Precision event generation for LHC physics

Stefan Höche¹

SLAC NAL

HEP Theory Seminar IPMU, 05/29/13

¹based on work with Zvi Bern, Lance Dixon, Fernando Febres Cordero, Thomas Gehrmann, Junwu Huang, Harald Ita, David Kosower, Frank Krauss, Gionata Luisoni, Daniel Maître, Kemal Ozeren, Laura Reina, Marek Schönherr, Frank Siegert, Jennifer Thompson, Doreen Wackeroth, Jan Winter

Event generation at hadron colliders

- 1. Matrix Element (ME) generators red blobs simulate "central" part of the event
- 2. Parton Showers (PS) red & blue tree structure produce additional "hard" QCD radiation
- 3. Multiple interaction models purple blob simulate "secondary hard" interactions
- 4. Fragmentation models light green blobs hadronize QCD partons
- 5. Hadron decay modules dark green blobs decay primary hadrons into observed ones
- 6. Photon emission generators _{yellow stuff} simulate additional QED radiation

General-purpose event generators

Herwig

- \blacktriangleright Originated in coherent shower studies \rightarrow angular ordered PS
- ► Front-runner in development of MC@NLO and POWHEG
- ▶ Simple in-house ME generator & spin-correlated decay chains
- Original framework for cluster fragmentation

Pythia

- \blacktriangleright Originated in hadronization studies \rightarrow Lund string
- Leading in development of models for non-perturbative physics
- \blacktriangleright Pragmatic attitude to ME generation \rightarrow external tools
- Extensive PS development and earliest ME+PS matching

Sherpa

- ► Started with PS generator APACIC++ & ME generator AMEGIC++
- Hadronization pragmatic add-on, but extensive decay package
- \blacktriangleright Leading in development of automated ME $\oplus PS$ merging (at NLO)
- Automated framework for NLO calculations and MC@NLO

Status of Z+Jets

Status of Z+Jets

[ATLAS] arXiv:1304.7098

Stefan Hoeche

Outline

This talk:

- ► Efficient automated NLO QCD calculations at parton level
- Matching NLO QCD calculations and parton showers
- Merging matched calculations for varying jet multiplicity

Aim:

- Particle-level predictions with uncertainty estimates
- ► NLO-accurate simulations for X+n-jets with n = 0, 1, 2, ... combined into inclusive sample for X+anything

Construction of a general-purpose NLO ME generator

Singularities in V & R to be removed before MC-integration

$$\sigma^{\textit{NLO}} = \int \mathrm{d}\Phi_B \,\left(\mathrm{B} + \tilde{\mathrm{V}}\right) + \int \mathrm{d}\Phi_R \,\mathrm{R} = \int \mathrm{d}\Phi_B \,\left[\left(\mathrm{B} + \tilde{\mathrm{V}} + \mathrm{I}\right) + \int \mathrm{d}\Phi_{R|B} \,\left(\mathrm{R} - \mathrm{S}\right)\right]$$

Generic scheme given by dipole subtraction method [Catani,Seymour] hep-ph/9605323 [Catani,Dittmaier,Seymour,Trocsanyi] hep-ph/0201036

Virtual contribution

Share the workload

$$\sigma_{\rm NLO} = \int d\Phi_{\rm B} \sum \left({\rm B} + \tilde{\rm V} + {\rm I} \right) + \int d\Phi_R \sum \left({\rm R} - {\rm S} \right)$$

 $\label{eq:standardized interface \rightarrow Binoth \ Les \ Houches \ accord \ [Binoth \ et \ al.] \ arXiv:1001.1307$

- ► One-Loop Engines (OLEs) provide virtual piece
- ► ME generator takes care of Born, real emission, subtraction phase-space integration and event generation

First successfully used for computing W+3 jets with BlackHat and SHERPA

Real contribution

One-Loop codes capable of computing very high multiplicity processes \rightarrow need to compute real-radiation & infrared subtraction terms efficiently

- ► Naively computational effort in dipole subtraction method grows like N³ with number of external QCD particles, N
- Can be reduced by recursive computation similar to Berends-Giele technique at LO [SH] to appear

