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Cosmic messengers

Physics of astrophysical 
neutrino sources = physics of

cosmic ray sources
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galactic    extragalactic

Cosmic ray observations 

 Observation of 
cosmic rays: need 
to accelerate 
protons/nuclei 
somewhere

 The same sources 
should produce 
neutrinos:
 in the source (pp, 

pγ interactions)
 Proton (E > 6 1010

GeV) on CMB 
 GZK cutoff + 
cosmogenic 
neutrino flux

In the 
source:

Ep,max up to 
1012 GeV?

GZK
cutoff?

UHECR
(heavy?)

Where do 
these come 

from?
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The two paradigms for extragalactic sources:

AGNs and GRBs
 Active Galactic Nuclei (AGN blazars) 
 Relativistic jets ejected from central engine (black hole?)
 Continuous emission, with time-variability

 Gamma-Ray Bursts (GRBs): transients
 Relativistically expanding fireball/jet
 Neutrino production e. g. in prompt phase

(Waxman, Bahcall, 1997)

Nature 484 (2012) 351 5



Gammy-ray emission in GRBs

(Source: SWIFT)

Prompt phase
collision of 

shocks: 
dominant νs?

“Isotropic equivalent
energy“

Γ
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 Example: 
IceCube at South Pole
Detector material: ~ 1 km3

antarctic ice
 Completed 2010/11 (86 

strings)
 Recent major successes:
 Constraints on GRBs

Nature 484 (2012) 351
 28 events in the TeV-PeV 

range Science (to appear)
 Neutrinos established as 

messengers of the high-energy 
universe!

Neutrino detection:
Neutrino telescopes
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Neutrinos and the high-E universe

(Whitehorn @ WIPAC 2013, Klein @ ICRC 2013)

TeV-PeV 
neutrinos
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Simulation of cosmic ray and 
neutrino sources
(focus on proton composition …)



Delta resonance approximation:

π+/π0 determines ratio between neutrinos and high-E gamma-rays

High energetic gamma-rays;
typically cascade down to lower E

If neutrons can escape:
Source of cosmic rays

Neutrinos produced in
ratio (νe:νµ:ντ)=(1:2:0)

Cosmic messengers

Cosmogenic neutrinos

Cosmic ray source
(illustrative proton-only scenario, pγ interactions)
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 ∆(1232)-resonance 
approximation:

 Limitations:
- No π- production; cannot predict π+/ π- ratio (Glashow resonance!)
- High energy processes affect spectral shape (X-sec. dependence!)
- Low energy processes (t-channel) enhance charged pion production

 Solutions:
 SOPHIA: most accurate description of physics

Mücke, Rachen, Engel, Protheroe, Stanev, 2000
Limitations: Monte Carlo, slow; helicity dep. muon decays!

 Parameterizations based on SOPHIA
 Kelner, Aharonian, 2008

Fast, but no intermediate muons, pions (cooling cannot be included)
 Hümmer, Rüger, Spanier, Winter, ApJ 721 (2010) 630

Fast (~1000 x SOPHIA), including secondaries 
and accurate π+/ π- ratios

 Engine of the NeuCosmA („Neutrinos from 
Cosmic Accelerators“) software
+ time-dependent codes

Source simulation: pγ
(particle physics)

from:
Hümmer, Rüger, 
Spanier, Winter, 

ApJ 721 (2010) 630
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Optically
thin

to neutrons

“Minimal“ (top down) ν model

from: 
Baerwald, Hümmer, Winter,

Astropart. Phys. 35 (2012) 508

Dashed arrows: include cooling and escape Q(E) [GeV-1 cm-3 s-1] 
per time frame

N(E) [GeV-1 cm-3] 
steady spectrum

Input: B‘
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Peculiarity for neutrinos: 
Secondary cooling

Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508; 
also: Kashti, Waxman, 2005; Lipari et al, 2007

Decay/cooling: charged µ, π, KSecondary spectra (µ, π, K) loss-
steepend above critical energy

 E‘c depends on particle physics 
only (m, τ0), and B‘

 Leads to characteristic flavor 
composition and shape 

 Very robust prediction for sources? 
[e.g. any additional radiation processes 
mainly affecting the primaries will not 
affect the flavor composition]

E‘c
E‘c E‘c

Pile-up effect
 Flavor ratio!

