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EMRIs

A major goal of the space-
based Gravitational Wave
programme is to study Extreme
Mass Ratio Inspirals.

Many orbits.

Expect generic (eccentric,
inclined) orbits.

Larger black hole generally

spinning.

Ultimate goal: ~10* accurate = /
evolved! generic orbits|in Kerr _ -~

with gravitational “

Image credit: eLISA /NGO Yellow book (ftp:/ / ftp.rssd.esa.int/ pub/ojennric/ NGO_YB /NGO_YB.pdf)



Self-force

* Model the system using black hole perturbation theory =>
perturbative parameter is the mass/charge (g, e, u=m/M)

* Solve the coupled system of equations for the motion of a point
particle and its retarded field.
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Practical considerations

Several considerations arise when trying to turn this formal
prescription into a practical calculation scheme:

+ System 1s coupled: retarded field depends on the entire past world-line
and the world-line depends on field => delay differential equation.

+ O-function sources are difficult to
handle numerically.

+ Retarded field diverges like 1/r near
the world-line.
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Approaches

* Several approaches have been developed for dealing with the
numerical problems of point sources and singular fields.

* These broadly fall into three different categories
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Green function approach




Green function

* Solution of the wave equation with an impulsive source

4
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* For self-force calculations, we work with the retarded Green function

* Given the Green function, we can compute solutions of the sourced
wave equation by integrating the Green function against the source

P(x) = q/ Coailass Al ok

+ But, this diverges on the world-line, * = z(7)



Green function regularization

* Mino, Sasaki and Tanaka and Quinn and Wald derived an
equation (MiSaTaQuWa) for the self-force in terms of a tail integral
of the retarded Green function over the past world-line

f¢ = (local terms) + lim ¢ / Vs @) ol

e—0

* The tail integral appears only in curved spacetime and contains
information about the non-locality of the self-force.

* This can be understood geometrically in terms of null geodesics
wrapping around the black hole and re-intersecting the world-
line.



Tail contrmbution to the self-force

Null geodesics intersecting a circular geodesic orbit
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Tail contrmbution to the self-force
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Retarded Green function along an eccentric geodesic orbit

0.004

0.002

—-0.002

—-0.004

At/M

60 30

100

120

140




Green function regularization

* Mino, Sasaki and Tanaka and Quinn and Wald derived an
equation (MiSaTaQuWa) for the self-force in terms of a tail integral
of the retarded Green function over the past world-line

f¢ = (local terms) + lim ¢ / Vs @) ol

e—0

* If we can compute the Green function along the world-line, then
we’re done: just integrate this to get the regularized self-force for
any orbit.

* The difficulty is in developing a strategy for computing the Green
function over a sufficiently large portion of the world-line.



Matched expansions calculation of
the Green function




Matched expansions

* Compute the Green function using

matched asymptotic expansions
[Anderson and Wiseman, Class. Quantum Grav. 22, S783 (2005); M. Casals,

S. R. Dolan, A. C. Ottewill, and B. Wardell, Phys. Rev. D 79, 124043 (2009) ]
* Separately compute expansions of the
Green function valid in the recent past
(Taylor series) and in the distant past
(quasi-normal mode + branch cut/
numerical time-domain evolution).

+ Stitch together expansions in an
overlapping matching region to give
the full Green function.

Timelike worldline of the particle

Current location of the particle - z(z)

r Integral in quasilocal region

/T VoGiret(2(T), 2(7"))dT’

¢ Matching point - z(7n)

Boundary of causal domain where
Hadamard form is valid

First null geodesic which
re-intersects the worldline

Integral outside quasilocal region

} / : VG, o (2(7), 2(7))dr’




Fxpansion 1n quasilocal region




Farly times - quasilocal expansion

* For early times, we can use the Hadamard form

G(z,z') =0_(x,2") (U(z,z")0(c) — V(z,2")O(—0))

* Only need V(x,x’) since tail integral is inside the light-cone. Compute
this as a series expansion (WKB) valid for x and x” close together;
Padé re-summation to increase radius of convergence, accuracy.
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Fxpansion in distant past region




Late times - spectral expansion

* Spectral decomposition of the Green into spherical harmonic and
Fourier modes
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* Sum over [ and integration over omega can be rendered convergent
provided x and x” are far enough apart.