► Implemented in matrix element generator Comix [Gleisberg,SH] arXiv:0808.3674

W+5jets at the LHC

- First 2 \rightarrow 6 NLO calculation (plus decay $W \rightarrow l\nu$)
- \blacktriangleright Will be measured with good precision at LHC \rightarrow test of SM
- \blacktriangleright Can be used to understand jet scaling patterns \rightarrow BSM searches

Approximations:

- ► Leading color in virtual piece (estimated < 3% correction)
- ▶ No real corrections with 8 quark lines (< 1% correction)

W+5jets at the LHC

[BlackHat] arXiv:1304.1253

Jet ratio scaling patterns

- ► Consider "core" process (e.g. *W*-production) plus *n* jets
- ► Cross section ratios $R_{(n+1)/n} = \frac{\sigma_{n+1}^{\text{excl}}}{\sigma_{-}^{\text{excl}}}$

 \sim stable against QCD corrections [Gerwick et al.] JHEP10(2012)162

Staircase Scaling:

$$R_{(n+1)/n} = ext{const} \quad \left(\sigma_n = \sigma_0 R^n\right)$$

- ► First predicted for *W*/*Z*+jets [Berends,Giele,Kuijf] NPB321(1989)39
- Induced by democratic jet cuts [Gerwick et al.] JHEP10(2012)162

Poisson Scaling:

$$R_{(n+1)/n} = \frac{\bar{n}}{n+1} \quad \left(\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!}\right)$$

- Independent emission picture (like soft γ radiation in QED)
- Driven by large emission probability [Gerwick et al.] JHEP10(2012)162

NLO predictions

[BlackHat] arXiv:1304.1253

► W+jets at 7 TeV, $E_T^e > 20 \text{ GeV}$, $|\eta^e| < 2.5$, $E_T^e > 20 \text{ GeV}$ $p_T^j > 25 \text{ GeV}$, $|\eta^j| < 3$, $M_T^W > 20 \text{ GeV}$

Jets	$\frac{W^- + (n+1)}{W^- + n}$		$\frac{W^+ + (n+1)}{W^+ + n}$	
	LO	NLO	LO	NLO
1	0.2949(0.0003)	0.238(0.001)	0.3119(0.0005)	0.242(0.002)
2	0.2511(0.0005)	0.220(0.001)	0.2671(0.0004)	0.235(0.002)
3	0.2345(0.0008)	0.211(0.003)	0.2490(0.0005)	0.225(0.003)
4	0.218(0.001)	0.200(0.006)	0.2319(0.0008)	0.218(0.006)

• Fit to straight line for W + n jets gives $(n \ge 2)$

 $\begin{aligned} R_{n/(n-1)}^{\rm NLO, \ W^-} &= 0.248 \pm 0.008 - (0.009 \pm 0.002) \ n \\ R_{n/(n-1)}^{\rm NLO, \ W^+} &= 0.263 \pm 0.009 - (0.009 \pm 0.003) \ n \end{aligned}$

Extrapolate to six jets

 $W^- + 6$ jets : 0.15 \pm 0.01 pb $W^+ + 6$ jets : 0.30 \pm 0.03 pb

Parton showers

$$\sigma_{2 \to 2}^{\text{incl}} \mathcal{F}_{\text{MC}}(\mu_Q^2)$$

Parton showers

$$\sigma_{2\to2}^{\text{incl}} \left[\Delta(t_c, \mu_Q^2) + \int_{t_c} \frac{\mathrm{d}t}{t} \mathrm{d}z \frac{\alpha_s}{2\pi} P(z) \Delta(t, \mu_Q^2) + \frac{1}{2} \left(\int_{t_c} \frac{\mathrm{d}t}{t} \mathrm{d}z \frac{\alpha_s}{2\pi} P(z) \Delta(t, \mu_Q^2) \right)^2 + \dots \right]$$

