$$

that is associative and unital.

Examples.

- points and arrows in directed graphs
- vector spaces and linear maps
- manifolds and diffeomorphisms
- branes and open strings in topological string theory

A closed topological field theory is a map

 $\langle - \rangle : \mathrm{Bord} \longrightarrow \mathrm{Vect}$

A closed topological field theory is a map

$$\langle - \rangle : \mathrm{Bord} \longrightarrow \mathrm{Vect}$$

Vect = "state spaces and operators" objects: finite-dimensional vector spaces morphisms: linear maps

A closed topological field theory is a map

$$\langle - \rangle : \text{Bord} \longrightarrow \text{Vect}$$

Vect = "state spaces and operators" objects: finite-dimensional vector spaces morphisms: linear maps

Bord = "geometry and evolution" objects: disjoint unions of circles $S^1 \sqcup \ldots \sqcup S^1$ morphisms: smooth surfaces between circles

A closed topological field theory is a map

$$\langle - \rangle : \mathrm{Bord} \longrightarrow \mathrm{Vect}$$

Vect = "state spaces and operators" objects: finite-dimensional vector spaces morphisms: linear maps

Bord = "geometry and evolution"

objects: disjoint unions of circles $S^1 \sqcup \ldots \sqcup S^1$ morphisms: smooth surfaces between circles

A closed topological field theory is a map

$$\langle - \rangle : \mathrm{Bord} \longrightarrow \mathrm{Vect}$$

Vect = "state spaces and operators" objects: finite-dimensional vector spaces morphisms: linear maps

Bord = "geometry and evolution" objects: disjoint unions of circles $S^1 \sqcup \ldots \sqcup S^1$ morphisms: smooth surfaces between circles

$$\langle S^1 \rangle = \mathcal{H} \qquad \langle S^1 \sqcup S^1 \rangle = \mathcal{H} \otimes \mathcal{H}$$

A closed topological field theory is a map symmetric monoidal functor

$$\langle - \rangle : \mathrm{Bord} \longrightarrow \mathrm{Vect}$$

Vect = "state spaces and operators" objects: finite-dimensional vector spaces morphisms: linear maps

Bord = "geometry and evolution" objects: disjoint unions of circles $S^1 \sqcup \ldots \sqcup S^1$ morphisms: smooth surfaces between circles

$$\langle S^1 \rangle = \mathcal{H} \qquad \langle S^1 \sqcup S^1 \rangle = \mathcal{H} \otimes \mathcal{H}$$

Theorem.

Closed TFT $\langle - \rangle \Longleftrightarrow$ commutative Frobenius algebra

Theorem.

Closed TFT $\langle - \rangle \iff$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

Theorem.

Closed TFT $\langle - \rangle \iff$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

Theorem.

Closed TFT $\langle - \rangle \iff$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

ullet $\mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$ is associative, commutative, unital:

Theorem.

Closed TFT $\langle - \rangle \Longleftrightarrow$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

ullet $\mathcal{H} \otimes \mathcal{H} \longrightarrow \mathcal{H}$ is associative, commutative, unital:

 $\bullet \ \ \text{symmetric pairing} \ \left\langle \ \ \right\rangle : \mathcal{H} \otimes \mathcal{H} \longrightarrow \mathbb{C} \ \ \text{is nondegenerate} :$

Theorem.

Closed TFT $\langle - \rangle \iff$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

Theorem.

Closed TFT $\langle - \rangle \iff$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

Examples.

B-twisted sigma models: Let X be Kähler manifold.

$$\mathcal{H} = H_{\bar{\partial}}(X) , \qquad (\alpha, \beta) \longmapsto \int_{X} \Omega \wedge \alpha \wedge \beta$$

Theorem.

Closed TFT $\langle - \rangle \Longleftrightarrow$ commutative Frobenius algebra $\mathcal{H} = \langle S^1 \rangle$.

Examples.

• B-twisted sigma models: Let X be Kähler manifold.

$$\mathcal{H} = H_{\bar{\partial}}(X) , \qquad (\alpha, \beta) \longmapsto \int_X \Omega \wedge \alpha \wedge \beta$$

• B-twisted Landau-Ginzburg models: Let $W \in \mathbb{C}[x_1, \dots, x_n]$.

$$\mathcal{H} = \mathbb{C}[x_1, \dots, x_n]/(\partial W) , \qquad (f, g) \longmapsto \operatorname{Res} \left[\frac{fg \, dx}{\partial_{x_1} W \dots \partial_{x_n} W} \right]$$

A TFT with defects is a map

$$\langle - \rangle : \operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2, \mathbb{D}_1) \longrightarrow \operatorname{Vect}$$

A TFT with defects is a map

$$\langle - \rangle : \operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2, \mathbb{D}_1) \longrightarrow \operatorname{Vect}$$

 $\operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2,\mathbb{D}_1)=$ "multi-phase worldsheets with defects" $\mathbb{D}_2=$ set of bulk theories a_1,a_2,\ldots $\mathbb{D}_1=$ set of defect conditions X_1,X_2,\ldots

A TFT with defects is a map

$$\langle - \rangle : \operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2, \mathbb{D}_1) \longrightarrow \operatorname{Vect}$$

 $\operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2,\mathbb{D}_1)=$ "multi-phase worldsheets with defects"

 $\mathbb{D}_2 = \mathsf{set} \mathsf{ of } \mathsf{bulk } \mathsf{theories } a_1, a_2, \dots$

 $\mathbb{D}_1 = \mathsf{set} \mathsf{ of} \mathsf{ defect} \mathsf{ conditions} \ X_1, X_2, \dots$

objects: circles with points labelled by \mathbb{D}_1 , segments labelled by \mathbb{D}_2 morphisms: bordisms with (isotopy classes of) lines labelled by \mathbb{D}_1 , phases labelled by \mathbb{D}_2

A TFT with defects is a map

$$\langle - \rangle : \operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2, \mathbb{D}_1) \longrightarrow \operatorname{Vect}$$

 $\operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2,\mathbb{D}_1)=$ "multi-phase worldsheets with defects"

 $\mathbb{D}_2 = \mathsf{set} \mathsf{ of } \mathsf{bulk } \mathsf{theories } a_1, a_2, \dots$

 $\mathbb{D}_1 = \text{set of defect conditions } X_1, X_2, \dots$

objects: circles with points labelled by \mathbb{D}_1 , segments labelled by \mathbb{D}_2 morphisms: bordisms with (isotopy classes of) lines labelled by \mathbb{D}_1 , phases labelled by \mathbb{D}_2

A TFT with defects is a map

$$\langle - \rangle : \operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2, \mathbb{D}_1) \longrightarrow \operatorname{Vect}$$