Spectral
split

Example: GRB

Adiabatic

νµ
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From the source to the detector:

UHECR transport
 Kinetic equation for co-moving number density:

 Energy losses
 UHECR must from
from our local 
environment 
(~ 1 Gpc at 1010 GeV, 
~ 50 Mpc at 1011 GeV) 

Photohadronics
Hümmer, Rüger, 

Spanier, Winter, 2010

Pair production
Blumenthal, 1970

Expansion of
Universe CR inj.

(M.  Bustamante)

[here b=-dE/dt=E t-1loss] GZK cutoff 
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Cosmogenic neutrinos

 Prediction depends on 
maximal proton energy, 
spectral index γ, source 
evolution, composition

 Can test UHECR 
beyond the local 
environment

 Can test UHECR 
injection into ISM 
independent of CR 
production model 
 constraints on 
UHECR escape

(courtesy M.  Bustamante; see also Kotera, Allard, Olinto, JCAP 1010 (2010) 013)

Cosmogenic neutrinos

EeV
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Ankle vs. dip model

 Transition between galactic and extragalactic cosmic rays 
at different energies:

 Ankle model:
 Injection index γ ~ 2 

possible 
( Fermi shock acc.)

 Transition at > 4 EeV
 Dip model:

 Injection index 
γ ~ 2.5-2.7 (how?)

 Transition at ~ 1 EeV
 Characteristic shape 

by pair production dip

Figure courtesy M.  Bustamante; for a recent review, see Berezinsky, arXiv:1307.4043

Extra-
galactic
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Multi-messenger physics with 
GRBs



The “magic“ triangle

γ

ν CR

Satellite experiments
(burst-by-burst)

?
(energy budget, 
ensemble fluctuations, …)

e.g. Eichler, Guetta, Pohl,
ApJ 722 (2010) 543; Waxman, 

arXiv:1010.5007; Ahlers, 
Anchordoqui, Taylor, 2012 …

Model-
dependent 
prediction
Waxman, Bahcall, 
PRL 78 (1997) 2292; Guetta 
et al., Astropart. Phys. 20 
(2004) 429

 GRB
stacking

CR experiments (diffuse)Neutrino telescopes 
(burst-by-burst or diffuse)

Robust connection
if CRs only escape as 
neutrons produced in 

pγ interactions
Ahlers, Gonzalez-Garcia, Halzen, 

Astropart. Phys. 35 (2011) 87

Partly common fudge
factors: how many GRBs
are actually observable?

Baryonic loading?
Dark GRBs? …

Properties of 
neutrinos really

unterstood?
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 Idea: Use multi-messenger approach (BG free) 

 Predict neutrino flux from
observed photon fluxes
event by event

GRB stacking

(Source: NASA)

GRB gamma-ray observations
(e.g. Fermi, Swift, etc)

(Source: IceCube)

Neutrino
observations

(e.g. IceCube, …)
Coincidence!

(Example: ANTARES, arXiv:1307.0304)

Observed:
broken power law
(Band function)

γ

ν

E-2 injection

(NeuCosmA model)
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Gamma-ray burst fireball model:
IC-40+59 data meet generic bounds

Nature 484 (2012) 351
Generic flux based 
on the assumption 
that GRBs are the 
sources of (highest 
energetic) cosmic rays
(Waxman, Bahcall, 1999; 
Waxman, 2003; spec. bursts:
Guetta et al, 2003)

IC-40+59 
stacking limit

 Does IceCube really rule out the paradigm that 
GRBs are the sources of the ultra-high energy 
cosmic rays?
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Revision of neutrino flux predictions

Analytical recomputation
of IceCube method (CFB):

cfπ: corrections to pion 
production efficiency

cS: secondary cooling and 
energy-dependence
of proton mean free path
(see also Li, 2012, PRD)

Comparison with numerics:

WB ∆-approx: simplified pγ

Full pγ: all interactions, K, …
[adiabatic cooling included]
(Baerwald, Hümmer, Winter, 
Phys. Rev. D83 (2011) 067303;
Astropart. Phys. 35 (2012) 508; 
PRL, arXiv:1112.1076)

Γ ~ 1000 Γ ~ 200
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Systematics in aggregated fluxes

 z ~ 1 “typical“ 
redshift of a GRB

 Peak contribution in 
a region of low 
statistics
Ensemble fluctuations 

of quasi-diffuse flux

Distribution of GRBs
following star form. rate

Weight function:
contr. to total flux

10000 bursts

(Baerwald, Hümmer, Winter, Astropart. Phys. 35 (2012) 508)

(strong
evolution

case)
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Quasi-diffuse prediction
 Numerical fireball 

model cannot be 
ruled out yet with 
IC40+59 for same 
parameters, bursts, 
assumptions

