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1) Introduction

The AdS/CFT offers us many useful examples of holographic
duals of conformal field theories.
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(d+1) dim. CFTs

Question: Can we generalize this duality to other scale invariant
theories ?



Relativistic Scale invariance: (¢, x,,7) — (Af,Ax,,r/ A)
Non-relativistic Scale invariance: l

(4,%,y,,r) = (A, Ax,Ay,,r/ L)

We expect that the dual geometry looks like

2
2 2z 2 P 2 yd-p 4 o dr
ASSeating =V th +Ei=1dxi )Hf EH dy. +—r2 .

[Kachru-Liu-Mulligan 08’]

Comment: Here we do not require the Galilean invariance.
[cf. Son 08’, Balasubramanian-McGreevy 08’]



A typical example of such an anisotropic scale invariance is
known as the Lifshitz point.

Multi-critical point

VIiM)=aM?> +bM"* +cM® +--- (c>0).
a=0 = ordinary critical pt.

a=b=0 = Tricritical pt.

Lifshitz point [Hornreich-Luban-Shtrikman 1975’]

F(M)=aM? +bM* +c(V, M) +d(V,M)* + f(V /M)’

a=c=0 = (classical) Lifshitzpoint z =2



Lifshitz points appear magnetic spin systems, typically when
the following two interactions compete:

Nearest neighbor ferro interaction (isotropic)
+ Next nearest neighbor anti-ferro interaction (anisotropic).

=mmm) The modulation wave vector q begins to be non-vanishing.

Amscztropy (Pressure etc.) [Realistic examples:

MnP, organic crystals, alloy]

Helicoi Disordered

— Lifshitz point

> T




Classical Lifshitz model —

S, = [’ B(W)z +%<Vi¢)2].
Free field theory with z=2
—|n interacting theories,
guantum corrections lead
to different values of z.

Quantum Lifshitz model

S, = [’ B(«wf —%(szp)z].

This theory is known to have the remarkable property:

dx’ (V(P)
N oI

round State



Gravity Duals ?

Kachru et.al. showed that this background can be a solution to a
five dim. Einstein gravity coupled to 2- and 3-form gauge field.

S =[x |- g (R-2A)
‘me N*Foy + Higy NPH ) = fB@) A F)-

However, to understand microscopic holographic dual theories,
we need string theory embeddings.

Actually, no embeddings of such 5D theory have been known....



Ex. AdS4xCP3 (— dual to 3D N=6 Chern-Simons ABJM theory)
This is the most clear model where all moduli are stabilized
within type IIA supergravity and thus is desirable for us.

=0, H__=0.

xyr

KLM ansatz: F

fr

— However, we only find unphysical solutions like
z=-4 and imaginary valued H-flux.

May be Any No-go theorem ? [Li-Nishioka-TT work in progress]



In this talk, we will take a different ansatz to obtain
string theory embedding of anisotropic scale invariant metric.

In particular, we will realize solutions with
z=3/2, p=2 and d=3
in type |IB supergravity, which are dual to D3-D7 systems.

2
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(2 D3-D7 and Pure Chern-Simons Gauge Theory
[Fujita-Li-Ryu-TT 09']

What is the holographic dual of pure Chern-Simons theory ?
Ses= 45 Tt [AdA+34
Remember the well-known correspondence:

AdS5 Soliton xS5 ~ 4= Compactified 4D N=4 SYM
— 3D pure Yang-Mills
2dr 2 [Witten 98’]

L
dsy o un = 2 fr ) 2 S (=f(r)de> +dx} +dx; +dx;),
4
l fE1="0
r
R*dr’ r2
ds? (=dt* + f(r)dx} +dx; +dx3),

AdS Sohton f (7’) R 2



If we add the Chern-Simons term to the pure YM, it becomes
U(N) Yang-Mills-Chern-Simons theory.

1
4g }2’M

k 2
3 uv “ 43
fdx Tr[F, F ]+—4nfTr[AAdA+3A .

SSdYM =~

In the low-energy limit (i.e. IR limit), this theory is
reduced to pure U(N) Chern-Simons theory !



The Chern-Simons term is dual to the RR 1-form flux
because

Sy, = 4;fXFAF———deAAF

RR—flux:j;ldx=—kCZ

ifA/\F.

This k units flux is sourced by k D7-branes.