Parton showers

Stefan Hoeche Event Generation

Matrix elements

Merging at leading order

Matching NLO calculations and parton showers

Merging at next-to-leading order

Evolution of matching and merging methods

Incomplete and personally biased, just to give a flavor of things

- Matrix-element corrections to parton showers [Bengtsson,Sjöstrand] PLB185(1987)435, [Seymour] CPC90(1995)95
- ► ME↔PS correspondence, truncated PS [André,Sjöstrand] PRD57(1998)5767
- CKKW merging [Catani,Krauss,Kuhn,Webber] JHEP11(2001)063 JHEP08(2002)015
 Combines LO calculations of varying parton multiplicity
- MC@NLO [Frixione,Webber] JHEP06(2002)029
 Modified subtraction to remove overlap between ME & PS at NLO
- POWHEG [Nason] JHEP11(2004)040, [Frixione, Nason, Oleari] JHEP11(2007)070
 Combination of MC@NLO and ME-corrected parton shower
- NL³SP [Lavesson,Lönnblad] JHEP12(2008)070, [Lönnblad,Prestel] JHEP03(2013)166 Combines NLO calculations of varying jet multiplicity, explicit subtraction
- MENLOPS [Hamilton,Nason] JHEP06(2010)039 [Krauss,Schönherr,Siegert,SH] JHEP08(2011)123 Combines lowest multiplicity NLO with higher-multiplicity LO
- ► ME⊕PS@NLO [Gehrmann,Krauss,Schönherr,Siegert,SH] JHEP01(2013)144 JHEP04(2013)027 Combines NLO calculations of varying jet multiplicity, implicit subtraction

► Leading-order calculation for observable *O*

$$\langle O \rangle = \int \mathrm{d} \Phi_B \,\mathrm{B}(\Phi_B) \,O(\Phi_B)$$

NLO calculation for same observable

$$\langle O \rangle = \int \mathrm{d} \Phi_B \left\{ \mathrm{B}(\Phi_B) + \tilde{V}(\Phi_B) \right\} O(\Phi_B) + \int \mathrm{d} \Phi_R \, \mathrm{R}(\Phi_R) \, O(\Phi_R)$$

Parton-shower result

$$\langle O \rangle = \int \mathrm{d} \Phi_B \,\mathrm{B}(\Phi_B) \,\mathcal{F}_{\mathrm{MC}}(\mu_Q^2,O)$$

► Leading-order calculation for observable O

$$\langle O \rangle = \int \mathrm{d} \Phi_B \,\mathrm{B}(\Phi_B) \,O(\Phi_B)$$

NLO calculation for same observable

$$\langle O \rangle = \int \mathrm{d}\Phi_B \left\{ \mathrm{B}(\Phi_B) + \tilde{V}(\Phi_B) \right\} O(\Phi_B) + \int \mathrm{d}\Phi_R \,\mathrm{R}(\Phi_R) \,O(\Phi_R)$$

Parton-shower result

$$\langle O \rangle = \int \mathrm{d}\Phi_B \operatorname{B}(\Phi_B) \left[\Delta^{(\mathrm{K})}(t_c) O(\Phi_B) + \int_{t_c} \mathrm{d}\Phi_1 \operatorname{K}(\Phi_1) \Delta^{(\mathrm{K})}(t(\Phi_1)) O(\Phi_R) + \dots \right]$$

Phase space: $d\Phi_1 = dt dz d\phi J(t, z, \phi)$ Splitting functions: $K(t, z) \rightarrow \alpha_s/(2\pi t) \sum P(z) \Theta(\mu_Q^2 - t)$ Sudakov factors: $\Delta^{(K)}(t) = \exp\left\{-\int_t d\Phi_1 K(\Phi_1)\right\}$

► Leading-order calculation for observable O

$$\langle O \rangle = \int \mathrm{d} \Phi_B \,\mathrm{B}(\Phi_B) \,O(\Phi_B)$$

NLO calculation for same observable

$$\langle O \rangle = \int \mathrm{d}\Phi_B \left\{ \mathrm{B}(\Phi_B) + \tilde{V}(\Phi_B) \right\} O(\Phi_B) + \int \mathrm{d}\Phi_R \,\mathrm{R}(\Phi_R) \,O(\Phi_R)$$

