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Photons ~ 1049 ergs

Ejecta Kinetic energy ~ 1050 - 1052 ergs

Neutrinos ~ 3x1053 ergs

Core Collapse Supernova 

Energetics
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Core Collapse Supernova 

Asymmetries

Polarization

Core collapse SN are polarized at ~1% level
Degree of polarization increases with decreasing envelope mass
Degree of polarization generally increases after optical maximum

Outward mixing of Ni in SN1987 A & Cas A

Axisymmetric ejecta of SN1987A

Early Emission of x-rays and gamma-rays from 

SN1987A

γ
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Inherently multi-dimensional

Variety of complex physical processes that 
need to be accurately modeled

Extremely nonlinear with many feedbacks

Explosions are marginal

The Core Collapse Supernova Mechanism:
A Computational Challenge
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Magnetic Field Mechanism
Burrows, Dessart, Livne, Ott, & Murphy, ApJ, 644, 416, 2007 (2D RMHD)

Shibata Liu, Shapiro, & Stephens, Phys. Rev. D 74, 104026 (2D MHD, High res)

Dessart, Burrows, Livne, & Ott, ApJ, 669, 585, 2007 (2D RMHD)

Sawai, Kotake, & Yamada, ApJ, 672, 465, 2008 (2D MHD, offset dipole)

Mikami, Sato, Matsumoto, & Hanawa, ApJ, 683, 357, 2008 (3D MHD, rotated dipole)

Acoustic Mechansim
Burrows, Livne, Dessart, Ott, & Murphy, ApJ, 640, 878, 2007;  ApJ, 655, 416, 2007

Neutrino Transport Mechanism
Buras, Janka, Rampp, & Kifonidis, A&A, 447, 1049, 2006;  A&A 457, 281, 2006 (2D ray-by-ray plus)

Bruenn, Dirk, Mezzacappa, Hayes, Blondin, Hix, Messer, SciDAC 2006 (2D ray-by-ray plus)

Ott, Burrows, Dessart, & Livne, Ap. J. 685, 1069, 2008 (MGFLD, SN, isoenergetic)

Core-Collapse Supernova Mechanisms
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Magnetic Field Mechanism

Taps free energy of differential rotation

Predicted rotational rates of newly formed neutron stars
3 - 15 ms (Heger, Woosley & Spruit, 2005)

Extrapolated periods of newly formed pulsars
Crab:                    21 ms

PSR J0537-6910    10 ms

PSR B0540-69       39 ms

PSR B1509-58       20 ms

Problem: Need rapid rotation (not observed or predicted)

Trot = 4
(

κI

0.3

)
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M
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)2 (

Prot
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)−2

B 1 B = 1051 ergs
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Acoustic Mechanism

Anisotropic accretion onto inner core over time excites 
core g-modes

Core eigenmodes (mainly L = 1) grow to large 
amplitudes and radiate sound

Sound pulses steepen into shocks and deposit energy 
and momentum in the shocked mantle powering an 
explosion

Problem: Occurs late (many hundreds of milliseconds to 
seconds post bounce), and only one group has seen it 
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The Neutrino Transport Mechanism
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Current State-of-the-Art Neutrino Transport Supernova Modeling

1D
Fully GR
Boltzmann neutrino transport
Sophisticated weak interaction physics

2D
Ray-by-Ray-Plus Neutrino Transport

Post-Newtonian spherical gravity with Newtonian nonspherical components
MGFLD or variable Eddington neutrino transport
Sophisticated weak interaction physics

Fully 2D MGFLD, SN Neutrino Transport

Newtonian gravity
In-group weak interaction physics

3D
Hydrodynamic or Magnetohydrodynamic only
Smooth particle hydro with grey transport
Ray-by-Ray-Plus (as 2D above)
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Hydrodynamics

Lagrangian PPM with Remap implementation of a 
Godunov scheme

Newtonian spectral Poisson solver with effective 
GR radial potential

Spherical polar grid

Moving radial grid option during infall, sliding 
adaptive below shock after shock generation