 $\operatorname{Bord}^{\operatorname{def}}(\mathbb{D}_2,\mathbb{D}_1)=$ "multi-phase worldsheets with defects"

 $\mathbb{D}_2 = \mathsf{set} \mathsf{ of } \mathsf{bulk } \mathsf{theories } a_1, a_2, \dots$

 $\mathbb{D}_1 = \mathsf{set} \mathsf{ of} \mathsf{ defect} \mathsf{ conditions} \ X_1, X_2, \dots$

objects: circles with points labelled by \mathbb{D}_1 , segments labelled by \mathbb{D}_2 morphisms: bordisms with (isotopy classes of) lines labelled by \mathbb{D}_1 , phases labelled by \mathbb{D}_2

2d TFTs with defects

Value of correlators only depends on isotopy class of defect lines:

2d TFTs with defects

Value of correlators only depends on isotopy class of defect lines:

$$\langle \rangle = \langle \rangle$$

Defect fusion gives product, unit = "invisible" defect I

$$\left\langle \begin{array}{c} X \\ X \\ Y \\ \end{array} \right\rangle = \left\langle \begin{array}{c} X \\ X \\ \end{array} \right\rangle = \left\langle \begin{array}{c} X \\ X \\ \end{array} \right\rangle$$

2d TFTs with defects

Value of correlators only depends on isotopy class of defect lines:

$$\langle \rangle = \langle \rangle$$

Defect fusion gives product, unit = "invisible" defect I

$$\left\langle \begin{array}{c} X \\ X \end{array} \right\rangle = \left\langle \begin{array}{c} X \\ X \end{array} \right\rangle \left\langle \begin{array}{c} I \\ X \end{array} \right\rangle = \left\langle \begin{array}{c} X \\ X \end{array} \right\rangle$$

Operator product of fields, unit = identity field

$$\left\langle \begin{array}{c} \psi \\ \varphi \end{array} \right\rangle = \left\langle \begin{array}{c} \psi \\ \psi \varphi \end{array} \right\rangle = \left\langle \begin{array}{c} \psi \\ \psi \varphi \end{array} \right\rangle$$

Definition. A **bicategory** \mathcal{B} has

- objects a, b, \ldots
- \bullet categories $\mathcal{B}(a,b)$ of 1-morphism X,Y,\dots and 2-morphisms ϕ,ψ,\dots
- functors $\otimes : \mathcal{B}(b,c) \times \mathcal{B}(a,b) \longrightarrow \mathcal{B}(a,c)$
- units $I_a \in \mathcal{B}(a,a)$ and for $X \in \mathcal{B}(a,b)$ natural isomorphisms $I_b \otimes X \cong X$, $X \otimes I_a \cong X$, $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$

Definition. A **bicategory** \mathcal{B} has

theories

• objects *a*, *b*, . . .

defects

fields

ullet categories $\mathcal{B}(a,b)$ of 1-morphism X,Y,\ldots and 2-morphisms ϕ,ψ,\ldots fusion

- functors $\otimes: \mathcal{B}(b,c) \times \mathcal{B}(a,b) \longrightarrow \mathcal{B}(a,c)$ invisible defects
- units $I_a \in \mathcal{B}(a,a)$ and for $X \in \mathcal{B}(a,b)$ natural isomorphisms $I_b \otimes X \cong X$, $X \otimes I_a \cong X$, $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$

Definition. A **bicategory** \mathcal{B} has

theories

• objects a, b, \ldots

defects

fields

ullet categories $\mathcal{B}(a,b)$ of 1-morphism X,Y,\ldots and 2-morphisms ϕ,ψ,\ldots

fusion

 $\bullet \ \, \mathsf{functors} \otimes : \mathcal{B}(b,c) \times \mathcal{B}(a,b) \longrightarrow \mathcal{B}(a,c)$

invisible defects

• units $I_a \in \mathcal{B}(a,a)$ and for $X \in \mathcal{B}(a,b)$ natural isomorphisms $I_b \otimes X \cong X$, $X \otimes I_a \cong X$, $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$

Definition. A bicategory \mathcal{B} has

theories

• objects a, b, \ldots

defects

fields

ullet categories $\mathcal{B}(a,b)$ of 1-morphism X,Y,\ldots and 2-morphisms ϕ,ψ,\ldots

fusion

 $\bullet \ \, \mathsf{functors} \otimes : \mathcal{B}(b,c) \times \mathcal{B}(a,b) \longrightarrow \mathcal{B}(a,c)$

invisible defects

• units $I_a \in \mathcal{B}(a,a)$ and for $X \in \mathcal{B}(a,b)$ natural isomorphisms $I_b \otimes X \cong X$, $X \otimes I_a \cong X$, $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$

Theorem.

Every TFT with defects gives rise to a bicategory "with extra structure".

Theorem.

Every TFT with defects gives rise to a bicategory "with extra structure".

Open problem.

What extra structure gives equivalent description?

Theorem.

Every TFT with defects gives rise to a bicategory "with extra structure".

Open problem.

What extra structure gives equivalent description?

Attitude.

Some structure known. Study consequences!

Theorem.

Every TFT with defects gives rise to a bicategory "with extra structure".

Open problem.

What extra structure gives equivalent description?

Attitude.

Some structure known. Study consequences!

Examples of bicategories:

- WZW models: bundle gerbes
- A-models: symplectic manifolds, Lagrangian correspondences
- B-models: varieties, Fourier-Mukai kernels
- Landau-Ginzburg models: potentials, matrix factorisations
- categories, functors, natural transformations
- algebras, bimodules, bimodule maps

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$.

???

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$. Everything about theory b can be recovered from defect A.

???

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$. Everything about theory b can be recovered from defect A. Think of A as 'generalised symmetry', replacing orbifold group.

???__

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$. Everything about theory b can be recovered from defect A. Think of A as 'generalised symmetry', replacing orbifold group.

Idea. Introducing X-bubbles in b-correlator is scaling by $\dim(X)$. Blowing up all X-bubbles produces a-correlator with A-defect network.

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$.

Everything about theory b can be recovered from defect A. Think of A as 'generalised symmetry', replacing orbifold group.

Idea. Introducing X-bubbles in b-correlator is scaling by $\dim(X)$. Blowing up all X-bubbles produces a-correlator with A-defect network.

???

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$. Everything about theory b can be recovered from defect A. Think of A as 'generalised symmetry', replacing orbifold group.

Idea. Introducing X-bubbles in b-correlator is scaling by $\dim(X)$. Blowing up all X-bubbles produces a-correlator with A-defect network.