Late times - spectral expansion

* Integral over frequencies may be done by deforming the contour into
the complex-frequency plane [Leaver (1988)].

* Residue theorem of complex
analysis dictates that one must
account for singularities of the
integrand.

* Simple poles (quasi-normal
modes) and a branch cut down |
complex-frequency plane. N y

* High-frequency arc may be ignored; only contributes at “early” times.



Distant past Green function
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Distant past Green function
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Numerical calculation 1in distant
past region




Numerical tme-domain evolution

* Alternative option is to numerically compute the retarded Green
function using time-domain evolution.

* Numerically evolve a wave equation for the Green function.

+ Still need to make use of quasi-local expansion for the recent past, but
late time calculation is much easier than with quasi-normal modes +
branch cut. - ~




Numerical tme-domain evolution

* Given initial data on a spatial hyper-surface > and the full Green
function, can determine the solution at an arbitrary point x’ in the

future of 2 (Kirchhoff theorem)

B(z') = —% [6(2,2) V" 9(@) = 9(2) V*Gla,a")dE

+ Basic idea: choose as initial data

d(x) =0 0P (x) =
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then in the limit o — 0

P(x') = / G(x,x")d5(x — x¢)r? sin OdrdOde
5
— @i



Numerical ttime-domam evolution

* S0, we evolve the homogeneous wave equation with initial data

4 _ Ix—xg|?
(I)(I) =0 875(1)(33) = (27_‘_0_2)3/26 202

for a sequence of values of o then extrapolate to 6 — 0 to get the
Green function. Equivalent to smoothly cutting off the divergent sum
over spherical-harmonic I modes, rendering it convergent.

* Somewhat surprisingly, this works very well for computing the self-
force, even for quite large 6/ M ~ 0.1 - 1.

* Narrower Gaussian improves resolution of spikes at null-geodesic
crossings. Between crossings, even a large o is sufficient.



Scalar Perturbation
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G(xo, X') for xo = {0, 6M, 0, t/2} in Schwarzschild spacetime




Distant past Green function

p
o Numerical Green function along a circular orbit, r=6M -
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Matching early- and late-time
expansions




Matching early- and late-time
expansions
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Farly times - quasilocal expansion
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l.ate times - branch cut tail

* At very late times, Green function dominated by branch cut because
quasi-normal modes decay much faster. Use analytic expressions.
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Matched Green function

Green function along a circular orbit, r=6M




Computing the self-force




Computing the self-force

* Integrate matched Green function to get regularized field / self-force
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Partial self —force for circular orbits




(eneric orbits

* Green function approach works equally well with all types of orbit.

4 )
Radial derivative of Green Function along eccentric orbit with p=7.2, e=0.5 at r=6M
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(eneric orbits

* Green function approach works equally well with all types of orbit.
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Conclusions

* Advantages:

+ Compute the Green function
once, get the self-force for all
orbits (including unbound,
highly-eccentric, zoom-whirl,
ultra-relativistic, which are
difficult or inaccessible with
existing methods).

* Avoids numerical
cancellation by directly
computing regularized field.

* May yield geometric insight.

* Green function can be
applied to other problems.

* Disadvantages:

* Computing the Green
function can be hard.

* Have to compute the Green
function for all pairs ot
points x and x’.

* Not naturally suited to selt-
consistent evolution.

* Second order not so well
understood.



Conclusions and prospects

* Green functions are a flexible approach to self-force calculations.

* Compute Green function once, get all orbits through that base point.
* Need a separate calculation for each point on the orbit.

* Gives insight into how much of the past matters for the self-force.

* Interesting orbits not accessible by other means?

* Schwarzschild case now complete [arXiv:1306.0884].

* Application to Kerr spacetime.

* Extension to gravitational case.

* Self-force as a test of alternative theories of gravity?

+ Other applications beyond self-force.
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