 Peak at higher 
energy!
[at 2 PeV, where two 
cascade events have 
been seen]

“Astrophysical 
uncertainties“:
tv: 0.001s … 0.1s
Γ: 200 …500
α: 1.8 … 2.2
εe/εB: 0.1 … 10

(Hümmer, Baerwald, Winter, Phys. Rev. Lett. 108 (2012) 231101) 23



Model dependence

Internal shock model,
target photons from synchrotron 
emission/inverse Compton

from Fig. 3 of IceCube,
Nature 484 (2012) 351; uncertainties 
from Guetta, Spada, Waxman, Astrophy  
J. 559 (2001) 2001

Internal shock model,
target photons from observation, 
origin not specified

from Fig. 3 of 
Hümmer et al, PRL 108 (2012) 231101

Dissipation radius not specified (e. 
g. magnetic reconnection models), 
target photons from observation, 
origin not specified

from Fig. 3 of 
He, Murase, Nagataki, 
et al, ApJ. 752 (2012) 29

(figure courtesy of Philipp Baerwald)

Not only normalization, but also uncertainties depend 
on assumptions:

M
od

el
 d

ep
en

de
nc

e
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Neutrinos-cosmic rays

γ

ν CR

Satellite experiments
(burst-by-burst)

?
(energy budget, 
ensemble fluctuations, …)

e.g. Eichler, Guetta, Pohl,
ApJ 722 (2010) 543; Waxman, 

arXiv:1010.5007; Ahlers, 
Anchordoqui, Taylor, 2012 …

Model-
dependent 
prediction
Waxman, Bahcall, 
PRL 78 (1997) 2292; Guetta 
et al., Astropart. Phys. 20 
(2004) 429

 GRB
stacking

CR experiments (diffuse)Neutrino telescopes 
(burst-by-burst or diffuse)

Robust connection
if CRs only escape as 
neutrons produced in 

pγ interactions
Ahlers, Gonzalez-Garcia, Halzen, 

Astropart. Phys. 35 (2011) 87

Partly common fudge
factors: how many GRBs
are actually observable?

Baryonic loading?
Dark GRBs? …

Properties of 
neutrinos really

unterstood?
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The “neutron model“
 If charged π and n produced together:

Baryonic loading? CR leakage? Ensemble 
fluctuations? (Ahlers, Anchordoqui, Taylor, 2012; Kistler, Stanev, Yuksel, 2013; …)

CRν
A

hlers, G
onzalez-G

arcia, H
alzen,

A
stropart. Phys. 35 (2011) 87

Fit to UHECR 
spectrum

Consequences for 
(diffuse) neutrino fluxes
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CR escape mechanisms
Baerwald, Bustamante, Winter, Astrophys.J.  768 (2013) 186

Optically thin
(to neutron escape)

Optically thick
(to neutron escape)

Direct proton escape
(UHECR leakage)

ν
n

p

p

n

n

n

ν

ν

ν

n

n

ν

ν

ν

ν

ν
p

p

λ‘ ~ c t‘pγ λ‘ ~ R‘L

n

ν

p

p

p

p

p

 One neutrino per 
cosmic ray

 Protons 
magnetically 
confined

 Neutron escape 
limited to edge of 
shells

 Neutrino prod. 
relatively enhanced

 pγ interaction rate 
relatively low

 Protons leaking 
from edges 
dominate
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A typical (?) example
 For high acceleration 

efficiencies:
R‘L can reach shell 
thickness at highest 
energies
(if E‘p,max determined by 
t‘dyn) 

UHECR from 
optically thin GRBs 
will be direct escape-
dominated 
(Baerwald, Bustamante, Winter, 
Astrophys.J.  768 (2013) 186)

Spectral break
in CR spectrum
 two component

models

Neutron spectrum
harder than E-2

proton spectrum
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Parameter space?
 The challenge: need 

high enough Ep to 
describe observed 
UHECR spectrum

The acceleration 
efficiency η has to 
be high

Can evade the “one 
neutrino per cosmic 
ray“ paradigm

(Baerwald, Bustamante, Winter, 
Astrophys.J.  768 (2013) 186) 

Direct escape

(τγγ=1 for 
30 MeV 

photons)
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Cosmic energy budget

γ

ν CR

Satellite experiments
(burst-by-burst)

?
(energy budget, 
ensemble fluctuations, …)

e.g. Eichler, Guetta, Pohl,
ApJ 722 (2010) 543; Waxman, 

arXiv:1010.5007; Ahlers, 
Anchordoqui, Taylor, 2012 …

Model-
dependent 
prediction
Waxman, Bahcall, 
PRL 78 (1997) 2292; Guetta 
et al., Astropart. Phys. 20 
(2004) 429

 GRB
stacking

CR experiments (diffuse)Neutrino telescopes 
(burst-by-burst or diffuse)

Robust connection
if CRs only escape as 
neutrons produced in 

pγ interactions
Ahlers, Gonzalez-Garcia, Halzen, 

Astropart. Phys. 35 (2011) 87

Partly common fudge
factors: how many GRBs
are actually observable?

