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Introduction

Background and Motivation

Stripes are known to form in a variety of strongly coupled systems, but are rare in
weakly coupled ones. Examples include:

Large N QCD, chiral density waves at asymptotically large chemical potential.
Deryagin, Grigoriev and Rubakov, “Standing wave ground state in high density, zero temperature QCD at large N(c).”

E. Shuster and D. T. Son, “On finite density QCD at large N(c),” Nucl. Phys. B 573, 434 (2000) [hep-ph/9905448].

Systems of strongly correlated electrons
M. Vojta, “Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity,” Adv. Phys. 58, Issue 6, 2009.

The formation of stripes is important in some theoretical speculations, e.g:.

Inhomogeneity induced pairing in high-Tc superconductors:
Carlson, E. W., Emery, V. J., Kivelson, S. A., Orgad, D., “Concepts in High Temperature Superconductivity,” [arXiv:cond-mat/0206217]

S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik and C. Howald, “How to detect fluctuating stripes in the

high-temperature superconductors,” Rev. Mod. Phys. 75, 1201 (2003).

Leading to the concept of optimal inhomogeneity
Kivelson, Steven A.; Fradkin, Eduardo,“How optimal inhomogeneity produces high temperature superconductivity”, cond-mat/0507459.

E. Berg, E. Fradkin, S. A. Kivelson and J. M. Tranquada, “Striped superconductors: how spin, charge and superconducting orders intertwine in

the cuprates,” New J. Phys. 11, no. 11, 115004 (2009).

This talk concentrates on one concrete construction of inhomogeneous black
holes, dual to states in which translation invariance is broken spontaneously.
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Introduction

Background and Motivation

Spatial inhomogeneity in general is interesting in the holographic context, as
oftentimes it is a necessary ingredient in the physics. Some examples:

Lattice induced metal-insulator transitions: A. Donos and S. A. Hartnoll, “Metal-insulator transition in

holography,” arXiv:1212.2998 [hep-th].

Use of inhomogeneous and vector-like instabilities as mechanism of linear
resistivity.
A. Donos and S. A. Hartnoll, “Universal linear in temperature resistivity from black hole superradiance,” arXiv:1208.4102 [hep-th].

Scaling laws discovered in holographic lattices
G. T. Horowitz, J. E. Santos and D. Tong, “Optical Conductivity with Holographic Lattices,” JHEP 1207, 168 (2012)

Fascinating physics can happen at the interface of boring bulk materials.
M. Rozali, “Compressible Matter at an Holographic Interface,” Phys. Rev. Lett. 109, 231601 (2012) [arXiv:1210.0029 [hep-th]].

The physics of vortices and vortex lattices
N. Bao, S. Harrison, S. Kachru and S. Sachdev, “Vortex Lattices and Crystalline Geometries,” arXiv:1303.4390 [hep-th].

Spatially inhomogeneous situations are also interesting purely from the bulk
gravitational perspective, as they involve a new type of solutions of Einstein’s
equations. The numerical methods involved are well-understood.
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Introduction

Background and Motivation

Compare and contrast (too many references to list):

Lots of work on linearized instabilities: at some point in phase diagram
tachyons develop in the linearized perturbation spectrum, where the
dominant one has a non-zero wavenumber.

Some perturbative solutions, around the phase transition point, or in some
other probe limit (e.g. for vortex lattices) exist. They are valid in a corner of
parameter space or phase diagram.

Some fully back-reacted solutions exist with sourced inhomogeneity. In most
such cases the inhomogeneity is irrelevant, it decreases towards the horizon.
New issues arise for relevant inhomogeneity, e.g. where it can leads to a
metal-insulator transition.

Some non-linear solutions exist in special cases where helical symmetry allows
reduction to ODEs. A. Donos and S. A. Hartnoll, arXiv:1208.4102 [hep-th].

In contrast to all the above, we construct a non-linear co-homogeneity two static
solution describing the spontaneous breaking of translation invariance. This allows
us to explore, hopefully, generic features to do with breaking of translation
invariance.
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Striped Instability Holographic Setup

The Model:

Consider the Einstein-Maxwell system in asymptotically AdS4, and add a neutral
scalar ψ, with m2 = −2 and a coupling

Lint =
c1

16
√

3
ψ εµνρσFµνFρσ

A. Donos and J. P. Gauntlett, “Holographic striped phases,” JHEP 1108, 140 (2011) [arXiv:1106.2004 [hep-th]].

This is axion electrodynamics, which arises as the effective field theory
describing the electromagnetic response of topological insulators and their
boundary excitations.

Most other occurrences of inhomogeneous and/or vector-like instabilities
involve also bulk topological terms.

Here we have axion electrodynamics in the bulk. We will also discover a near
horizon modulated axion.