??? · (V) --+ 1

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$. Everything about theory b can be recovered from defect A. Think of A as 'generalised symmetry', replacing orbifold group.

Idea. Introducing X-bubbles in b-correlator is scaling by $\dim(X)$. Blowing up all X-bubbles produces a-correlator with A-defect network.

Carqueville/Runkel 2012

2d TFT^{or} with defects

Duality and adjunctions

Bicategories

Definition. A bicategory \mathcal{B} has

theories

• objects a, b, \ldots

defects

fields

ullet categories $\mathcal{B}(a,b)$ of 1-morphism X,Y,\ldots and 2-morphisms ϕ,ψ,\ldots

fusion

 $\bullet \ \, \mathsf{functors} \otimes : \mathcal{B}(b,c) \times \mathcal{B}(a,b) \longrightarrow \mathcal{B}(a,c)$

invisible defects

• units $I_a \in \mathcal{B}(a,a)$ and for $X \in \mathcal{B}(a,b)$ natural isomorphisms $I_b \otimes X \cong X$, $X \otimes I_a \cong X$, $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$

$$\begin{vmatrix} X \\ 1 \end{vmatrix} = 1_X$$

$$\begin{vmatrix} X & Y \\ & = 1_X & \varphi \end{vmatrix} = \varphi : X \longrightarrow$$

$$\begin{vmatrix} X & Y & Y \\ 1 & Z & Y & Y \\ X & X & Y & Y \end{vmatrix} = \varphi : X \longrightarrow Y \qquad \begin{matrix} Z & Y & Y' \\ \psi & \varphi & \varphi \\ Y & Y' & \varphi \\ Y & X & X & X \end{matrix} = \varphi \otimes \varphi'$$

$$\phi = \phi : X \otimes Y \longrightarrow Z$$

$$\phi = \phi : X \otimes Y \longrightarrow Z \qquad \rho_X \bullet X$$

$$X Y \longrightarrow X Y$$

$$\begin{array}{c}
Z \\
\phi \\
X Y
\end{array} = \phi : X \otimes Y \longrightarrow Z$$

$$\begin{array}{c}
X \\
\rho_X \\
X I
\end{array}$$

$$\begin{array}{c}
X \\
\lambda_X \\
I X
\end{array}$$

Always read diagrams from bottom to top and from right to left.

$$\begin{array}{c}
Z \\
\phi \\
X Y
\end{array} = \phi : X \otimes Y \longrightarrow Z$$

$$\begin{array}{c}
X \\
\rho_X \\
X I
\end{array}$$

$$\begin{array}{c}
X \\
\lambda_X
\end{array}$$

Always read diagrams from bottom to top and from right to left.

Orientation matters:
$$b \stackrel{X}{\downarrow}$$

$$\begin{array}{c}
Z \\
\phi \\
X Y
\end{array} = \phi : X \otimes Y \longrightarrow Z$$

$$\begin{array}{c}
X \\
\rho_X \\
X I
\end{array}$$

$$\begin{array}{c}
X \\
\lambda_X
\end{array}$$

Always read diagrams from bottom to top and from right to left.

Orientation and adjoints

Defects are topological:

$$\begin{vmatrix}
X & X \\
X & X
\end{vmatrix}$$

Orientation and adjoints

$$(X^{\dagger})_{X} = \operatorname{ev}_{X} : X^{\dagger} \otimes X \longrightarrow I (X \otimes X^{\dagger})_{X} = \operatorname{coev}_{X} : I \longrightarrow X \otimes X^{\dagger}$$

Defects are topological:

$$1_X = \left(\begin{array}{c} X & X \\ \\ \\ X \end{array}\right) = \rho \circ (1 \otimes \operatorname{ev}) \circ (\operatorname{coev} \otimes 1) \circ \lambda^{-1} \quad \left(\begin{array}{c} X^{\dagger} \\ \\ \\ X^{\dagger} \end{array}\right) = \left(\begin{array}{c} X^{\dagger} \\ \\ \\ X^{\dagger} \end{array}\right)$$

Orientation and adjoints

$$\overbrace{X^{\dagger} \quad X}^{I} = \operatorname{ev}_{X} : X^{\dagger} \otimes X \longrightarrow I \qquad \overbrace{X}^{X} \quad X^{\dagger} = \operatorname{coev}_{X} : I \longrightarrow X \otimes X^{\dagger}$$

Defects are topological:

$$1_X = \bigwedge_{X} = \bigvee_{X} = \rho \circ (1 \otimes \text{ev}) \circ (\text{coev} \otimes 1) \circ \lambda^{-1} \qquad \bigvee_{X^{\dagger}} = \bigvee_{X^{\dagger}}$$

Definition. A bicategory has adjoints if for each 1-morphism X there is a 1-morphism X^\dagger with 2-morphisms $\operatorname{ev}_X, \operatorname{coev}_X$ such that the above *Zorro moves* hold.

• theories: **potentials** $W \in \mathbb{C}[x_1, \dots, x_n]$

- theories: **potentials** $W \in \mathbb{C}[x_1, \dots, x_n]$
- defects between $W \in \mathbb{C}[x]$ and $V \in \mathbb{C}[z]$: matrix factorisations of V-W, i. e. $\mathbb{C}[x,z]$ -modules X with

$$d_X = \begin{pmatrix} 0 & d_X^1 \\ d_X^0 & 0 \end{pmatrix} \in \operatorname{End}(X), \qquad d_X^2 = (V - W) \cdot 1_X$$

- theories: **potentials** $W \in \mathbb{C}[x_1, \ldots, x_n]$
- defects between $W\in\mathbb{C}[x]$ and $V\in\mathbb{C}[z]$: matrix factorisations of V-W, i. e. $\mathbb{C}[x,z]$ -modules X with

$$d_X = \begin{pmatrix} 0 & d_X^1 \\ d_X^0 & 0 \end{pmatrix} \in \operatorname{End}(X), \qquad d_X^2 = (V - W) \cdot 1_X$$

ullet fields between X and Y: BRST cohomology of

$$\operatorname{Hom}(X,Y) \ni \psi \longmapsto d_Y \psi - (-1)^{|\psi|} \psi d_X$$

• defect fusion: $Y \otimes X$, $d_{Y \otimes X} = d_Y \otimes 1 + 1 \otimes d_X$

- defect fusion: $Y \otimes X$, $d_{Y \otimes X} = d_Y \otimes 1 + 1 \otimes d_X$
- invisible defect:

$$I_W = \mathbb{C}[x, y]^{\oplus 2}, \qquad d_{I_W} = \begin{pmatrix} 0 & x - y \\ \frac{W(x) - W(y)}{x - y} & 0 \end{pmatrix}$$