Therefore we find the dual background:

A\

—

UV

=

AdS5 Soliton k D7-branes
b S —
N D3-branes \r=ro
r=0 /
—

T

>



The AdS/CFT applied to this setup claims

AdS-Side

CFT(QFT)-side

Gravity on AdS5 Soliton
+ k D7-branes

U(N), Yang-Mills-Chern-Simons

Low energy limit

Pure U(k), Chern-Simons = Pure U(N), Chern-Simons

"

Level-Rank duality



3 New Supergravity Solutions for D3-D7 Systems

It is interesting to construct back-reacted type Il supergravity
solutions to such D3-D7 systems.

For this purpose, we assume the following ansatz:

ds*

String

=€2b(r)(_dt2 +dx2 +dy2)+e2h(r)+2a(r)dw2

+eZc(r)—2a(r)dr2 +€20(r)]"2dS)2(5 ,

Any Einstein Manifold

¢ =9¢(r), B2=C2=09
F, =a(Vol(X,) +*Vol(X.))
F, = dy = Bdw.



Equations of motion look like

,82 052
[61622;]/ — _6—2a—h+36+60,r5 o _6—40—+—3b—|—r‘7,,r—57

4 4
1 221 _ _5_2 —2a—h+3b+6¢_5 05_2 —4c4-3b+h, —5

[(a + h)e”*] = i T—|—4€ 72,

' 2z i 2z—2a 16_2 —2a—h+3b4+6¢c 5 a_? —dc+-3b+-h  —5
[(c+ logw)e™| ——e + e r 1€ r°,

r
2 2
(22 4 ¢ — a)/ezz]/ _ %eZz—Za . %6—2a—h+36+6cr5 o %e—4c+3b+hr—5’
r
1 5 3 10e—24 5

22:” . CI/ . ah’ o 2(2:/)2 i §(h!)2 - alhl 8] 2(61)2 . (; g CLI)C’ 5 §(b/)Z . ig L 27_2 _ 0,

where we have defined
=3, 2
SR g
The derivative of a function f with respect to 7 is denoted by f/(r). An observation, which will

be useful in the next section, is that a linear combination of the first four equations gives

1
logr+a+26—i—§h—¢.

[(2b — 2a — ¢ — 2R)e?*) = 0.



To solve EOMs, we assume that a(r),b(r),h(r),c(r) and $(r) are all
proportional to log r. (" Scaling ansatz’’)

Then we obtain the scaling solutions:

PRI I 2(Cde v dx +dy? e r saw? £ 90 + RS,

2
r

A Z s R? — 121}“
11

N I

Notice: After theredefinition p =7>°,  we obtain

9

2
dséinstein = ZRz p3 (_ dtz + dxz + dy2 )+ IO dp

p + Rds3. .




In terms of N and & (= the number of D3 and D7 - branes),

4 4
a=(27t)N | /3=£ | R ) T N
Vol(X) L

where we assumed the radiusof w 1s L .



Moreover, our solutions allow the black brane generalization:

dr’
> F(r)

4
dséinstein = R2|#? (— F(r)a’t2 +dx’ + a’y2 )-I- r3dw’ + + Rza’s)z(5 ,

2 12
e?) = p% 43 , F(r)=1_rillt/3 ] (Rz HRz)

The temperature and entropy become

L —u', S, =y - N°T"V,L (y =3.729..)).

127 T

(1+41+42/3) dim. space — Agree with [w]=2/3 !




(@ String Theory Duals of Lifshitz-like Fixed Points

We obtained type |IB solutions whose Einstein metrics possess

the anisotropic scale invariance.

Now we would like to interpret our solutions from the viewpoint
of the holography in string theory.

Two Problems: (i) The dilaton blows up in the limit r=00
(i) What is the holography in this case ?

Any relation to AdS5/CFT4 ?

We can resolve these issues by constructing RG flow from AdS5 !



(4-1) RG Flow from AdS5

Let us require a(r) =0,

2b(r)-2a(r)—-¢(r)—2h(r) = -2h,(= const.)
¢(r)=4c(r)+4logr+ a) :

in the previous ansatz :

dsftrmg =e”""(=dt’ +dx’ + dy’) + g*hrr2ar) gy 2
+e2c(r)—2a(r)dr2 +e2c(r)r2ds)2(5 ,

¢=¢(7"), B2=C2=Oa

F, =a(Vol(X,) +*Vol(X.))

F, =dy = pdw.




Then the equations of motion are reduced to

db(r) C(s) = dc(r)

Defining B(s) = ,
g B(s) dlogr dlogr

and s = logr,

—

- 2 2
Z?=2+24B—16C—IOB +24BC -8C~, | Two fixed points:
C=4+14B-4C-6B° +14BC-2C", AdS5 and Scaling

with the constraint :

Bre 2t = 9 _6B* +18BC -8C* +18B-16C > 0.