Baryonic loading?
Dark GRBs? …

Properties of 
neutrinos really

unterstood?
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Gamma-ray observables?

 Redshift distribution  Can be integrated 
over.

Total number of bursts 
in the observable 
universe

Can be directly 
determined (counted)!

Order 1000 yr-1
(Kistler et al, Astrophys.J. 705 (2009) L104)

~ (1+z)α

Threshold correction

SFR

31



Consequence: Local GRB rate

 The local GRB rate can be written as

where fz is a cosmological correction factor:

(for 1000 
observable 
GRBs per 

year) 

(Baerwald, Bustamante, Halzen, Winter, to appear) 32



Required UHECR injection
 Required energy ejected in UHECR per burst:

 In terms of 
γ-ray energy:

Baryonic loading fe-1~50-100 for E-2 inj. spectrum (fbol
~ 0.2), Eγ,iso ~ 1053 erg, neutron model (fCR ~ 0.4)
[IceCube standard assumption:  fe-1~10] 

~1.5 to fit UHECR 
observations

~5-25

Energy in protons 
vs. electrons (IceCube def.)

How much energy
in UHECR?

Fraction of energy
in CR production?
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Impact factors

Same.
Focus on 1/fe
in following

Depends on
model for UHECR escape(Baerwald, Bustamante, 

Halzen, Winter, to appear) 34



Combined source-prop. model fit
(cosmic ray ankle model transition, αp ~ 2)

 Cosmic ray leakage (dashed) can evade 
prompt neutrino bound with comparable fe-1:

(Baerwald, Bustamante, Halzen, Winter, to appear)

Neutron escape dominates

Direct escape dominates
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Combined source-prop. model fit
(cosmic ray dip model transition, αp ~ 2.5)

 Dip-model transition requires extremely 
large baryonic loadings (bol. correction!):

(Baerwald, Bustamante, Halzen, Winter, to appear)

Pair prod. dip
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Parameter space?

 Results depends on 
shape of additional 
escape component, 
acceleration 
efficiency

 This example:  
branch surviving 
future IceCube 
bounds requires 
large baryonic 
loadings to fit 
UHECR 
observations

(Baerwald, Bustamante, Halzen, Winter, to appear) 37



Summary
 GRB explanation of UHECR requires large baryonic 

loadings >> 10; still plausible in “ankle model“ for 
UHECR transition 

 Neutron model for UHECR escape already excluded 
by neutrino data

 Future neutrino bounds will strongly limit parameter 
space where pion production efficiency is large

 Possible ways out:
 GRBs are not the exclusive sources of the UHECR
 Cosmic rays escape by mechanism other than pion 

production plus much larger baryonic loadings than 
previously anticipated 
[applies not only to internal shock scenario …]

 The cosmic rays and neutrinos come from different 
collision radii (dynamical model with collisions at different 
radii)?
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Backup



What if: Neutrinos decay?

 Reliable conclusions from flux bounds require cascade (νe) 
measurements! Point source, GRB, etc analyses needed!

Baerwald, Bustamante, Winter, JCAP 10 (2012) 20

Decay hypothesis: ν2 and ν3 decay with lifetimes compatible with SN 1987A bound

Limits?
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IceCube method …normalization

 Connection γ-rays – neutrinos

 Optical thickness to pγ interactions:

[in principle, λpγ ~ 1/(nγ σ); need estimates for nγ, which 
contains the size of the acceleration region]  

(Description in arXiv:0907.2227; 
see also Guetta et al, astro-ph/0302524; Waxman, Bahcall, astro-ph/9701231)

Energy in electrons/
photons

Fraction of p energy
converted into pions fπ

Energy in neutrinos

Energy in protons
½ (charged pions) x

¼ (energy per lepton)
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IceCube method … spectral shape

 Example:

First break from
break in photon spectrum

(here: E-1  E-2 in photons)

Second break from
pion cooling (simplified)

3-βγ

3-αγ

3-αγ+2

42
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