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...and a little about what makes them unique.

Picture Credit: John MacKenty, NASA, Hubble Heritage Team
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Basic Approach
We can observe galaxies at many different redshifts

What we cannot see, nor ever hope to, is a movie of how
a real galaxy evolves with time.

(Real galaxies take hundreds of millions of years to change)
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Basic Approach
Yet, this is a basic feature of simulations

But currently, the only precise results of simulations are
the clustering and motion of matter on large scales.
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Basic Approach
So, we combine the two:

Observations tell us how many galaxies there are;

Simulations tell us how often they merge together
and what happens when they do---as well as how
to connect galaxies observed at different times.

So, we ought to be able to reconstruct what happens
to stars (on average) in individual galaxies.
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Basic Approach
How do we match observed galaxies to halos in simulations?

No-one knows ahead of time.

So, we adopt a very flexible parametrization of the matching
and let computers search for the answer.

Friday, July 26, 13



Basic Approach
So, we adopt a very flexible parametrization of the matching

and let computers search for the answer.
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Basic Approach
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Basic Approach
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Basic Approach

Repeat as often as necessary to explore allowable solutions.
Friday, July 26, 13



Basic Approach
Data Sets:

New calibrations of halo mass functions,
satellite fractions, and merger rates to z=8 from Bolshoi.
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Basic Approach
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Data Sets:

New Stellar Mass Functions
from PRIMUS, others up to z=8

New compilation of cSFRs
to z=8
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Results
Constraints on Mh(M*), M*(Mh), useful for theory and observers:
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Results
A clear picture of the star formation history of the Universe:
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Results
A clear picture of the star formation history of galaxies:
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Results
A clear picture of the star formation history of galaxies:
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Results
We can also constrain the buildup of stars from mergers

as opposed to intrinsic star formation:
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Results
We can also constrain when and where all stars were formed:
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Results
We can also constrain when and where all stars were formed:
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Results
This leaves a clear imprint on the historical conversion ratio:
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Short GRBs
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The applications go way beyond galaxy formation:
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The applications go way beyond galaxy formation:
Short GRBs
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The applications go way beyond galaxy formation:
Short GRBs
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Gas Reservoir Lifetimes

How quickly do satellite galaxies quench?

Or, how long do galaxies keep forming stars after
gas accretion onto the halo stops? 
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Gas Reservoir Lifetimes
Model: Halos quench “t” years after they reach peak mass.

Constraint: Quenched fraction of galaxies as a fn. of stellar mass.
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Gas Reservoir Lifetimes
Model: Halos quench “t” years after they reach peak mass.

Constraint: Quenched fraction of galaxies as a fn. of stellar mass.
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Model: Halos quench “t” years after they reach peak mass.
Constraint: Quenched fraction of galaxies as a fn. of stellar mass.

Gas Reservoir Lifetimes
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Model: Halos quench “t” years after they reach peak mass.

Constraint: Quenched fraction of galaxies as a fn. of stellar mass.

Quenched Galaxies
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Summary

Most of the stars in the Universe were formed in
halos similar in size to the Milky Way.

Unsurprisingly, this is where the gas to stars conversion
efficiency also peaks, at about 20-40% of available

hydrogen converted into stars.

It’s more surprising that this efficiency has remained
relatively constant over time!
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Summary

Lots of applications (short GRBs, halo gas lifetimes)
already in progress...

Lots of data already available for you to use
(http://www.peterbehroozi.com/data.html)

Friday, July 26, 13

http://www.peterbehroozi.com/data.html
http://www.peterbehroozi.com/data.html


Thank you for listening!
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Future Directions
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