Holographic RG flow
Scaling

B
1 122
1

IR R

/////////////////’//'

0834
.

,,,,,,,,,,,,

,,,,,,,,,,,,

P SASSS S
L b oo
SO
S S
A uv
S

/ / /¢ - . - -
- . - s - - - .
S .
- - . e - - .
~



(4-2) Holographic Interpretation

In this way, we find the RG flow in AdS/CFT

UV: AdS5 z=1 IR+-Scaling Solution
/ Z=3/2
Dilatony *,

~
~
~
~
~

Strong|coupled region
is capped off !

I <




When X5=S5,
we start with the UV: N=4 Super Yang-Mills. Then we perform
the relevant ('non-local’) perturbation:

1 v
Sy =— Py fdx4FWF“ +fdtdxdydm8(w)F ANF
YM
k Relevant perturbation which breaks
O(w) = zw. Lorentz sym.

|

Equations of motion remain local |

The z=3/2 fixed point looks like an unstable fixed point, which
crossovers with z=1 original fixed point. But by fine tuning, we
can approach this fixed point as much as we want.



First, eliminating C from equations (3.11) and (3.12) gives

(4-3) Exact Solutions with no D7-branes

When the constraint vanishes =0, we can somehow find
new analytical solutions of |IB SUGRA:

r8—1 /(r*+1 3/ 8 —1/rt+1 T2V T
e = RQ[ rd (7’4—1) [ o™ ) 7 (7’4—1> o

441 +2./5
e? = (:4t1> o

% 2 71—4
with R = 2, /Viol(xs)N'



(4-4) Perturbative Analysis

We showed that the metric in the Einstein frame has the
anisotropic scale invariance. However, this is not true in the
string frame metric.

Therefore we have to examine if physical quantities (e.g.
correlation functions) can be computed from the Einstein

frame metric.

As we will see, indeed this is true for many perturbative modes.

[We will follow the famous analysis

by Kim-Romans-Nieuwenhuizen 85’]



In the Einstein frame, (ignoring decoupled three form fluxes)

the action simply looks like

LEin =\~ g(R —l€2¢31X31X _lald)a]qb _%

2 2 .5' FWIJKL]W}?[JKLM).

We expand the perturbations of metric and four form potential
in terms of spherical harmonic on S5:

N I w Iyl _ plyu Iyl a _ Iyl

h(ﬂ") N h(MV)Y ’ hu =hY, hua - BMYOC ’ h(a/a’) =¢ Y(a/a’)’ ha =Y,
I .7 I I .6t I I v

Copo =b'el, V.Y, Cpp =bler VY, Co,=b.Y ., ..

uv,.=0,1234, (t,x,y,w,r)
a,f,.=5,6,789 (S°)



We can show that the infinite towers of the perturbative modes

Scalar: ¢', (K. n',b"),
Vector: (B,,b,)

Tensor : b, v

satisfy massive free equations of motion in the Einstein frame

metric. For example,

(ASC +Ags — )¢ (aB) =

or equally Laplacian for the scaling metric

(ASC— k(k +4) )gbf =0. (k=234,.)

R2



For a massive scalar

(A -m’ )1) =0 in the background metric

2 2 2 2 2
I = R dp2 s dt +d;c +dy "‘d?jz |
P P P
-1 2 2R2
= —8i<I)+Z i 3, D+ 7 —+pl—w’ + pip?FY
p p
= O~ Ap™ +Bp™-,
- -1 2
Scaledim. : A, =2 +3i Z 43 +m°R*.
) 2 2
= Information of two point functions

Jq>=o.



B Entanglement Entropy

When we need to analyze a qguantum many-body system

whose definition and property are not well understood,

the entanglement entropy is very useful.

H=H, 6 &®H,: Hilbert Space

Define the reduced density matrix

Pa = TrHB [IOtot]'

S, =-Tr[p,Logp,]

= Entropy for an observer who cannot

observe the subsystem B

N
A

¥o

I

0A = 0B




The Lifshitz-like fixed points are also interesting from the
viewpoint of entanglement entropy, which has a simple
holographic description.

Usually, in relativistic (d+1) dim. QFTs, we have the area law,

Area(0A4
SA =_Tr[pALOgIOA]= adg )+

This scaling of the leading term will be changed due to the

anisotropic scale invariance.

mm) |t is an alternative of correlation functions, which
require more complicated calculations.



