Gravitational Lensing of the CMB:

Mass Maps, Power Spectra, and Bmodes with the South Pole Telescope

Gil Holder

as part of: SPT collaboration

Outline

- CMB gravitational lensing overview
- lensing power spectra
- mass maps and cross-correlations
- first detection of "B-modes"

Planck has higher resolution than WMAP

WMAP 60 GHz

Planck 143 GHz

South Pole Telescope

10m mm-wave (3 different
wavelengths) telescope
at the south pole
 •extremely dry
 •very stable
 •good support

Chicago Colorado UC Berkeley Case Western McGill Harvard UC Davis Munich +++

The evolution of SPT cameras

2007-2011: SPT 960 detectors

2500 sq deg completed

2012-2015: SPTpol ~1600 detectors

100 sq deg completed 600 sq deg expected 2016: SPT-3G ~15,200 detectors

2500 sq deg expected

Now with polarization!

slide from S Hoover

SPT-SZ Survey (completed)

SPT has higher resolution than Planck

Planck 143 GHz

Planck+SPT

CMB Angular Power Spectrum

CMB Polarization

 CMB fluctuations are relatively strongly polarized (~10%)

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
 - scalar perturbations only generate *only* E

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
 - scalar perturbations only generate *only* E
- Lensing of CMB is much more obvious in polarization!

Image of positive kx/positive ky Fourier transform of a 10x10 deg chunk of Stokes Q CMB map [simulated; nothing clever done to it]

CMB Polarization Angular Power Spectrum

Two Expected Sources of B Modes

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- scalar perturbations only generate <u>*only</u>* E

Broad kernel, peaks at $z \sim 2$

- CMB is a unique source for lensing
 - Gaussian, with well-understood power spectrum (contains all info)
 - At redshift which is (a) unique, (b) known, and (c) highest

Lensing simplified

 gravitational potentials distort shapes by stretching, squeezing, shearing

Lensing simplified

 gravitational potentials distort shapes by stretching, squeezing, shearing

Lensing simplified

- where gravity stretches, gradients become smaller
- where gravity compresses, gradients are larger
- shear changes
 direction

Mode Coupling from Lensing

$$T^{L}(\hat{\mathbf{n}}) = T^{U}(\hat{\mathbf{n}} + \nabla \phi(\hat{\mathbf{n}}))$$

= $T^{U}(\hat{\mathbf{n}}) + \nabla T^{U}(\hat{\mathbf{n}}) \cdot \nabla \phi(\hat{\mathbf{n}}) + O(\phi^{2}),$

СМВІ

Iχ

• Non-gaussian mode coupling for $\ \ l_1 \neq -l_2$:

$$\langle T^{L}(\mathbf{l}_{1})T^{L}(\mathbf{l}_{2})\rangle = \mathbf{L} \cdot (\mathbf{l}_{1}C^{T}_{l_{1}} + \mathbf{l}_{2}C^{T}_{l_{2}})\phi(\mathbf{L}) + O(\phi^{2})$$
$$\mathbf{L} = \mathbf{l}_{1} + \mathbf{l}_{2}$$

- We extract φ by taking a suitable average over CMB multipoles separated by a distance L
- We use the standard Hu quadratic estimator.

E-modes/B-modes

- E-modes vary spatially parallel or perpedicular to polarization direction
- B-modes vary spatially at 45 degrees
- CMB
 - scalar perturbations only generate *only* E
- Lensing of CMB is much more obvious in polarization!

Image of positive kx/positive ky Fourier transform of a 10x10 deg chunk of Stokes Q CMB map [simulated; nothing clever done to it]

CMB Lensing Power Spectrum

Cosmology with Lensing

large improvements over WMAP alone in measuring curvature

(BUT: BAO+H₀ are currently ~2x better than SPTLens for this)

van Engelen et al

Massive Neutrinos in Cosmology

$$\Omega_v \approx \sum_i (m_i/0.1 \ eV) \quad 0.0022 \ h_{0.7}^{-2}$$

-Below free-streaming scale, neutrinos act like radiation

drag on growth

 Above free-streaming scale, neutrinos act like matter

Neutrinos & CMB Lensing

• Peak at I=40 (k_{eq} =[300 Mpc]⁻¹ at z = 2): coherent over degree scales

RMS deflection angle is only ~2.7'

Upper limits on neutrino masses

- CMB experiments closing in on interesting neutrino mass range
- CMB lensing adds _{0.2}
 new information
 - forecast ~0.05 eV sensitivity in ~4

yrs

Not everything makes total sense

 combining all cosmological information leads to a preference for a high neutrino mass and some form of new light particle in the universe

Wyman et al 2013

CMB Lensing X Galaxies

linear bias: $\rho_{\rm gal}={\rm b}\rho_{\rm matter}$

- Galaxy-galaxy correlation: b²
- Galaxy-lensing correlation: b¹
- Lensing-lensing correlation: b⁰

Optical galaxy counts (19.5<i<22.5)

CMB lensing (smoothed to only show scales with S/N>1)

Using <5% of completed SPT survey

Bleem et al

Galaxy-Mass Cross-Correlation Detected

Bleem et al

Herschel (SPIRE)

- I00 sq deg with full overlap with SPT deep field (23h30,-55d)
- 250,350,500 um

Cosmic Infrared Background Traces Mass

CMB Lensing/Herschel

simple model of flux traces mass at any given z

depending on z distribution of CIB, bias of CIB sources is 1.5-2

AGN Selection with WISE

Quasar-Mass Cross-Correlation Detected: SPT X WISE

stacked SPT lensing map in bins of AGN density

low AGN density **5**°

high AGN density **Geach et al**

Quasar-Mass Cross-Correlation Detected: SPT X WISE

Planck and SPT in excellent agreement

bias measurements agree with expectations

Geach et al

Two Expected Sources of B Modes

Cosmic Infrared Background Traces Mass

Predicting B-Modes

Many Ways of Predicting B-Modes

Hanson, Hoover, Crites et al 2013

First Detection of B-Modes

Summary & Outlook

- high resolution CMB maps give new information about the universe
- gravitational lensing of the CMB a powerful new probe
 - power spectrum of mass fluctuations
 - directly connecting galaxies to mass
- B-mode polarization anisotropy has now been detected

– next up: B modes from early universe!