Parton-shower result

$$\langle O \rangle = \int \mathrm{d}\Phi_B \operatorname{B}(\Phi_B) \bigg[\Delta^{(\mathrm{K})}(t_c) O(\Phi_B) + \int_{t_c} \mathrm{d}\Phi_1 \operatorname{K}(\Phi_1) \Delta^{(\mathrm{K})}(t(\Phi_1)) O(\Phi_R) + \dots \bigg]$$

$$\stackrel{\mathcal{O}(\alpha_s)}{\to} \int \mathrm{d}\Phi_B \operatorname{B}(\Phi_B) \bigg\{ 1 - \int_{t_c} \mathrm{d}\Phi_1 \operatorname{K}(\Phi_1) \bigg\} O(\Phi_B) + \int_{t_c} \mathrm{d}\Phi_B \mathrm{d}\Phi_1 \operatorname{B}(\Phi_B) \operatorname{K}(\Phi_1) O(\Phi_R)$$

Phase space: $d\Phi_1 = dt dz d\phi J(t, z, \phi)$ Splitting functions: $K(t, z) \rightarrow \alpha_s/(2\pi t) \sum P(z) \Theta(\mu_Q^2 - t)$ Sudakov factors: $\Delta^{(K)}(t) = \exp\left\{-\int_t d\Phi_1 K(\Phi_1)\right\}$

• Subtract $\mathcal{O}(\alpha_s)$ PS terms from NLO result $(t_c \rightarrow 0)$

$$\begin{split} \langle O \rangle &= \int \mathrm{d} \Phi_B \left\{ \mathrm{B}(\Phi_B) + \tilde{\mathrm{V}}(\Phi_B) + \mathrm{B}(\Phi_B) \int \mathrm{d} \Phi_1 \mathrm{K}(\Phi_1) \right\} O(\Phi_B) \\ &+ \int \mathrm{d} \Phi_R \left\{ \mathrm{R}(\Phi_R) - \mathrm{B}(\Phi_B) \, \mathrm{K}(\Phi_1) \right\} O(\Phi_R) \end{split}$$

► In DLL approximation both terms finite → MC events in two categories, Standard and Hard

$$\begin{split} \mathbb{S} &\to \ \bar{\mathrm{B}}^{(\mathrm{K})}(\Phi_B) = \mathrm{B}(\Phi_B) + \tilde{\mathrm{V}}(\Phi_B) + \mathrm{B}(\Phi_B) \int \mathrm{d}\Phi_1 \mathrm{K}(\Phi_1) \\ \\ \mathbb{H} &\to \ \mathrm{H}^{(\mathrm{K})} = \mathrm{R}(\Phi_R) - \mathrm{B}(\Phi_B) \mathrm{K}(\Phi_1) \end{split}$$

▶ Full QCD has color & spin correlations \rightarrow NLO subtraction needed $1/N_c$ corrections faded out in soft region by smoothing function

$$\begin{split} \bar{\mathbf{B}}^{(\mathrm{K})}(\boldsymbol{\Phi}_{B}) &= \mathbf{B}(\boldsymbol{\Phi}_{B}) + \tilde{\mathbf{V}}(\boldsymbol{\Phi}_{B}) + \mathbf{I}(\boldsymbol{\Phi}_{B}) + \int \mathrm{d}\boldsymbol{\Phi}_{1} \left[\mathbf{S}(\boldsymbol{\Phi}_{R}) - \mathbf{B}(\boldsymbol{\Phi}_{B}) \, \mathbf{K}(\boldsymbol{\Phi}_{1}) \right] f(\boldsymbol{\Phi}_{1}) \\ \mathbf{H}^{(\mathrm{K})}(\boldsymbol{\Phi}_{R}) &= \left[\mathbf{R}(\boldsymbol{\Phi}_{R}) - \mathbf{B}(\boldsymbol{\Phi}_{B}) \, \mathbf{K}(\boldsymbol{\Phi}_{1}) \right] f(\boldsymbol{\Phi}_{1}) \end{split}$$