The entanglement entropy measures:

(i) Non-local Correlations (like Wilson loops)

(ii) The degrees of freedom (non-vanishing even at zero temp.)

(iii) The missing information hidden inside the subsystem
Sounds like black hole entropy ?

Gravitational origin ?

== |ndeed, it has a simple holographic description !



Holographic Computation of EE
[Ryu-TT 06’, Recent Review: Nishioka-Ryu-TT 0905.0932]

(1) Divide the space N is into A and B.

(2) Extend their boundarydA to the entire AdS space.
This defines a d dimensional surface.

(3) Pick up a minimal area surface and call this Y a.

(5) The E.E. is given by naively applying the
Bekenstein-Hawking formula as if YA were an event horizon.

o Area(y,)
A 4G](Vd+2) ’




Minimal Surface y
B /

(d+1)dim.| AdS, ,(Poincare Coordinate)

QFT
H’ A

Zz>d

UV cut of f

[Derivation from Bulk to Boundary relation: Fursaev 06’]



Holographic EE in D3-D7 scaling solution

\xi>1
(5-1) Case 1: x-Interval j//A T
T .
LA » L e
X SRR %4
YW 1 L= B
1 LU
X
> X P

In the end, we obtain

Area()/min) )\1 A’
Sy = 4G, = NzLyLw(asm - 15/23

\

[w]=2/3, [x]=[y]=1




(5-2) Case 2: w-Interval

lw
X,y : :
A
B A

In the end, we obtain

Area(y i, )
S, =
4G,

2
=NL¢4

\xi>1
1P
L,///é/ w
— "y
PR
T \ ,
= )
]
K _K
a I

<

[w]=2/3, [x]=[y]=1



(® Shear and Bulk Viscosity

Finally, we would like to calculate another interesting quantity
i.e. viscosity of the Lifshitz’ fluid at finite temperature.

[We follow the approach by Kovtun-Starinets 05’, Mas-Tarrio 07’]
Starting from the ten dim. |IB supergravity we define
the 5D metric perturbation by a Weyl-shift

1 «
Huv = huv +§guvha .

We only consider perturbations which are independent of w
and thus we assume the momentum only in y direction

—i(wt—qy)
HW x e




(6-1) Shear Viscosity
By taking into diff. invariance, a shear perturbation of the metric
is described by Z,(r) = gH, + wH .

By solving EOMs assuming w = Y _ <1 and qg = 4 _ )
27T 27T

we finally obtain

Z(r)=F(r)"™"? [1 + iq” F(r)+ ]
2w

By comparing the quasi normal mode with the thermodynamics:

in
o) = ——
qu

We find the familiar result in our case 2
IT

Q_l
S




(6-2) Bulk viscosity
To calculate the bulk viscosity, we analyze the sound mode:

Z,(r) = qu(r)Hﬂ +2qwH ,, + a)zHyy +g(r)(H, , +H,).

After a bit complicated calculations, we find
51+ 2iw)g~
1172 —16w?>

Z,(r)=F(r)"™"? [1— F(r)+....|.

and obtain the dispersion relation of the quasi-normal mode

5 zq 16q .....




By comparing this with the standard formula

wecg-il(4L, S\
Is\ d 2n

where d = dim. of space - like coordinates.

Since in our case we have d=2 (i.e. compactifying w direction),
we find the sound velocity Cs and the bulk viscosity C :

C,=.=, —

_1
’ 8 n 4

This saturates a conjectured bound (by Buchel 08’)




(?) Conclusions

We find solutions in type |IB supergravity whose Einstein
frame metrics have a Lifshitz-like anisotropic scale invariance.

The backgrounds should be dual to D3-D7 systems.

 We constructed a holographic RG flow between the usual
AdS5 and the anisotropic solution. The RG flow is triggered

by a non-local theta term of Yang-Mills theory.

 We calculate the thermal and entanglement entropy, which
shows the fractional scaling.

We also computed the bulk and shear viscosity.



Future Problems

e Non-relativistic Lifshitz-like solution ?

D3-D5 systems with F-string soruces lead to the z=7 solution
[Azeyanagi-Nishioka-TT unpublished 07’]

2
dst,  =10R?|- p"di + p* (@ +dy* +aw? )+ P | 4 R2ds2,

0

9

el =p°

* Non-dilatonic solutions or No-go theorem ?
[Work in progress with Li and Nishioka]

e Stability ? Supersymmetric Solutions ?



