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[ String landscape htpiHjournalofeosmologcom

I Inflation

- good consistency with observation

(flatness, homogeneity, power spectrum)
&

- What is the physical origin of inflation?

1 String landscape (susskind, 2003)
- degrees of freedom in the shape of extra—dimension

- many scalar fields & local potential minima potential for scalar fields

1 Two ways to study string landscape

I. Trying to obtain the potential from the first principle (string theory side)

* II.  Assuming string landscape and studying its consequences
(cosmology side) @

We focus on non—Gaussianity
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B Non-Gaussianity (NG)

. the simplest inflation model predicts almost
[1 Gaussian variable: ¢ ; € Gaussian fluctuations

(valki)palks)) = (2m)° ol + ke |P (k1)
power—spectrum (2pt function) E‘[> all statistical property of @,
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B Non-Gaussianity (NG)

the simplest inflation model predicts almost

Gaussian variable: ¢, € Gaussian fluctuations

(valki)pa(ke)) = (2m)* d(ki + ko |P (k)
power—spectrum (2pt function) all statistical property of @,

Non—Gaussian variable: @

(®(k1)®(ko)@(ks) ) = (27)°3(ky + ks + ks (B(kr, b, k)
power—spectrum (2pt func.), bi—spectrum (3pt func.), tri-spectrum (4pt func.), == -

all statistical property of @
Observational constraint on NG using template

Ex) local-type NG for grav. potential ®P(x)

(local)
(x) ~ palx) + [y ph(x )t __—27 % 58(68% CL, Planck2013)
B(ky, ka, ks) = f3 7" |(P k1) P(k2) + P(k2) P(ks) + P (ks)P(k1))

Note: Use of template increases statistical significance,
but each type of NG requires its own optimal template.



am Quantum tunneling
[ = Bubble nucleation

http://journalofcosmology.com

1 Local minima in the string landscape

&

we focus on quantum tunneling during inflation

potential for scalar fields

1 Bubble nucleation

- quantum tunneling is 1st order phase transition




Two types of quantum

tunneling during inflation
AV(9)

Open inflation

tunneling triggers slow—roll inflation

..... slow-roll
slow—roll inflation proceeds only inside tunneling\>
the nucleated bubble >
O by ¢
reheating
inflaton constant surface (blue dot—dashed) \'\,\'.‘\ ~~~~~~~ _
. . . N, '~
is 3—dim hyperboloid N
If duration of slow—roll inflation after tunneling bubble wall T
is long enough (e—folds 260), there is no nucleation time

contradiction to observations (| Q | 5 0.01) 5 r
enrose diagram

(bi-spectrum in open inflation [KS and E. Komatsu in preparation])



Two types of quantum
) tunneling during inflation (cont.)

II.  Low energy bubble nucleation

- potential V, (0) for tunneling field 0 is
much smaller than V. .(V) for inflaton ¥
- slow-roll inflation by V¥ is not affected by Vierl V) /
tunneling of 0 at some time of inflation - 0<— Y N
N SIo T ZAN reheating
. \_:.\. A M
- inflaton constant surface (blue dot—dashed) NN

\.\.
~.
~.

~.
-~
-

Is flat as usual .
- finite size bubble is on that surface ~ NN\
bubble wall~\

@ nucleation time

Bubble—shaped observational feature may appear as Penrose diagram
distinct signature of quantum tunneling during inflation!!




L
B Penrose diagram of
U de Sitter spacetime




Non-Gaussian Bubbles

last scattering surface

] Bubble remnant ex—bubble region _ _

— : 277777 S, & ~
all scalar fields are supposed to decay Y 7 T \\
into radiation after inflation l:' // ‘\l \
X \ el >
-  However, bubble—shaped feature may % 7 ]
. ¢ \/ us /

be left in the sky CE AN y
S’

1 Non—Gaussian bubbles

- low energy bubble nucleation case

high—skewness

- bubble—shaped high skewness region may be created

- [ will make explicit calculation for a simple toy model

CMB sky map
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B Method of instanton

1-dim quantum mechanics example

wave function inside the barrier iInstanton
V(g) 4 . A
E(T) q
Yl ¥(@ ~ exp [— ! ] 0
q(T) ;
F
Ve —— 0 T
>
i |'qu Aq:, 9 Euclidean EOM
uclidean AcCtIon d2q dV(Q)
T 2 1 —
SE (7_) _ / d+' ((dQ/2d7'> X V(C]) _ VF) ) (7_) dq

) boundary conditions
q\T

qF




B Method of instanton

1-dim quantum mechanics example

wave function outside the barrier classical solution

Lorentzian action

. . d? dV
15(t) = =Sp(T = it) (T =it) = _—dé@
a(r=it) initial conditions
—i[ VeV e,
qr Q(O) — 4N dt



B Coleman- De Luccia instanton

(Coleman and De Luccia(CDL), 1980)

Tunneling of a scalar field with gravity _ |
V(o) 4dim Euclidean sphere

embedded in 5dim

tun.;.eling\%low < (T)
o o L lbubbl |
Corresponding instanton T (I)
Euclidean metric (O(4)-symmetric) F N
ds* = dr* + a*(7)dQ3
Euclidean EOM o0 o(r)