MC@NLO

[Frixione,Webber] hep-ph/0204244

 \blacktriangleright Add parton shower, described by generating functional $\mathcal{F}_{\rm MC}$

$$\langle O
angle = \int \mathrm{d} \Phi_B \, ar{\mathrm{B}}^{(\mathrm{K})}(\Phi_B) \, \mathcal{F}^{(0)}_{\mathrm{MC}}(\mu_Q^2, O) + \int \mathrm{d} \Phi_R \, \mathrm{H}^{(\mathrm{K})}(\Phi_R) \, \mathcal{F}^{(1)}_{\mathrm{MC}}(t(\Phi_R), O)$$

Probability conservation $\leftrightarrow \mathcal{F}_{\mathrm{MC}}(t, 1) = 1$

Expansion of matched result until first emission

$$\langle O \rangle = \int \mathrm{d}\Phi_B \bar{\mathrm{B}}^{(\mathrm{K})}(\Phi_B) \bigg[\Delta^{(\mathrm{K})}(t_c) O(\Phi_B) \leftrightarrow \mathbb{I}_{\mathrm{F}} + \int_{t_c} \mathrm{d}\Phi_1 \mathrm{K}(\Phi_1) \Delta^{(\mathrm{K})}(t(\Phi_1)) O(\Phi_r) \bigg] + \int \mathrm{d}\Phi_R \mathrm{H}^{(\mathrm{K})}(\Phi_{n+1}) O(\Phi_R)$$

- Parametrically $\mathcal{O}(\alpha_s)$ correct
- Preserves logarithmic accuracy of PS

Handling soft singularities in MC@NLO

Method 1

[Frixione,Webber] JHEP06(2002)029

- $f(\Phi_1) \rightarrow 0$ in soft-gluon limit
- Full NLO only in hard / collinear region Missing subleading color terms in soft domain
- \blacktriangleright Only affects unresolved gluons \rightarrow no need to correct

Method 2

[Krauss,Schönherr,Siegert,SH] JHEP09(2012)049

- ► Replace $B(\Phi_B)K(\Phi_1) \rightarrow S(\Phi_R)$, i.e. include color & spin correlations
- May lead to non-probabilistic Sudakov factor Δ^(S)(t) Requires modification of veto algorithm
- Exact cancellation of all divergences without additional smoothing Equivalent to one-step full colour parton shower algorithm

MC@NLO in Sherpa

- Full-color MC@NLO automated in SHERPA using CS subtraction
 [Catani,Seymour] NPB485(1997)291
 [Gleisberg,Krauss] EPJC53(2008)501
 [Schumann,Krauss] JHEP03(2008)038
- ► Validated in QCD jets production
 - CT10, $\alpha_s(M_Z) = 0.118$
 - Full hadron level, incl. MPI
 - ► Virtual corrections → BlackHat [Berger et al.] PRD78(2008)036003 [Giele,Glover,Kosower] NPB403(1993)633
 - $p_{T,j1} > 20 \text{ GeV}, p_{T,j2} > 10 \text{ GeV}$
 - $\mu_{R/F} = H_T/4$, $\mu_Q = p_T/2$
- Implementation allows to assess renormalization/factorization and resummation scale uncertainty

Inclusive jet production at the LHC

Stefan Hoeche

Dijet production with a jet veto

Inclusive jet transverse momenta in different rapidity ranges

Stefan Hoeche

W + n jet production at the LHC

- *p*_{T,l} > 20 GeV, |η_l| < 2.5, *μ*_T > 25 GeV, *M*_T > 40 GeV
- ▶ $p_{T,j} > 30 \text{ GeV}$, $|y_j| < 2.8$
- Virtual corrections from BlackHat [Berger et al.] PRD78(2008)036003

$t\bar{t}h$ production at the LHC

- Invariant mass and p_T of *b*-jets not associated with top decay
- Virtual ME from [Dawson, Jackson, Orr, Reina, Wackeroth] PRD68(2003)034022 PRD67(2003)071503 PRL87(2001)201804