- defect fusion: $Y \otimes X$, $d_{Y \otimes X} = d_Y \otimes 1 + 1 \otimes d_X$
- invisible defect:

$$I_W = \mathbb{C}[x, y]^{\oplus 2}, \qquad d_{I_W} = \begin{pmatrix} 0 & x - y \\ \frac{W(x) - W(y)}{x - y} & 0 \end{pmatrix}$$

for n = 1, in general:

$$I_W = \bigwedge \left(\bigoplus_{i=1}^n \mathbb{C}[x, y] \cdot \theta_i \right), \qquad d_{I_W} = \sum_{i=1}^n \left((x_i - y_i) \cdot \theta_i^* + \partial_{[i]} W \cdot \theta_i \right)$$

- defect fusion: $Y \otimes X$, $d_{Y \otimes X} = d_Y \otimes 1 + 1 \otimes d_X$
- invisible defect:

$$I_W = \mathbb{C}[x, y]^{\oplus 2}, \qquad d_{I_W} = \begin{pmatrix} 0 & x - y \\ \frac{W(x) - W(y)}{x - y} & 0 \end{pmatrix}$$

for n = 1, in general:

$$I_W = \bigwedge \left(\bigoplus_{i=1}^n \mathbb{C}[x, y] \cdot \theta_i \right), \qquad d_{I_W} = \sum_{i=1}^n \left((x_i - y_i) \cdot \theta_i^* + \partial_{[i]} W \cdot \theta_i \right)$$

Fact. $\operatorname{End}(I_W) \cong \mathbb{C}[x]/(\partial W) = \operatorname{bulk} \operatorname{space}$

- ullet defect fusion: $Y\otimes X$, $d_{Y\otimes X}=d_Y\otimes 1+1\otimes d_X$
- invisible defect:

$$I_W = \mathbb{C}[x, y]^{\oplus 2}, \qquad d_{I_W} = \begin{pmatrix} 0 & x - y \\ \frac{W(x) - W(y)}{x - y} & 0 \end{pmatrix}$$

for n = 1, in general:

$$I_W = \bigwedge \left(\bigoplus_{i=1}^n \mathbb{C}[x, y] \cdot \theta_i \right), \qquad d_{I_W} = \sum_{i=1}^n \left((x_i - y_i) \cdot \theta_i^* + \partial_{[i]} W \cdot \theta_i \right)$$

Fact. End $(I_W) \cong \mathbb{C}[x]/(\partial W) = \text{bulk space}$

$$\bigwedge_{I=X}^{X} : I \otimes X \longrightarrow \mathbb{C}[x,y] \otimes X \xrightarrow{\mathrm{mult.}} X$$

- defect fusion: $Y \otimes X$, $d_{Y \otimes X} = d_Y \otimes 1 + 1 \otimes d_X$
- invisible defect:

$$I_W = \mathbb{C}[x, y]^{\oplus 2}, \qquad d_{I_W} = \begin{pmatrix} 0 & x - y \\ \frac{W(x) - W(y)}{x - y} & 0 \end{pmatrix}$$

for n=1, in general:

$$I_W = \bigwedge \left(\bigoplus_{i=1}^n \mathbb{C}[x, y] \cdot \theta_i \right), \qquad d_{I_W} = \sum_{i=1}^n \left((x_i - y_i) \cdot \theta_i^* + \partial_{[i]} W \cdot \theta_i \right)$$

Fact. $\operatorname{End}(I_W) \cong \mathbb{C}[x]/(\partial W) = \operatorname{bulk}$ space

$$\bigwedge_{I=X}^{X} : I \otimes X \longrightarrow \mathbb{C}[x,y] \otimes X \xrightarrow{\mathrm{mult.}} X \; , \qquad \bigwedge_{I=X}^{X} : X \otimes I \longrightarrow X$$

- defect fusion: $Y \otimes X$, $d_{Y \otimes X} = d_Y \otimes 1 + 1 \otimes d_X$
- invisible defect:

$$I_W = \mathbb{C}[x, y]^{\oplus 2}, \qquad d_{I_W} = \begin{pmatrix} 0 & x - y \\ \frac{W(x) - W(y)}{x - y} & 0 \end{pmatrix}$$

for n=1, in general:

$$I_W = \bigwedge \left(\bigoplus_{i=1}^n \mathbb{C}[x, y] \cdot \theta_i \right), \qquad d_{I_W} = \sum_{i=1}^n \left((x_i - y_i) \cdot \theta_i^* + \partial_{[i]} W \cdot \theta_i \right)$$

Fact. End $(I_W) \cong \mathbb{C}[x]/(\partial W) = \text{bulk space}$

operator product: matrix multiplication

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints.

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints. Let $W \in k[x_1, \ldots, x_n]$, $V \in k[z_1, \ldots, z_m]$, X matrix fact. of V - W:

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints. Let $W \in k[x_1, \ldots, x_n]$, $V \in k[z_1, \ldots, z_m]$, X matrix fact. of V - W:

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints. Let $W \in k[x_1, \ldots, x_n]$, $V \in k[z_1, \ldots, z_m]$, X matrix fact. of V - W:

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints. Let $W \in k[x_1,\ldots,x_n]$, $V \in k[z_1,\ldots,z_m]$, X matrix fact. of V-W:

$$X \qquad X^{\dagger} : \theta_1 \dots \theta_r \longmapsto = \sum_{i,j} \left\{ \partial_{[r+1]} d_X \dots \partial_{[n]} d_X \right\}_{ji} e_i \otimes e_j^*$$

Carqueville/Murfet 2012

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints. Let $W \in k[x_1, \dots, x_n]$, $V \in k[z_1, \dots, z_m]$, X matrix fact. of V - W:

$$X \qquad X^{\dagger} : \theta_1 \dots \theta_r \longmapsto = \sum_{i,j} \left\{ \partial_{[r+1]} d_X \dots \partial_{[n]} d_X \right\}_{ji} e_i \otimes e_j^*$$

$$\underbrace{X^{\dagger}}_{X} : e_i^* \otimes e_j \longmapsto \sum_{\substack{l \geqslant 0 \\ a_1 < \dots < a_l}} \operatorname{Res} \left[\frac{\left\{ \partial_{z_1} d_X \dots \partial_{z_m} d_X \, \partial_{[a_1]} d_X \dots \partial_{[a_l]} d_X \right\}_{ij} \underline{dz}}{\partial_{z_1} V \dots \partial_{z_m} V} \right]$$