This will result in a bulk magneto-electric effect, more familiar from the study
of topological insulator interfaces. This accounts for some unusual properties
of the bulk geometry.
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Striped Instability The Instability

The Instability

In this model the RN black hole develops an unstable mode of a finite
wavenumber kc at some critical temperature Tc . At that point a new branch of
solutions develops, which we follow to lower temperatures.
A. Donos and J. P. Gauntlett, “Holographic striped phases,” JHEP 1108, 140 (2011) [arXiv:1106.2004 [hep-th]].

Higher values of the axion coupling c1

result in higher critical temperatures and
a larger range of unstable wave-numbers
(the region under the curves). c1=8
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To leading order the perturbation involves an axion ψ, Ay – current in the y
direction, gty – momentum in the y direction, all modulated in the x direction.
The perturbation has two reflection symmetries which simplify the numerics.
Higher orders involve the metric elements gtt , gxx , gyy and the gauge potential At ,
all of which acquire significant modulation near the horizon.
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Striped Instability One Technical Slide

Technicalities

We find a fully back-reacted solution of Einstein + Matter equations, which
is co-homogeneity two and involves a spontaneous breaking of translation
invariance.

We work in a conformal ansatz, in which conformal symmetry in the (r,x)
directions is instrumental in simplifying the equations, and especially solving
the constraints. T. Wiseman, “Static axisymmetric vacuum solutions and nonuniform black strings,” Class. Quant. Grav. 20, 1137

(2003).

We use finite difference methods to discretize the resulting elliptic equations,
then Gauss-Seidel relaxation and multi-grid methods to solve the equations
iteratively.

We performed the standard checks (convergence, constraints, integrated first
law, Smarr’s formula) to verify we have an approximate solution to the
continuum equations. The relative error in the local values of the metric
functions is ∼ 10−6.

Other methods (Einstein-DeTurck, Pseudo-Spectral discretization) are also
possible. A. Donos, “Striped phases from holography,” JHEP 1305, 059 (2013). B. Withers, “Black branes dual to striped phases,”

arXiv:1304.0129 [hep-th]; “The moduli space of striped black branes,” arXiv:1304.2011 [hep-th].

Moshe Rozali (UBC) Striped Order in AdS/CFT IPMU Tokyo, August 2013 8 / 21



Solutions and Geometry

1 Introduction

2 Striped Instability
Holographic Setup
The Instability
One Technical Slide

3 Solutions and Geometry
Boundary Observables
Geometry
Magnetic Field and Rotation
Low Temperature Limit

4 Thermodynamics
Canonical Ensemble
Grand Canonical Ensemble
Micro-Canonical Ensemble
Preferred Stripe

5 Conclusions and Outlook

Moshe Rozali (UBC) Striped Order in AdS/CFT IPMU Tokyo, August 2013 9 / 21



Solutions and Geometry Boundary Observables

Boundary Observables

Qualitative features of the boundary observables, all encoded in subleading terms
in the asymptotic expansion of the fields near the conformal boundary.

The boundary theory exhibits a spontaneous breaking of translation
invariance, i.e. all non-normalizable modes are spatially homogeneous.

the scalar field ψ represents a modulated order parameter.

The modulation in Ay and At means there are both charge and current
density waves. The periodicity of the former is twice that of the latter.

There is a modulation in the energy-momentum tensor components Ttt ,Tyy

and non-zero momentum Tty in the vacuum.

By virtue of conservation, Txx is spatially homogeneous, which is a good
check on the numerics.

All amplitudes grows steadily with decreasing temperatures, approaching a
constant at zero temperatures.
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Solutions and Geometry Geometry

The Geometry

Qualitative features of the geometry:

We construct solutions for
3× 10−3 ≤ T

Tc
≤ 0.9. The figures are for

T = 0.11Tc , c1 = 4.5.

Modulation grows towards the horizon, and
is normalizable at infinity, as expected of
spontaneous breaking.

Periodicity is ”staggered”: the fields
gtt , gxx , gyy and At have half of the period
of ψ, Ay and W = gty .

The field Ay has to do with bulk magnetic
field; W = gty has to do with rotation.
More on their near horizon structure later.

Inhomogeneity grows as the temperature is
lowered, more quantitative discussion later.
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Solutions and Geometry Magnetic Field and Rotation

Near Horizon Topological Insulator

Much of the structure of the solution can be understood as a consequence of the
magneto-electric effect encoded in axion electrodynamics.

Axion Electrodynamics describes the electromagnetic response of a
topological insulator interface. That type of interface is realized as an axion
domain wall.

For us, the bulk axion ψ ∼ cos(kcx) drives the striped instability. The
presence of axion gradient and an electric field (from the charged black hole)

results in electric current ~j ∼ ~∇ψ× ~E . This is a near horizon current pointing
in the y direction.

The current results in bulk magnetic field and vorticity (represented by the
gauge field Ay and metric function gty ).

The backreaction on the geometry results in some frame dragging near the
horizon. But, the horizon itself does not rotate, all rotation is carried by the
matter fields.

Relatedly, the spacetime has no ergosphere, despite the rotation.