Merging at leading and next-to-leading order

Basic idea of ME \oplus PS merging

- Separate phase space into "hard" and "soft" region
- Matrix elements populate hard domain
- Parton shower populates soft domain
- ▶ Need criterion to define "hard" & "soft" → jet measure Q and corresponding cut, Q_{cut}

Parton-shower histories

- ► Start with some "core" process for example $e^+e^- \rightarrow q\bar{q}$
- This process is considered inclusive It sets the resummation scale μ²_Ω
- Higher-multiplicity ME can be reduced to core by clustering
- Clustering algorithm uniquely defined by requiring exact correspondence between ME & PS
 - Identify most likely splitting according to PS emission probability
 - Combine partons into mother according to PS kinematics
 - Continue until core process

[André,Sjöstrand] PRD57(1998)5767

Truncated & vetoed parton showers

```
[Catani,Krauss,Kuhn,Webber] JHEP11(2001)063
[Lönnblad] JHEP05(2002)046
```

- Higher-multiplicity MEs that can be reduced to core process are included in core's inclusive cross section (unitarity of PS)
- Sudakov suppression factors needed to make inclusive MEs exclusive
- Most efficiently computed with pseudo-showers
 - Start PS from core process
 - ► Evolve until predefined branching ↔ truncated parton shower
 - Emissions producing additional hard jets lead to event veto

$$\Delta_n^{(\mathrm{K})}(t; > Q_{\mathrm{cut}}) = \exp\left\{-\int_t \mathrm{d}\Phi_1 \,\mathrm{K}_n(\Phi_1) \,\Theta(Q - Q_{\mathrm{cut}})\right\}$$

Towards ME⊕PS@NLO

▶ ME \oplus PS for 0+1-jet in MC@NLO notation

$$\begin{split} \langle \mathcal{O}
angle &= \int \mathrm{d} \Phi_B \mathrm{B}(\Phi_B) \Bigg[\Delta^{(\mathrm{K})}(t_c) \, \mathcal{O}(\Phi_B) + \int_{t_c} \mathrm{d} \Phi_1 \mathrm{K}(\Phi_1) \, \Delta^{(\mathrm{K})}(t) \, \Theta(\mathcal{Q}_{\mathrm{cut}} - \mathcal{Q}) \, \mathcal{O}(\Phi_R) \Bigg] \\ &+ \int \mathrm{d} \Phi_R \, \mathrm{R}(\Phi_R) \, \Delta^{(\mathrm{K})}(t(\Phi_R); > \mathcal{Q}_{\mathrm{cut}}) \, \Theta(\mathcal{Q} - \mathcal{Q}_{\mathrm{cut}}) \, \mathcal{O}(\Phi_R) + \dots \end{split}$$

- Reorder by parton multiplicity k, change notation $R_k \rightarrow B_{k+1}$
- Analyze exclusive contribution from k hard partons only $(t_0 = \mu_Q^2)$

$$egin{aligned} &\langle \mathcal{O}
angle_k^{ ext{excl}} = \int \mathrm{d} \Phi_k \, \mathrm{B}_k \, \prod_{i=0}^{k-1} \Delta_i^{(\mathrm{K})}(t_{i+1},t_i; > \mathcal{Q}_{ ext{cut}}) \, \Theta(\mathcal{Q}_k - \mathcal{Q}_{ ext{cut}}) \ & imes \left[\Delta_k^{(\mathrm{K})}(t_c,t_k) \, \mathcal{O}_k \, + \, \int_{t_c}^{t_k} \mathrm{d} \Phi_1 \, \mathrm{K}_k \, \Delta_k^{(\mathrm{K})}(t_{k+1},t_k) \, \Theta(\mathcal{Q}_{ ext{cut}} - \mathcal{Q}_{k+1}) \, \mathcal{O}_{k+1}
ight] \end{aligned}$$

$$\langle \mathcal{O} \rangle_k^{ ext{excl}} = \int \mathrm{d} \Phi_k \, \mathrm{B}_k \, \prod_{i=0}^{k-1} \Delta_i^{(\mathrm{K})}(t_{i+1}, t_i; > Q_{ ext{cut}}) \, \Theta(Q_k - Q_{ ext{cut}})$$

$$\times \left[\Delta_k^{(\mathrm{K})}(t_c,t_k) \, \mathcal{O}_k \, + \, \int_{t_c}^{t_k} \mathrm{d} \Phi_1 \, \mathrm{K}_k \, \Delta_k^{(\mathrm{K})}(t_{k+1},t_k) \, \Theta(\mathcal{Q}_{\mathrm{cut}}-\mathcal{Q}_{k+1}) \, \mathcal{O}_{k+1} \, \right]$$