 $\theta_{a_1} \dots \theta_{a_l}$

Theorem. The bicategory \mathcal{LG} of Landau-Ginzburg models has adjoints. Let $W \in k[x_1,\ldots,x_n]$, $V \in k[z_1,\ldots,z_m]$, X matrix fact. of V-W:

$$\overset{X}{\smile} \overset{X^{\dagger}}{\smile} : \theta_1 \dots \theta_r \longmapsto = \sum_{i,j} \left\{ \partial_{[r+1]} d_X \dots \partial_{[n]} d_X \right\}_{ji} e_i \otimes e_j^*$$

$$(X^{\dagger} X) : e_i^* \otimes e_j \longmapsto \sum_{\substack{l \geqslant 0 \\ a_1 < \dots < a_l}} \operatorname{Res} \left[\frac{\left\{ \partial_{z_1} d_X \dots \partial_{z_m} d_X \partial_{[a_1]} d_X \dots \partial_{[a_l]} d_X \right\}_{ij} \underline{d}\underline{z}}{\partial_{z_1} V \dots \partial_{z_m} V} \right] \\
\cdot \theta_{a_1} \dots \theta_{a_l}$$

Proof: homological perturbation, associative Atiyah classes

Defect action on bulk fields for defect X between W(x) and V(z):

Defect action on bulk fields for defect X between W(x) and V(z):

Defect action on bulk fields for defect X between W(x) and V(z):

Defect action on bulk fields for defect X between W(x) and V(z):

Special cases:

ullet $\phi=1$, $\Psi=1$ gives the quantum dimension $\dim(X)$

Defect action on bulk fields for defect X between W(x) and V(z):

Special cases:

- ullet $\phi=1$, $\Psi=1$ gives the quantum dimension $\dim(X)$
- ullet V=0 gives Kapustin-Li disc correlator

Defect action on bulk fields for defect X between W(x) and V(z):

Special cases:

- ullet $\phi=1$, $\Psi=1$ gives the quantum dimension $\dim(X)$
- ullet V=0 gives Kapustin-Li disc correlator
- W = 0 gives boundary-bulk map

$$\beta^X(\Psi) = \operatorname{str}\left(\Psi \,\partial_{z_1} d_X \dots \partial_{z_m} d_X\right)$$

Defect action on bulk fields for defect X between W(x) and V(z):

Special cases:

- ullet $\phi=1$, $\Psi=1$ gives the quantum dimension $\dim(X)$
- ullet V=0 gives Kapustin-Li disc correlator
- W = 0 gives boundary-bulk map

$$\beta^X(\Psi) = \operatorname{str}\left(\Psi \,\partial_{z_1} d_X \dots \partial_{z_m} d_X\right)$$

 $\operatorname{ch}(X) := \beta^X(1)$ is the boundary state or Chern character

Theorem. The Cardy condition holds in \mathcal{LG}

Theorem. The Cardy condition holds in \mathcal{LG} : for matrix factorisations X,Y of W and maps $\Phi:X\longrightarrow X$, $\Psi:Y\longrightarrow Y$ we have

$$\operatorname{str}\left(\Psi m_{\Phi}\right) = \operatorname{Res}\left[\frac{\operatorname{str}\left(\Phi \,\partial_{1} d_{X} \dots \partial_{n} d_{X}\right) \operatorname{str}\left(\Psi \,\partial_{1} d_{Y} \dots \partial_{n} d_{Y}\right) \underline{\mathrm{d}x}}{\partial_{1} W \dots \partial_{n} W}\right]$$

where Ψm_{Φ} sends $\alpha: X \longrightarrow Y$ to $\Psi \alpha \Phi$.

Theorem. The Cardy condition holds in \mathcal{LG} : for matrix factorisations X,Y of W and maps $\Phi:X\longrightarrow X$, $\Psi:Y\longrightarrow Y$ we have

$$\operatorname{str}\left(\Psi m_{\Phi}\right) = \operatorname{Res}\left[\frac{\operatorname{str}\left(\Phi \,\partial_{1} d_{X} \dots \partial_{n} d_{X}\right) \operatorname{str}\left(\Psi \,\partial_{1} d_{Y} \dots \partial_{n} d_{Y}\right) \underline{\mathrm{d}x}}{\partial_{1} W \dots \partial_{n} W}\right]$$

where Ψm_{Φ} sends $\alpha: X \longrightarrow Y$ to $\Psi \alpha \Phi$.

Theorem. The Cardy condition holds in \mathcal{LG} : for matrix factorisations X,Y of W and maps $\Phi:X\longrightarrow X$, $\Psi:Y\longrightarrow Y$ we have

$$\operatorname{str}\left(\Psi m_{\Phi}\right) = \operatorname{Res}\left[\frac{\operatorname{str}\left(\Phi \,\partial_{1} d_{X} \dots \partial_{n} d_{X}\right) \operatorname{str}\left(\Psi \,\partial_{1} d_{Y} \dots \partial_{n} d_{Y}\right) \underline{\mathrm{d}x}}{\partial_{1} W \dots \partial_{n} W}\right]$$

where Ψm_{Φ} sends $\alpha: X \longrightarrow Y$ to $\Psi \alpha \Phi$.

Theorem. The Cardy condition holds in \mathcal{LG} : for matrix factorisations X,Y of W and maps $\Phi:X\longrightarrow X$, $\Psi:Y\longrightarrow Y$ we have

$$\operatorname{str}(\Psi m_{\Phi}) = \operatorname{Res}\left[\frac{\operatorname{str}(\Phi \,\partial_{1} d_{X} \dots \partial_{n} d_{X}) \operatorname{str}(\Psi \,\partial_{1} d_{Y} \dots \partial_{n} d_{Y}) \underline{dx}}{\partial_{1} W \dots \partial_{n} W}\right]$$

where Ψm_{Φ} sends $\alpha: X \longrightarrow Y$ to $\Psi \alpha \Phi$.

Theorem. The Cardy condition holds in \mathcal{LG} : for matrix factorisations X,Y of W and maps $\Phi:X\longrightarrow X$, $\Psi:Y\longrightarrow Y$ we have

$$\operatorname{str}(\Psi m_{\Phi}) = \operatorname{Res}\left[\frac{\operatorname{str}(\Phi \,\partial_{1}d_{X} \dots \partial_{n}d_{X})\operatorname{str}(\Psi \,\partial_{1}d_{Y} \dots \partial_{n}d_{Y})\underline{\,\mathrm{d}x}}{\partial_{1}W \dots \partial_{n}W}\right]$$

where Ψm_{Φ} sends $\alpha: X \longrightarrow Y$ to $\Psi \alpha \Phi$.

Main result. Let $X \in \mathcal{B}(a,b)$ have invertible $\dim(X)$, set $A = X^{\dagger} \otimes X$. Everything about theory b can be recovered from defect A. Think of A as 'generalised symmetry', replacing orbifold group.