2, _ 2 a A by
é% _ _% ((%) N V(qb)) a(7) \\‘:bubble wall
2¢  3dadp dV(9) 0 P

_ — > >
i Tadrdr  do 0 0 0

T



B
B Coleman- De Luccia instanton

(Coleman and De Luccia(CDL), 1980)

o Tur;\nvzl)l)ng of a scalar field with gravity 4dim de Sitter spacetime

embedded in 5dim

\

..... \)sIOW-roll

t l

unneling Y bubble/wall
EENON )

1 Expanding bubble solution




|
B 4-dim de Sitter spacetime

B embedded in 5-dim Minkowski spacetime

4
—ZEO _|_Z(xz :_
1=1 4
ds? O)Q—I—Z

1=1
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In-in formalism (standard case)

Separating Lagrangian to free and interaction parts

N—ptfunction formula (in—in formalism) _
P: path ordering operator

0)

<0 |P€Z foz/\ dAd3x Lint(x) O>

<90(331)90(932) : --go(xN)> —

C: A —integration path (Maldacena 2002) 2, x—integration path
A
—oo(l —1€) C Im A Re 3—dim flat hypersurface
__________ ——=>—> E
<o C t, 3
—00(1 + i€)

the domain of integral covers the whole spacetime twice



. . . derivation paper
In-in formalism on [ in preparation ]

) tunneling background
i [oy s, AAA®X Line(x)
(0|P (@ )e(as) - plan)e Foxms 0)
<0 ‘Pei L/"szA AAA3xX Lint () O>

X——3 ' - same expression as the
standard case, but different
domain of integral

<90(5U1)90(332) e gO(scN)> —

(all points are on 2, surface)

- test field ¢
- background tunneling field o

L. .(x) can have explicit x-dependence
by coupling between ¢ and O

Ex) L,,(0) = A (0 (x)) ¢3(x)

domain of integral covers the Lorentzian region twice,
and north/south Euclidean hemisphere once

C=C, +C,
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. ¥V inflaton

.. Bubble nucleation o bubble field

during slow-roll inflation

1 Slow—-roll inflation by inflaton ¥

1 Quantum tunneling of bubble field 0 at some instant

(we assume small energy bubble)

Vips( 1)

YV : inflaton
>




.. YV inflaton

B Bubble nucleation
[ during slow-roll inflation

1 Slow-roll inflation by inflaton ¥

O : bubble field

1 Quantum tunneling of bubble field 0 at some instant

@ (we assume small energy bubble)
expanding bubble

Bubble nucleation

(described by an instanton)




.. YV inflaton

B Curvaton evolution in o bubble field
B .bubble nucleating universe @: curvaton

1 Potential for g:urvaton )

=24V, background bubbl
V(¢) 2 ¢ —I—th(U, qb) effective potential o gr;un e
> Vit (¢5.2) o= Vime(0(2), 0)

int

1 0—-dependent self-interaction
Vinl(o, ¢) = (U)Cb?) small NG _ large NG Re t

coupling const. I bbbl ' e
t
A (U)U?-U e wa
0}
0
0,0y 01 :

Vtun(o-)
~ o)
M@L A NG ti
0 0y 0 / generation

Bubble—shaped non—Gaussianity is generated!!



|
_ Summary of our toy model

13 scalar fields model
* model gets complicated

* analysis becomes easier I

CInflaton: ¥ E"> slow—roll inflation I""/ Y

Avtun(o—)
CIBubble field: 0 [ bubble nucelation \.[\/U
>

[1Curvaton: @ E"> bubble—shaped NG %

(Lyth, Ungarelli & Wands;
Enqvist & Sloth; Moroi & Takahashi) @

Curvaton mechanism: the energy of Curvaton field is negligible during inflation.
But it can creates curvature pert. when it decays later than other scalar fields.



B
.. From curvaton fluctuation to 8T

! Evolution of fluctuations

Curvaton mechanism Sachs—Wolfe effect
oe) Lo ((x) Lo oT(0,¢)
curvaton flucutuations curvature pert. CMB anisotropies

last scattering surface
ex—bubble region mm

! CMB skewness: <5T3 (0, 90)> N

’ p
- skewness of ¢ can be calculated using ( %\ ﬂ\\

in—in formalism on tunneling background

- observer sees high skewness spot in the sky \- —)\ ¢

(= Non—Gaussian bubble)
hlgh skewness

€ |ow skewness



. Re SU It (amplitude of skewness is proportional

to the strength of coupling 1)

calculated skewness with a certain parameter set

S

corresponding Planck’ s sensitivity

AS ~ O(5)

(estimate for homogeneous non—Gaussianity)
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B Conclusions

We have studied the observational consequences from a string
landscape, focusing on quantum tunneling during inflation

In—in formalism on tunneling background has been discussed

Non—Gaussianity has been calculated in a toy model
where a low energy bubble is nucleated

We have shown that a bubble—shaped high—skewness spot in
CMB anisotropies may be generated

Non—Gaussian bubble



B On-going wo rlc  (with Ely Kovetz @UT Austin)

Usual analysis using statistically homogeneous templates
will miss nhon—Gaussian bubbles even if they exist.

We have started a project to search non—Gaussian bubbles by
making special analysis targeting them.

If you find non—Gaussian bubbles in near—future observations,
it might be the first observational signature of string theory!