► Analyze exclusive contribution from *k* hard partons

$$\langle \mathcal{O} \rangle_k^{ ext{excl}} = \int \mathrm{d} \Phi_k \operatorname{B}_k \, \prod_{i=0}^{k-1} \Delta_i^{(\mathrm{K})}(t_{i+1}, t_i; > Q_{ ext{cut}}) \, \Theta(Q_k - Q_{ ext{cut}})$$

$$\times \left[\Delta_k^{(\mathrm{D})}(t_c,t_k) \, \mathcal{O}_k \, + \, \int_{t_c}^{t_k} \mathrm{d} \Phi_1 \; \frac{\mathrm{D}_k}{\mathrm{B}_k} \, \Delta_k^{(\mathrm{D})}(t_{k+1},t_k) \, \Theta(\mathcal{Q}_{\mathrm{cut}}-\mathcal{Q}_{k+1}) \, \mathcal{O}_{k+1} \right]$$

• PS evolution kernels \rightarrow dipole terms

$$\langle \mathcal{O} \rangle_k^{\mathrm{excl}} = \int \mathrm{d} \Phi_k \, \bar{\mathrm{B}}_k^{\mathrm{(K)}} \, \prod_{i=0}^{k-1} \Delta_i^{\mathrm{(K)}}(t_{i+1}, t_i; > Q_{\mathrm{cut}}) \, \Theta(Q_k - Q_{\mathrm{cut}})$$

$$\times \left[\Delta_k^{(\mathrm{D})}(t_c,t_k) \, \mathcal{O}_k \, + \, \int_{t_c}^{t_k} \mathrm{d} \Phi_1 \; \frac{\mathrm{D}_k}{\mathrm{B}_k} \, \Delta_k^{(\mathrm{D})}(t_{k+1},t_k) \, \Theta(\mathcal{Q}_{\mathrm{cut}}-\mathcal{Q}_{k+1}) \, \mathcal{O}_{k+1} \right]$$

- \blacktriangleright PS evolution kernels \rightarrow dipole terms
- \blacktriangleright Born matrix element \rightarrow NLO-weighted Born

$$\langle \mathcal{O} \rangle_k^{\mathrm{excl}} = \int \mathrm{d} \Phi_k \, \bar{\mathrm{B}}_k^{\mathrm{(K)}} \, \prod_{i=0}^{k-1} \Delta_i^{\mathrm{(K)}}(t_{i+1}, t_i; > Q_{\mathrm{cut}}) \, \Theta(Q_k - Q_{\mathrm{cut}})$$

$$egin{aligned} & imes \left[\Delta_k^{(\mathrm{D})}(t_c,t_k) \, \mathcal{O}_k \, + \, \int_{t_c}^{t_k} \mathrm{d} \Phi_1 \; rac{\mathrm{D}_k}{\mathrm{B}_k} \, \Delta_k^{(\mathrm{D})}(t_{k+1},t_k) \, \Theta(\mathcal{Q}_{\mathrm{cut}}-\mathcal{Q}_{k+1}) \, \mathcal{O}_{k+1}
ight] \ &+ \int \mathrm{d} \Phi_{k+1} \, \mathrm{H}_k^{(\mathrm{D})} \, \Delta_k^{(\mathrm{K})}(t_k; > \mathcal{Q}_{\mathrm{cut}}) \, \Theta(\mathcal{Q}_k-\mathcal{Q}_{\mathrm{cut}}) \, \Theta(\mathcal{Q}_{\mathrm{cut}}-\mathcal{Q}_{k+1}) \, \mathcal{O}_{k+1} \end{aligned}$$