Idea. Introducing X-bubbles in b-correlator is scaling by $\dim(X)$. Blowing up all X-bubbles produces a-correlator with A-defect network.

Carqueville/Runkel 2012

Let ${\cal B}$ be pivotal bicategory with adjoints. Orbifold completion ${\cal B}_{
m orb}$

Let $\mathcal B$ be pivotal bicategory with adjoints. Orbifold completion $\mathcal B_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

Let \mathcal{B} be pivotal bicategory with adjoints. Orbifold completion \mathcal{B}_{orb} :

• objects: pairs (a, A) with $a \in \mathcal{B}$ and $A \in \mathcal{B}(a, a)$ separable symmetric Frobenius algebra:

$$: A {\otimes} A \longrightarrow A$$

$$: I \longrightarrow A$$

Let $\mathcal B$ be pivotal bicategory with adjoints. Orbifold completion $\mathcal B_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

$$: A \otimes A \longrightarrow A \qquad |: I \longrightarrow A \qquad | = | = |$$

Let $\mathcal B$ be pivotal bicategory with adjoints. Orbifold completion $\mathcal B_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

$$: A \otimes A \longrightarrow A \qquad |: I \longrightarrow A \qquad | = | = |$$

Let $\mathcal B$ be pivotal bicategory with adjoints. Orbifold completion $\mathcal B_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

$$: A \otimes A \longrightarrow A \qquad |: I \longrightarrow A \qquad = | = |$$

Let $\mathcal B$ be pivotal bicategory with adjoints. Orbifold completion $\mathcal B_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

$$: A \otimes A \longrightarrow A \qquad |: I \longrightarrow A \qquad | = | = |$$

Let $\mathcal B$ be pivotal bicategory with adjoints. Orbifold completion $\mathcal B_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

$$: A \otimes A \longrightarrow A \qquad |: I \longrightarrow A \qquad | = | = |$$

• 1-morphisms: $X \in \mathcal{B}(a,b)$ that are bimodules

• horizontal composition: tensor product over algebra, $I_{(a,A)}=A$

Let ${\mathcal B}$ be pivotal bicategory with adjoints. Orbifold completion ${\mathcal B}_{\mathrm{orb}}$:

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ separable symmetric Frobenius algebra:

$$: A \otimes A \longrightarrow A \qquad |: I \longrightarrow A \qquad | = | = |$$

- ullet horizontal composition: tensor product over algebra, $I_{(a,A)}=A$
- 2-morphisms: $\phi \in \operatorname{Hom}(X,Y)$ that are bimodule maps

Theorem.

 $\bullet \ \mathcal{B} \subset \mathcal{B}_{\mathrm{orb}}$

Theorem.

 $\bullet \ \mathcal{B} \subset \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

Theorem.

- $\bullet \ \mathcal{B} \subset \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$
- If orbifold group G acts on $\mathcal{B}(a,b)$, then with $A_G = \bigoplus_{g \in G} (I_a)_g$:

$$\mathcal{B}(a,b)^G \cong \mathcal{B}_{\mathrm{orb}}\big((a,A_G),(b,B_G)\big)$$

Theorem.

- $\bullet \ \mathcal{B} \subset \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$
- If orbifold group G acts on $\mathcal{B}(a,b)$, then with $A_G = \bigoplus_{g \in G} (I_a)_g$:

$$\mathcal{B}(a,b)^G \cong \mathcal{B}_{\mathrm{orb}}\big((a,A_G),(b,B_G)\big)$$

Theorem.

 $A = X^{\dagger} \otimes X$ is symmetric Frobenius for any $X \in \mathcal{B}(a,b)$.

Theorem.

- $\mathcal{B} \subset \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$
- If orbifold group G acts on $\mathcal{B}(a,b)$, then with $A_G = \bigoplus_{g \in G} (I_a)_g$:

$$\mathcal{B}(a,b)^G \cong \mathcal{B}_{\mathrm{orb}}\big((a,A_G),(b,B_G)\big)$$

Theorem.

 $A=X^{\dagger}\otimes X$ is symmetric Frobenius for any $X\in \mathcal{B}(a,b).$

If $\dim(X)$ is *invertible* (easy to check for $\mathcal{B} = \mathcal{LG}$) then:

- $A = X^{\dagger} \otimes X$ is a also separable.
- $X \otimes_A X^{\dagger} \cong I_b$.
- ullet X and X^{\dagger} mutually inverse in $\mathcal{B}_{\mathrm{orb}}$, so $X:(a,A)\cong (b,I_b):X^{\dagger}$

Theorem.

- $\bullet \ \mathcal{B} \subset \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$
- If orbifold group G acts on $\mathcal{B}(a,b)$, then with $A_G = \bigoplus_{g \in G} (I_a)_g$:

$$\mathcal{B}(a,b)^G \cong \mathcal{B}_{orb}((a,A_G),(b,B_G))$$

Theorem.

 $A=X^{\dagger}\otimes X$ is symmetric Frobenius for any $X\in \mathcal{B}(a,b).$

If $\dim(X)$ is *invertible* (easy to check for $\mathcal{B} = \mathcal{LG}$) then:

- $A = X^{\dagger} \otimes X$ is a also separable.
- $X \otimes_A X^{\dagger} \cong I_b$.
- ullet X and X^\dagger mutually inverse in $\mathcal{B}_{\mathrm{orb}}$, so $X:(oldsymbol{a},oldsymbol{A})\cong (oldsymbol{b},oldsymbol{I_b}):X^\dagger$

Holds for any pivotal bicategory \mathcal{B} , e.g. also for B-models – expect generalisation of homological mirror symmetry!

ullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

ullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

with or without discrete torsion

ullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

with or without discrete torsion, Serre functor, Cardy condition...

ullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

with or without discrete torsion, Serre functor, Cardy condition...

• \mathbb{Z}_2 -orbifold between A- and D-type simple singularities

ullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

with or without discrete torsion, Serre functor, Cardy condition...

• \mathbb{Z}_2 -orbifold between A- and D-type simple singularities:

$$X = \begin{pmatrix} 0 & \frac{x^d - u^{2d}}{x - u^2} - y^2 \\ x - u^2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & z + uy \\ z - uy & 0 \end{pmatrix}$$

is 1-morphism between $W_A=u^{2d}$ and $W_D=x^d-xy^2+z^2$ with $\dim(X)=1 \Rightarrow \operatorname{hmf}(W_D) \cong \operatorname{mod}(X^\dagger \otimes X)$

ullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

with or without discrete torsion, Serre functor, Cardy condition...

