Asymmetries in Core-Collapse Supernovae

Chris Fryer (LANL)

 Basic Core-Collapse Mechanism (Theory and Observational Support)

- Possible Mechanisms Driving Asymmetries
- A Few Observational Tests of those Mechanisms

LANL's Light-Curve Program

Supernova 1987A

Neutrino-Driven Supernova Mechanism

Supernovae/Hypernovae

The convective engine mechanism may not be able to explain high-energy explosions. Although the collapse releases 10⁵³ ergs of energy, the convective region can only store a few times 10⁵¹ ergs.

Mechanisms for Asymmetries

- Asymmetries in Collapse
- Matter Asymmetries in the Convective Engine
- Asymmetries in the Neutrino Emission

Asymmetries in the Collapse may cause kicks

Large-scale mixing in the Oxygen/Silicon burning can cause asymmetries that can be magnified in the collapse and cause kicks.

Fryer 2004

Asymmetries from Rotation

Rotational Asymmetries in 3D

Asymmetries from Single-Lobe Convection

- Convection Drives explosion.
- The convective cells merge with time.
- With sufficient time, Low-Mode convection develops.
- Neutron Star Kicks for Slow Explosions

Density 10,000 km Entropy

Scheck et al. 2003

In 3-dimensions, the asymmetry is not quite as big.

These instabilities are evident in 3dimensions, but the kick and the explosion asymmetry is not so dramatic (Fryer & Young 2007).

Magnetic Fields Can Also Produce Asymmetries if they drive the explosion

Fast Failed Toroidal SN Jet .Jet I would argue Failed that this SN Jet mechanism is GRB Continued Jet Rotating LW Jet Black important for Hole broad-lined supernovae hypernovae, not normal (\mathbf{H}) supernovae

more

and

2002

Ø

Wheeler et

Asymmetries from Anisotropic Neutrino Emission

Neutrino oscillation to sterile neutrinos in a highly magnetized core can produce kicks.

Fryer & Kusenko 2006

Magnetic fields near the neutrinosphere can also produce asymmetric neutrino emission, producing neutron star kicks (not necessarily aligned with the explosion ejecta).

Observational Tests

- Pulsar Velocities (Asymmetric Collapse & Mode Merger)
- Explosive Asymmetries and Gamma-Ray Emission
- Gravitational Waves and Neutrinos
- Nucleosynthesis
- Light Curves and Spectra

Bipolar Explosion

Hard X-ray continuum Is brighter at early times for the asymmetric explosion regardless of viewing angle

Global asymmetry does result in earlier emergence of Hard X- & gamma-rays

Level of hard X-ray continuum is roughly same for equator and pole views

Line profiles of Co-56 decay emission differ with viewing angle for the Jet2 explosion. We see blueshifts due to opacity effects.

Line profiles of Co-56 decay emission differ with viewing angle for the Jet2 explosion. We see blueshifts due to opacity effects.

Single Lobe Explosions

Depending upon the Line-of-site, single-Lobe explosions can Produce red-shifted Gamma-ray emission.

The line profile will Change with time. Observations of the Temporal evolution Critical!

Observational Tests

- Pulsar Velocities (Asymmetric Collapse & Mode Merger)
- Explosive Asymmetries and Gamma-Ray Emission
- Gravitational Waves Neutrinos
- Nucleosynthesis
- Light Curves and Spectra

Nucleosynthetic Dependence on Asymmetries

- Yields vary with explosion energy
- Mixing Allows material that would otherwise fall back to be ejected!

11 and "-N1 Yields for a Range of 1-dimensional Supernovae				
Explosion Energy	⁴⁴ Ti ^a	⁵⁶ Ni ^a	⁴⁴ Ti ^b	⁵⁶ Ni ^b
(10^{51} erg)	${ m M}_{\odot}$	${ m M}_{\odot}$	${ m M}_{\odot}$	${ m M}_{\odot}$
0.1^{c}	$4.2 imes10^{-5}$	0.082	$4.7 imes10^{-5}$	0.059
1.35	$5.3 imes10^{-5}$	0.41	$7.4 imes10^{-5}$	0.28
1.8	$3.5 imes10^{-6}$	0.42	$2.3 imes10^{-6}$	0.30
6.5	$1.6 imes10^{-6}$	0.40	$3.0 imes10^{-6}$	0.63
0.1 ^d	$3.4 imes10^{-5}$	0.083	$4.7 imes10^{-5}$	0.060
1.35	$1.6 imes10^{-5}$	0.43	$7.4 imes10^{-5}$	0.30
1.8	$1.7 imes10^{-6}$	0.44	$2.3 imes10^{-6}$	0.32
6.5	$6.8 imes10^{-7}$	0.41	$1.7 imes10^{-6}$	0.29

Table 1⁴⁴Ti and ⁵⁶Ni Yields for a Range of 1-dimensional Supernovae

 $^{a} Y_{e} = 0.50$

 b Y_e = 0.495

 c Weak and (p,n) Reactions On

^d Weak and (p,n) Reactions Off

Asymmetries produce Asymmetric Yield Distributions (and alter the total Lots of ground-breaking work by Nagataki, Maeda, Tominga, ...

