## Quantum tunneling in the inflationary era and its observational consequences

Non-Gaussian bubble

15

10

5







- Introduction
- Quantum tunneling during inflation
- in-in formalism on tunneling background
- Toy model & Non–Gaussian bubble
- Conclusion



- Introduction
- Quantum tunneling during inflation
- in-in formalism on tunneling background
- Toy model & Non-Gaussian bubble
- Conclusion

## String landscape

http://journalofcosmology.com

Inflation (flatness, homogeneity, power spectrum)

- good consistency with observation
- What is the physical origin of inflation?

**String landscape** (Susskind, 2003)

- degrees of freedom in the shape of extra-dimension
- many scalar fields & local potential minima



potential for scalar fields

- Two ways to study string landscape
  - I. Trying to obtain the potential from the first principle (string theory side)
  - II. Assuming string landscape and studying its consequences (cosmology side)

We focus on non-Gaussianity

## Non-Gaussianity (NG)

the simplest inflation model predicts almost Gaussian variable:  $\phi_{G}$  Gaussian fluctuations  $\langle \varphi_{G}(\mathbf{k}_{1})\varphi_{G}(\mathbf{k}_{2}) \rangle = (2\pi)^{3} \, \delta(\mathbf{k}_{1} + \mathbf{k}_{2}) P(k_{1})$ power-spectrum(2pt function) all statistical property of  $\Phi_{G}$ 

## Non-Gaussianity (NG)

the simplest inflation model predicts almost Gaussian variable:  $\phi_{G}$  Gaussian fluctuations  $\langle \varphi_{G}(\mathbf{k}_{1})\varphi_{G}(\mathbf{k}_{2}) \rangle = (2\pi)^{3} \, \delta(\mathbf{k}_{1} + \mathbf{k}_{2}) P(k_{1})$ power-spectrum (2pt function) all statistical property of  $\Phi_{G}$ Non-Gaussian variable:  $\Phi$   $\langle \Phi(\mathbf{k}_{1})\Phi(\mathbf{k}_{2})\Phi(\mathbf{k}_{3}) \rangle = (2\pi)^{3} \delta(\mathbf{k}_{1} + \mathbf{k}_{2} + \mathbf{k}_{3}) B(k_{1}, k_{2}, k_{3})$ power-spectrum (2pt func.), bi-spectrum (3pt func.), tri-spectrum (4pt func.), ... all statistical property of  $\Phi$ 

## Non-Gaussianity (NG)

the simplest inflation model predicts almost  $\Box$  Gaussian variable:  $\phi_{G}$   $\leftarrow$ Gaussian fluctuations  $\left\langle \varphi_G(\mathbf{k}_1)\varphi_G(\mathbf{k}_2) \right\rangle = (2\pi)^3 \,\delta(\mathbf{k}_1 + \mathbf{k}_2) P(k_1)$ power-spectrum (2pt function)  $\implies$  all statistical property of  $\Phi_{\rm G}$ Non-Gaussian variable: Φ  $\left\langle \Phi(\mathbf{k}_1)\Phi(\mathbf{k}_2)\Phi(\mathbf{k}_3) \right\rangle = (2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B(k_1, k_2, k_3)$ power-spectrum (2pt func.), bi-spectrum (3pt func.), tri-spectrum (4pt func.),  $\Rightarrow$  all statistical property of  $\Phi$ Observational constraint on NG using template Ex) local-type NG for grav. potential  $\Phi(x)$  $\Phi(\mathbf{x}) \sim \varphi_G(\mathbf{x}) + f_{NL}^{(\text{local})} \varphi_G^2(\mathbf{x}) + \cdots$ - 2.7 ± 5.8 (68% C.L., Planck2013)  $B(k_1, k_2, k_3) = f_{NL}^{(\text{local})}(P(k_1)P(k_2) + P(k_2)P(k_3) + P(k_3)P(k_1))$ Note: Use of template increases statistical significance,

but each type of NG requires its own optimal template.

Quantum tunneling = Bubble nucleation

Local minima in the string landscape

we focus on quantum tunneling during inflation

Bubble nucleation

- quantum tunneling is 1st order phase transition





potential for scalar fields



(bi-spectrum in open inflation [KS and E. Komatsu in preparation])

## Two types of quantum tunneling during inflation (cont.)

### Low energy bubble nucleation

- potential  $V_{tun}(\sigma)$  for tunneling field  $\sigma$  is much smaller than  $V_{infl}(\Psi)$  for inflaton  $\Psi$
- slow-roll inflation by  $\Psi$  is not affected by tunneling of  $\sigma$  at some time of inflation

- inflaton constant surface (blue dot-dashed) is flat as usual
- finite size bubble is on that surface

Bubble-shaped observational feature may appear as distinct signature of quantum tunneling during inflation!!