• \mathbb{Z}_2 -orbifold between A- and D-type simple singularities:

$$X = \begin{pmatrix} 0 & \frac{x^d - u^{2d}}{x - u^2} - y^2 \\ x - u^2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & z + uy \\ z - uy & 0 \end{pmatrix}$$

is 1-morphism between $W_A=u^{2d}$ and $W_D=x^d-xy^2+z^2$ with $\dim(X)=1 \Rightarrow \operatorname{hmf}(W_D) \cong \operatorname{mod}(X^\dagger \otimes X)$

 similar equivalences expected e.g. between A- and E-type, and for Calabi-Yau compactifications

 \bullet "ordinary" orbifolds: for finite symmetry group G of W we have

$$\operatorname{hmf}(W)^G = \mathcal{LG}(0, W)^G \cong \operatorname{mod}\left(\bigoplus_{g \in G} I_g\right)$$

with or without discrete torsion, Serre functor, Cardy condition...

• \mathbb{Z}_2 -orbifold between A- and D-type simple singularities:

$$X = \begin{pmatrix} 0 & \frac{x^d - u^{2d}}{x - u^2} - y^2 \\ x - u^2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & z + uy \\ z - uy & 0 \end{pmatrix}$$

is 1-morphism between $W_A=u^{2d}$ and $W_D=x^d-xy^2+z^2$ with $\dim(X)=1 \Rightarrow \operatorname{hmf}(W_D) \cong \operatorname{mod}(X^\dagger \otimes X)$

 similar equivalences expected e.g. between A- and E-type, and for Calabi-Yau compactifications

Task. Classify all defects with invertible quantum dimensions!

Equivariant completion and supersymmetry

Theorem. $(\mathcal{B}^{\langle - \rangle})_{\mathrm{orb}} \cong \mathcal{B}^{\langle - \rangle^{\mathrm{orb}}}$

Theorem. $(\mathcal{B}^{\langle - \rangle})_{\mathrm{orb}} \cong \mathcal{B}^{\langle - \rangle^{\mathrm{orb}}}$. In other words, symmetric separable Frobenius algebras \iff Pachner moves:

Theorem. $(\mathcal{B}^{\langle - \rangle})_{\mathrm{orb}} \cong \mathcal{B}^{\langle - \rangle^{\mathrm{orb}}}$. In other words, symmetric separable Frobenius algebras \iff Pachner moves:

What if the algebra is not symmetric?

Theorem. $(\mathcal{B}^{\langle - \rangle})_{\mathrm{orb}} \cong \mathcal{B}^{\langle - \rangle^{\mathrm{orb}}}$. In other words, symmetric separable Frobenius algebras \iff Pachner moves:

What if the algebra is not symmetric?

Lemma. A is symmetric iff its Nakayama automorphism

$$\gamma_A =$$
 $\gamma_A^{-1} =$

is the identity.

Fix bicategory with adjoints \mathcal{B} . Orbifold completion \mathcal{B}_{orb} :

• objects: pairs (a,A) with $a\in\mathcal{B}$ and $A\in\mathcal{B}(a,a)$ symmetric separable Frobenius algebra:

- horizontal composition: tensor product over algebra, $I_{(a,A)}=A$
- 2-morphisms: $\phi \in \operatorname{Hom}(X,Y)$ that are bimodule maps

Generalised orbifolds

Fix bicategory with adjoints \mathcal{B} . Orbifold Equivariant completion \mathcal{B}_{eq} :

• objects: pairs (a,A) with $a \in \mathcal{B}$ and $A \in \mathcal{B}(a,a)$ symmetric separable Frobenius algebra:

• 1-morphisms: $X \in \mathcal{B}(a,b)$ that are bimodules

- horizontal composition: tensor product over algebra, $I_{(a,A)}=A$
- 2-morphisms: $\phi \in \operatorname{Hom}(X,Y)$ that are bimodule maps

Motivation. IR fixed points of Landau-Ginzburg models have equivalence $\{ RR \text{ ground states } \} \cong \{ (c,c) \text{ fields } \}$

Motivation. IR fixed points of Landau-Ginzburg models have equivalence $\{ RR \text{ ground states } \} \cong \{ (c,c) \text{ fields } \}$, but not necessarily their orbifolds.

Motivation. IR fixed points of Landau-Ginzburg models have equivalence $\{ RR \text{ ground states } \} \cong \{ (c,c) \text{ fields } \}$, but not necessarily their orbifolds.

Let $(a,A) \in \mathcal{B}_{eq}$. Consider \mathbb{C} -algebra $\operatorname{Hom}(I_a,A)$ with

$$\alpha \cdot \beta = \left\langle \alpha, \beta \right\rangle_{(a,A)} = \left\langle \alpha, \beta \right\rangle_a$$

Motivation. IR fixed points of Landau-Ginzburg models have equivalence $\{ RR \text{ ground states } \} \cong \{ (c,c) \text{ fields } \}$, but not necessarily their orbifolds.

Let $(a,A) \in \mathcal{B}_{eq}$. Consider \mathbb{C} -algebra $\operatorname{Hom}(I_a,A)$ with

$$\alpha \cdot \beta = \left\langle \alpha, \beta \right\rangle_{(a,A)} = \left\langle \alpha, \beta \right\rangle_a$$

Two ways to "wrap A around α " give projectors

$$\pi_A^{(c,c)}: \alpha \longmapsto \alpha \qquad \pi_A^{RR}: \alpha \longmapsto \alpha$$

Motivation. IR fixed points of Landau-Ginzburg models have equivalence $\{ RR \text{ ground states } \} \cong \{ (c,c) \text{ fields } \}$, but not necessarily their orbifolds.

Let $(a, A) \in \mathcal{B}_{eq}$. Consider \mathbb{C} -algebra $\operatorname{Hom}(I_a, A)$ with

$$\alpha \cdot \beta = \left\langle \alpha, \beta \right\rangle_{(a,A)} = \left\langle \alpha, \beta \right\rangle_a$$

Two ways to "wrap A around α " give projectors

$$\pi_A^{(c,c)}: \alpha \longmapsto \alpha \qquad \pi_A^{RR}: \alpha \longmapsto \alpha$$

For ordinary LG orbifolds $(A=A_G)$ their images recover (c,c) fields and RR ground states!