Nagataki et al. 2003

Carola, Young et al. 2008 found that asymmetries help to explain the Al and O distributions in the Cas A SNR. They may also explain the ratios of Oxygen isotopes!

We must understand asymmetries to study nuclear rates!

Observational Tests

- Pulsar Velocities (Asymmetric Collapse & Mode Merger)
- Explosive Asymmetries and Gamma-Ray Emission
- Gravitational Waves Neutrinos
- Nucleosynthesis
- Light Curves and Spectra

We can calculate these light-curves using RAGE

- RAGE Radiation Adaptive Gride Eulerian
- Adaptive Mesh Refinement Scheme
- Multi-group flux-limited diffusion scheme
 - we emphasize gray simulations here
- Connected with LANL opacities and equations of state
- 1,2, and 3 dimensions
 - we emphasize 1D spherical results here
- Preliminary implementation of LANL's implicit Monte Carlo package Wedgehog (in support of new code package Cassio.)
- Preliminary implementation of linear, Sn, gamma-ray transport for inline nickel and cobalt decay energy deposition.

Importance of Rad Hydro (Rage 1D GFLD Calculations)

- RAGE calculations of a hypernova explosion in 1D are complete.
- Radioactive decay heating has been included in situ, though the light curve peak is fairly insensitive to gamma-ray deposition.
- The strength of the circumstellar wind has a larger effect on the peak luminosity.

Importance of Rad-Hydro (Hachisu Progenitor for Ia)

- Recent important results from SNIa
 - young population exists for la supernovae
 - Circumstellar material can be seen in some spectral observations.
- Proposed progenitors show wind like material surrounding the white dwarf.
- Light curve shape may be altered by shock energy contributions in the accretion wind.

To study shock effects, we need to study the environment.

Merger of 2 "white dwarfs" (we are actually using an ideal gas EOS). Note the creation of an atmosphere around the larger star (Diehl et al. 2008)

Diehl has now added Timmes EOS.

Radiative Cooling WILL change the nature of the Ejecta

- As the shock breaks out of the star, the high pressure at the boundary leads to an incredible acceleration of the shock (Matzner & McKee 1999 argued this could for relativistic ejecta).
- If radiative losses are included, the acceleration is much less dramatic.

Spectrum (16H with He Wind)

Spectrum Evolution (16H with He Wind)

- Luminosity is rising for the times shown here, as was seen in the UBV lightcurves as well.
- As ejecta expand and cool, absorption features from the wind become noticeable

Multi-D Gray Flux Limited Diffusion

- Multi-D simulations are now being run with GFLD.
- Overlay capability in RAGE allows for remapping seemlessly.
- Boundary problems that impact the radiation flow have encouraged 3D simulation of full sphere.

Ultimate Goal and Petascale Needs

- The real goal is to push this simulation effort to
 - Multi space dimensions
 - Multi frequency groups
 - Transport
- Lightning (~10 teraflops)
 - 1D, gray, FLD = 8,000 cpu-hrs
 - 3D, gray, FLD = 6e7 cpu-hrs
 1/20th the resolution of 1D
 - MG IMC(10X GFLD) = 6e8 cpu-hrs
 - ~10 years using the Lightning cluster
- Roadrunner (1 petaflops)

 ~1 month using Roadrunner assuming efficient use of cell accelerators.

But are explosions symmetric? Models actually suggest a variety of asymmetries.

Burrows et al. 1995

Fryer & Heger 2000

Red= Fe-rich materialWhite= Si-rich material

Why is Fe outside of Si?

Jet-like structure to the North East ... But iron is just outside jet

15 vs. 25 Solar Mass Collapse

Time steps: 50ms, 90ms, 140ms, 240ms

15 solar mass star explodes At ~90ms.

25 solar mass star explodes At ~240ms.

15 Solar Mass Progenitor

25 Solar Mass Progenitor

Rotation and Convection

Angular Momentum Stabilizes the Core Against Convection