Penrose diagram



## Non-Gaussian Bubbles

### 🗖 Bubble remnant

- all scalar fields are supposed to decay into radiation after inflation
- However, bubble-shaped feature may be left in the sky

# last scattering surface ex-bubble region

#### Non-Gaussian bubbles

- low energy bubble nucleation case
- bubble-shaped high skewness region may be created
- I will make explicit calculation for a simple toy model





Introduction

(Brief review)

- Quantum tunneling during inflation
- in-in formalism on tunneling background
- Toy model & Non-Gaussian bubble
- Conclusion



#### Method of instanton 1-dim quantum mechanics example classical solution wave function outside the barrier $\begin{array}{c|c} V(q) & & & \\ \hline \Psi(q) & \Psi(q) \sim \exp \left[ \begin{array}{c} S_{m}(x) \\ analytical continuation \\ T = it \end{array} \right]$ qſ $a(\tau = it)$ q<sub>N</sub> $q(\tau)$ $\Psi(q) \sim \exp\left|\frac{iS(t)}{\hbar}\right|$ $V_{F}$ $t = -i\tau$ > a $\mathbf{q}_{\mathsf{F}}$ **q**<sub>N</sub> Lorentzian EOM Lorentzian action $\frac{d^2q}{dt^2}(\tau = it) = -\frac{dV(q)}{dq}$ $iS(t) \equiv -S_E(\tau = it)$ $= i \int_{a_F}^{q(\tau=it)} dq \sqrt{V_F - V(q)} \quad \begin{array}{c} \text{- initial conditions} \\ q(0) = q_N \quad \frac{dq}{dt}(0) = 0 \end{array}$

## Coleman- De Luccia instanton

(Coleman and De Luccia(CDL), 1980)

Tunneling of a scalar field with gravity



Corresponding instanton

- Euclidean metric (O(4)-symmetric)  $ds^2 = d\tau^2 + a^2(\tau) d\Omega_3^2$ 

- Euclidean EOM

$$\frac{1}{a}\frac{d^2a}{d\tau^2} = -\frac{8\pi G}{3}\left(\left(\frac{d\phi}{d\tau}\right)^2 + V(\phi)\right)$$
$$\frac{d^2\phi}{d\tau^2} + \frac{3}{a}\frac{da}{d\tau}\frac{d\phi}{d\tau} - \frac{dV(\phi)}{d\phi} = 0$$





### 4-dim de Sitter spacetime embedded in 5-dim Minkowski spacetime





- Introduction
- Quantum tunneling during inflation
- in-in formalism on tunneling background
- Toy model & Non-Gaussian bubble
- Conclusion

## In-in formalism (standard case)

Separating Lagrangian to free and interaction parts

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{int}$$



the domain of integral covers the whole spacetime twice





- Introduction
- Quantum tunneling during inflation
- in-in formalism on tunneling background
- Toy model & Non–Gaussian bubble
- Conclusion

### $\Psi$ : inflaton **Bubble nucleation** $\sigma$ : bubble field during slow-roll inflation $\Box$ Slow-roll inflation by inflaton $\Psi$ $\Box$ Quantum tunneling of bubble field $\sigma$ at some instant (we assume small energy bubble)









Curvaton mechanism: the energy of Curvaton field is negligible during inflation. But it can creates curvature pert. when it decays later than other scalar fields.





## (amplitude of skewness is proportional to the strength of coupling $\lambda$ )

calculated skewness with a certain parameter set



corresponding Planck's sensitivity (estimate for homogeneous non-Gaussianity)

 $\Delta S \sim O(5)$ 



- Introduction
- Quantum tunneling during inflation
- in-in formalism on tunneling background
- Toy model & Non-Gaussian bubble
- Conclusion



- □ We have studied the observational consequences from a string landscape, focusing on quantum tunneling during inflation
- □ In-in formalism on tunneling background has been discussed
- Non-Gaussianity has been calculated in a toy model where a low energy bubble is nucleated
- We have shown that a bubble-shaped high-skewness spot in CMB anisotropies may be generated





Usual analysis using statistically homogeneous templates will miss non-Gaussian bubbles even if they exist.

We have started a project to search non-Gaussian bubbles by making special analysis targeting them.

□ If you find non-Gaussian bubbles in near-future observations, it might be the first observational signature of string theory!