- \blacktriangleright PS evolution kernels \rightarrow dipole terms
- \blacktriangleright Born matrix element \rightarrow NLO-weighted Born
- Add hard remainder function

$$\begin{split} \langle \mathcal{O} \rangle_{k}^{\text{excl}} &= \int \mathrm{d} \Phi_{k} \, \bar{\mathrm{B}}_{k}^{(\mathrm{K})} \, \prod_{i=0}^{k-1} \Delta_{i}^{(\mathrm{K})}(t_{i+1}, t_{i}; > Q_{\text{cut}}) \, \Theta(Q_{k} - Q_{\text{cut}}) \\ &\times \prod_{i=0}^{k-1} \left(1 + \int_{t_{i+1}}^{t_{i}} \mathrm{d} \Phi_{1} \mathrm{K}_{i} \, \Theta(Q_{i} - Q_{\text{cut}}) \right) F_{i}(t_{i+1}, t_{i}; \mu_{F}^{2}) \\ &\times \left[\Delta_{k}^{(\mathrm{D})}(t_{c}, t_{k}) \, \mathcal{O}_{k} \, + \, \int_{t_{c}}^{t_{k}} \mathrm{d} \Phi_{1} \, \frac{\mathrm{D}_{k}}{\mathrm{B}_{k}} \, \Delta_{k}^{(\mathrm{D})}(t_{k+1}, t_{k}) \, \Theta(Q_{\text{cut}} - Q_{k+1}) \, \mathcal{O}_{k+1} \right] \\ &+ \int \mathrm{d} \Phi_{k+1} \, \mathrm{H}_{k}^{(\mathrm{D})} \, \Delta_{k}^{(\mathrm{K})}(t_{k}; > Q_{\text{cut}}) \, \Theta(Q_{k} - Q_{\text{cut}}) \, \Theta(Q_{\text{cut}} - Q_{k+1}) \, \mathcal{O}_{k+1} \end{split}$$

- \blacktriangleright PS evolution kernels \rightarrow dipole terms
- $\blacktriangleright \text{ Born matrix element} \rightarrow \mathsf{NLO}\text{-weighted Born}$
- Add hard remainder function
- Subtract $\mathcal{O}(\alpha_s)$ terms from truncated vetoed PS

$e^+e^- \rightarrow$ hadrons at LEP

[Gehrmann,Krauss,Schönherr,Siegert,SH] arXiv:1207.5031

- ► Thrust & its moments
- ► ME⊕PS@NLO with 2,3&4 jet PL at NLO plus 5&6 jet PL at LO vs 2 jet PL at NLO plus up to 6 jets at LO

 $e^+e^- \rightarrow$ hadrons at LEP

[Gehrmann,Krauss,Schönherr,Siegert,SH] arXiv:1207.5031

- Total jet broadening & its moments
- ► ME⊕PS@NLO with 2,3&4 jet PL at NLO plus 5&6 jet PL at LO vs 2 jet PL at NLO plus up to 6 jets at LO

$W{+}\mathsf{jets}$ production at the LHC

[SH,Krauss,Schönherr,Siegert] arXiv:1207.5030

- ▶ ME⊕PS@NLO with 0,1&2 jet PL at NLO plus 3&4 jet PL at LO
- vs 0 jet PL at NLO plus up to 4 jets at LO

W+jets production at the LHC

[SH,Krauss,Schönherr,Siegert] arXiv:1207.5030

- ▶ ME \oplus PS@NLO with 0,1&2 jet PL at NLO plus 3&4 jet PL at LO
- vs 0 jet PL at NLO plus up to 4 jets at LO

Top pair production at the Tevatron

[Huang,Luisoni,Schönherr,Winter,SH] to appear

- ▶ ME \oplus PS@NLO with 0&1 jet PL at NLO
- $ME \oplus PS$ with up to 1 jet at LO

Summary

- NLO calculations, matching and merging automated
- Improved precision of MC event generators (LO \rightarrow NLO)
- ► Full exploitation of a wealth of NLO calculations
- Assessment of fixed-order scale uncertainties