Moshe Rozali (UBC) Striped Order in AdS/CFT IPMU Tokyo, August 2013 12 / 21



Solutions and Geometry Magnetic Field and Rotation

Near Horizon Topological Insulator

More on bulk rotation:

Contour plot of the metric function gty .
This shows to localized regions of
counter-rotating matter near the horizon.
The horizon itself does not rotate, this is
is an example of stationary non-rotating
black hole.

Key to decoding the physics?

The order parameter driving the
striped instability is related to
topological order, albeit in the bulk.

The relation to topological order is
interesting. Can there be a relation
between local (=near horizon)
topological order, i.e. domains on a
length scale ∼ T−1, and the
mechanism for stripe formation?

Interesting to explore further the
consequences of topological terms
in the bulk.
H. Liu, H. Ooguri, B. Stoica and N. Yunes, “Spontaneous

Generation of Angular Momentum in Holographic Theories,” Phys.

Rev. Lett. 110, no. 21, 211601 (2013) [arXiv:1212.3666 [hep-th]].
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Solutions and Geometry Low Temperature Limit

Low Temperature Limit

We looked at the geometry as function of temperature, in particular as an aid to
identify the ground state of the system.

Some of the variations of the geometry are mild as we lower the temperature.
For example, the Ricci scalar on the horizon increases but approaches a
constant as T → 0.

The proper length of the x direction varies radially, and becomes maximal on
the horizon (the Archimedes effect). This quantity diverges mildly, as
∼ T−0.1 at low temperatures.

The ”neck” and ”bulge”, namely the minimum and maximum size of the
transverse direction y , decrease at low temperatures. Their ratio however
decreases as ∼ T 1/2 (for c1 = 4.5), signalling that the horizon pinches off at
low temperatures. This is the case for every c1, but the precise exponent
varies with c1.

Interesting to look at the possible ground states of systems with spatial
inhomogeneity. Perhaps in this case the natural expectation is an array of
lower dimensional structures (as in the Gregory-Laflamme story).
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Thermodynamics Canonical Ensemble

Fixing Temperature and Charge

At first we fix the asymptotic length of the system, L = 2π
kc

, where kc is the
critical wave-number. Later we’ll consider the infinite system where all
wavenumbers can occur.
In the canonical ensemble we couple the system to a heat bath, fixing the charge.
Since the theory is conformal, the free energy is a function of T/Q only.

This is a second order phase transition at
the temperature where tachyons first appear.

Within the accuracy of the numerics, the
scaling of the free energy is consistent with
mean field expectations.

Similar results for other values of the fixed
interval length L.

Some indications that phase transition
disappears at smaller values of c1.
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Free energy difference for c1 = 8.
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Thermodynamics Grand Canonical Ensemble

Fixing Temperature and Chemical Potential

Couple system to charged plasma, fixing the temperature and chemical potential.
The resulting grand-canonical ensemble is more natural for us, since we fix the
chemical potential as part of our boundary conditions. As consequence of
conformal invariance, all quantities depend on T/µ only.

Similarly, second order phase
transition at temperature Tc , in
which the corresponding tachyon
first develops, shown here for
various values of L.

Critical exponents seem to be non
mean-field: momentum density
∼ 0.41; scalar condensate ∼ 0.38;
current density ∼ .40, errors within
10 percent.
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We also get similar results where we fix the tension τx conjugate to the length L.
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Thermodynamics Micro-Canonical Ensemble

Fixing Mass and Charge

The micro-canonical ensemble describes an isolated system, as appropriate for
discussion of dynamical instability. Control parameters are M,Q and the entropy
is function of M/Q only.

Inhomogeneous solutions have
higher entropy and lower energy
than the critical RN, likely
endpoints of dynamical instability.

As shown in the horizontal axis,
mass of stripes goes below that of
the extremal RN. In that parameter
range there is only inhomogeneous
solutions.

Extrapolating to zero temperature
indicates non-zero entropy at
T = 0, though numerical
uncertainties are significant.

Microcanonical ensemble.
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Thermodynamics Micro-Canonical Ensemble

Infinite System

Finally, we can take the infinite L limit, studying relation between thermodynamic
densities. Now stripes of different widths can be compared.

Working in the grand canonical ensemble, we find again a second order transition
at Tc , the temperature where the first instability develops.

As the temperature is lowered, dominant
stripe width increases, approaching
approximately twice that of the critical
width at Tc .
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Other results are qualitatively similar to that of the finite system.
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Conclusions and Outlook

Some Work in Progress:

On the stripes front

Better understanding of mechanism of stripe formation, relation to
(semi-local?) topological order.

Understanding and possible classification of ground states.

Significance of striped phases in the phase diagram, potential relation to
superconductivity.

On the general inhomogeneous holography front:

Unconventional Fermi liquids at holographic interfaces (via calculation of
spectral densities).

Bound states at holographic interfaces (i.e. Andreev states, mid-gap
Majorana fermions).

More on lattice induced metal-insulator transitions, in a more generic context.

Noise induced metal-insulator transitions, and other noisy issues.

...
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