Nuclear Network

4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 
44Ti, 48Cr, 52Fe, 56Ni, 60Zn

n, p, Fe-like tracers

Advection of material into and out of NSE

Flashing and freeze-out of zones



Neutrino Transport

Multigroup, flux-limited diffusion tuned to 
Boltzmann transport

Ray-by-ray plus approximation

Full flavor implicit solve

All O(v/c) velocity corrections, red shift 
and time dilation effects included



Neutrino Interactions
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Emission and Absorption of νe’s
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Neutrino-Electron, Neutrino-Positron Scattering

Neutrino Scattering on Nucleons and Nuclei
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Supernovae

Gravitational WavesNeutrino Signatures

Nucleosynthesis Neutron Stars

Black Holes

Supernova Connections



Nucleosynthesis

4000 - 8000 Lagrangian tracer particles in 
each model (Lee & Hix)

Records thermodynamic state and spectral 
neutrino history along its trajectory

Each tracer particle can be post-processed 
by a full nuclear network



A suite of progenitor masses (12,15, 20, and 
25 MO) ( Woosley and Heger, 2007 PhR) 
(ongoing)

Progenitors of given mass evolved with 
different equations of state (planned)

Progenitors of given mass evolved by 
different groups (planned)

Progenitors of given mass with different 

Progenitor Series

.
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2D Model Grid and EOS

256 nonuniformly spaced radial zones out 
to 2000 km

256 evenly spaced angular zones from 0 to 
180 degrees

Lattimer-Swesty EOS for NSE; 17 nuclei 
network coupled for non-NSE; electron-
positron-photon EOS everywhere

4 neutrino flavors, 20 energy zones from 4 
to 400 MEV for each flavor
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15 MO 2D Simulation 256x256.



15 MO 2D Simulation 512x256



Lagrangian and Shock Trajectories

Ni

n, p

Si
Ne, Mg
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He



Time from Bounce [s]
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Explosion Energy vs Initial MS Mass
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Why Are We Getting Explosions?

Dimensional Effects: 

Convection driven by neutrino heating

SASI (Standing Accretion Shock Instability)

Improved neutrino rates

Energy deposition by nuclear reactions



Time from Bounce [s]
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Time from Bounce [s]
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Dimensional Effects on Neutrino Luminosities
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Dimensional Effects on Neutrino rms Energies
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Role of the SASI

Time from bounce [s]
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Neutrinospheres

Neutrinospheres
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1D Supernova Simulations
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v-p Process

Inclusion of neutrino interactions during nucleosynthesis 
opens up a new chain of nuclear reactions

Fröhlich, Martínez-Pinedo, Liebendörfer, Thielemann, Bravo, Hix, Langake, Zinner, PRL, 96, 142502, 2006

Pruet, Hoffman, Woosley, Janka, Buras, ApJ, 644, 1028, 2006

Neutrino absorption on proton rich material creates 
residual neutron abundance [                            ]

Neutron captures on proton-rich seeds bypasses the 
64Ge bottleneck

ν̄e + p→ n + e+



Example v-p Process



3D 15 MO Model Simulation

304 nonuniformly spaced radial zones out 
to 2000 km

78 evenly spaced angular zones from 0 to 
180 degrees

156 evenly spaced azimuthal zones from 0 
to 360 degrees

4 neutrino flavors, 20 energy zones from 4 
to 400 MEV for each flavor

Requires 11,552 processors

.



.



3D 15 MO Model Simulation.



.
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Comparison of Shock Trajectories
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Conclusions

2D simulations with spectral neutrino 
transport exhibit explosions for each of the 
Woosley-Heger 12, 15, 20, & 25 solar mass 
models. 3D simulation in progress.

The explosion energy may be directly 
correlated with the mass of the progenitor. 

However, comparisons of the 2D 
simulations with other groups have yet to 
show a convergence of results.



Work in Progress

Investigate the observables of the 
exploding models---nucleosynthesis, 
neutrino and gravitational wave signatures, 
neutron star masses and kick velocities

Use a singularity-free grid

Incorporate magnetic fields



The End

bruenn@fau.edu

physics.fau.edu/~bruenn