Theorem. $\pi_A^{(c,c)}$ and π_A^{RR} compute **Hochschild (co)homology**:

$$\operatorname{im}(\pi_A^{(\operatorname{c,c})}) \cong \operatorname{HH}^{\bullet}(A) = \operatorname{Hom}_{AA}(A,A)$$

 $\operatorname{im}(\pi_A^{\operatorname{RR}}) \cong \operatorname{HH}_{\bullet}(A) = \operatorname{Hom}_{AA}(S_{AA}^{-1},A)$

Theorem. $\pi_A^{(c,c)}$ and π_A^{RR} compute **Hochschild (co)homology**:

$$\begin{split} &\operatorname{im}(\pi_A^{(\operatorname{c},\operatorname{c})}) \cong \operatorname{HH}^{\bullet}(A) = \operatorname{Hom}_{AA}(A,A) \\ &\operatorname{im}(\pi_A^{\operatorname{RR}}) \cong \operatorname{HH}_{\bullet}(A) = \operatorname{Hom}_{AA}(S_{AA}^{-1},A) \end{split}$$

 $\mathrm{HH}_{\bullet}(A)$ is a module over $\mathrm{HH}^{\bullet}(A)$ and has a nondegenerate pairing. $\mathrm{HH}_{\bullet}(A) = \mathrm{HH}^{\bullet}(A)$ if A is symmetric (Calabi-Yau condition).

Theorem. $\pi_A^{(c,c)}$ and π_A^{RR} compute **Hochschild (co)homology**:

$$\begin{split} &\operatorname{im}(\pi_A^{(\operatorname{c},\operatorname{c})}) \cong \operatorname{HH}^{\bullet}(A) = \operatorname{Hom}_{AA}(A,A) \\ &\operatorname{im}(\pi_A^{\operatorname{RR}}) \cong \operatorname{HH}_{\bullet}(A) = \operatorname{Hom}_{AA}(S_{AA}^{-1},A) \end{split}$$

 $\mathrm{HH}_{ullet}(A)$ is a module over $\mathrm{HH}^{ullet}(A)$ and has a nondegenerate pairing. $\mathrm{HH}_{ullet}(A)=\mathrm{HH}^{ullet}(A)$ if A is symmetric (Calabi-Yau condition).

Question. What if \mathcal{B} "is" not supersymmetric?

Theorem. $\pi_A^{(c,c)}$ and π_A^{RR} compute **Hochschild (co)homology**:

$$\begin{split} &\operatorname{im}(\pi_A^{(\operatorname{c},\operatorname{c})}) \cong \operatorname{HH}^{\bullet}(A) = \operatorname{Hom}_{AA}(A,A) \\ &\operatorname{im}(\pi_A^{\operatorname{RR}}) \cong \operatorname{HH}_{\bullet}(A) = \operatorname{Hom}_{AA}(S_{AA}^{-1},A) \end{split}$$

 $\mathrm{HH}_{ullet}(A)$ is a module over $\mathrm{HH}^{ullet}(A)$ and has a nondegenerate pairing. $\mathrm{HH}_{ullet}(A)=\mathrm{HH}^{ullet}(A)$ if A is symmetric (Calabi-Yau condition).

Question. What if \mathcal{B} "is" not supersymmetric?

Theorem. $\pi_A^{(c,c)}$ and π_A^{RR} compute **Hochschild (co)homology**:

$$\operatorname{im}(\pi_A^{(\operatorname{c,c})}) \cong \operatorname{HH}^{\bullet}(A) = \operatorname{Hom}_{AA}(A,A)$$

 $\operatorname{im}(\pi_A^{\operatorname{RR}}) \cong \operatorname{HH}_{\bullet}(A) = \operatorname{Hom}_{AA}(S_{AA}^{-1},A)$

 $\mathrm{HH}_{\bullet}(A)$ is a module over $\mathrm{HH}^{\bullet}(A)$ and has a nondegenerate pairing. $\mathrm{HH}_{\bullet}(A)=\mathrm{HH}^{\bullet}(A)$ if A is symmetric (Calabi-Yau condition).

Question. What if \mathcal{B} "is" not supersymmetric?

So $\mathrm{HH}^{\bullet}(A)$ and $\mathrm{HH}_{\bullet}(A)$ are the special cases n=0 and n=1 of

$$\mathcal{H}_A^n = \operatorname{im}\left(\bigcap_{\alpha} \longmapsto \gamma_A^n \bigcap_{\alpha}\right) \qquad n \in \mathbb{Z}$$

Many sectors

$$\mathcal{H}_A^n = \operatorname{im}\left(\bigcap_{\alpha} \longmapsto \gamma_A^n \bigcap_{\alpha} \right)$$

Many sectors

$$\mathcal{H}_A^n = \operatorname{im}\left(\bigcap_{\alpha} \longmapsto \gamma_A^n \bigcap_{\alpha} \right)$$

wants to be the image of framed circle S_n^1 under **extended 2d TFT**

$$\operatorname{Bord}_{2,1,0}^{\operatorname{fr}} \longrightarrow \mathcal{B}_{\operatorname{eq}}$$

Many sectors

$$\mathcal{H}_A^n = \operatorname{im}\left(\bigcap_{\alpha} \longmapsto \gamma_A^n \bigcap_{\alpha} \right)$$

wants to be the image of framed circle S_n^1 under **extended 2d TFT**

$$\operatorname{Bord}_{2,1,0}^{\operatorname{fr}} \longrightarrow \mathcal{B}_{\operatorname{eq}}$$

Evidence: $\mathcal{H}^m_A imes \mathcal{H}^n_A \longrightarrow \mathcal{H}^{m+n}_A$ as

"2d TFT with defects = bicategory + x"

"2d TFT with defects = bicategory + x"

Theorem. The bicategory of Landau-Ginzburg models has adjoints.

"2d TFT with defects = bicategory + x"

Theorem. The bicategory of **Landau-Ginzburg models** has adjoints.

- conceptual construction, yet very "computable"
- encode all open/closed TFT data (and more!)
- easy proof of Hirzebruch-Riemann-Roch theorem for LG models

"2d TFT with defects = bicategory + x"

Theorem. The bicategory of Landau-Ginzburg models has adjoints.

- conceptual construction, yet very "computable"
 - encode all open/closed TFT data (and more!)
 - easy proof of Hirzebruch-Riemann-Roch theorem for LG models

Generalised orbifolds

- natural description of conventional orbifolds
- information about NS and R sectors via defects; extended TFT
- give rise to new equivalences

"2d TFT with defects = bicategory + x"

Theorem. The bicategory of **Landau-Ginzburg models** has adjoints.

- conceptual construction, yet very "computable"
- encode all open/closed TFT data (and more!)
- easy proof of Hirzebruch-Riemann-Roch theorem for LG models

Generalised orbifolds

- natural description of conventional orbifolds
 - information about NS and R sectors via defects; extended TFT
 - give rise to new equivalences

Outlook.

- more generalised orbifolds
- generalisation of homological mirror symmetry
- ullet refined link invariants: compute $\mathfrak{so}(2n)$ from $\mathfrak{sl}(n)$

Summary

