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CMB alone limit (95% C.L.)

mν < 0.66 eV
WMAP1:

 KI, Fukugita & Kawasaki, 2005

mν < 0.70 eV

mν < 0.63 eV

Hannestad, 2006

Lesgourgues & Pastor, 2006

WMAP3:

mν < 0.60 eV Spergel et al., 2007

mν < 0.60 eV Fukugita, KI, Kawasaki, Lahav, 2006

WMAP5:

We assume 3 species of neutrinos 
with degenerate mass hierarchy. ∑

mν = 3mν

mν < 0.43 eV Komatsu et al., 2008
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Massive neutrinos become nonrelativistic before the 
epoch of recombination if mν ! 0.6 eV

The epoch of recombination zrec ~ 1088 

Tnu,now ~ 1.9 K ~ 2 x 10-4 eV
Tnu,rec ~ 2 x 10-1 eV

<p> ~ 3 T   [average over Fermi distribution with 
temperature T]

Neutrinos on average become nonrelativistic  when 
<p> ~ m

m ~ 3 Tnu,rec ~ 0.6 eV

Characteristic signals imprinted in acoustic peaks.

Can be constrained by CMB.
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1. Horizontal shift (to smaller multipoles)

mν ↑

Ωνh2 =
∑

mν

94.1 eV
1eV corresponds to  

Ωνh2 ∼ 0.03

But this effect is absorbed by decreasing the Hubble constant.

makes the distance to the last scattering 
surface smaller.
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ture (minimum displacement) and then toward minimum tem-
perature (maximum negative displacement). The wave that
causes the region to reach maximum negative displacement ex-
actly at recombination is the fundamental wave of the early uni-
verse. The overtones have wavelengths that are integer fractions
of the fundamental wavelength. Oscillating two, three or more
times as quickly as the fundamental wave, these overtones cause
smaller regions of space to reach maximum displacement, ei-
ther positive or negative, at recombination.

How do cosmologists deduce this pattern from the CMB?
They plot the magnitude of the temperature variations against
the sizes of the hot and cold spots in a graph called a power
spectrum [see box on page 51]. The results show that the re-
gions with the greatest variations subtend about one degree
across the sky, or nearly twice the size of the full moon. (At the
time of recombination, these regions had diameters of about
one million light-years, but because of the 1,000-fold expan-
sion of the universe since then, each region now stretches near-

ly one billion light-years across.) This first and highest peak in
the power spectrum is evidence of the fundamental wave, which
compressed and rarefied the regions of plasma to the maximum
extent at the time of recombination. The subsequent peaks in
the power spectrum represent the temperature variations
caused by the overtones. The series of peaks strongly supports
the theory that inflation triggered all the sound waves at the
same time. If the perturbations had been continuously gener-
ated over time, the power spectrum would not be so harmo-
niously ordered. To return to our pipe analogy, consider the ca-
cophony that would result from blowing into a pipe that has
holes drilled randomly along its length.

The theory of inflation also predicts that the sound waves
should have nearly the same amplitude on all scales. The pow-
er spectrum, however, shows a sharp drop-off in the magnitude
of temperature variations after the third peak. This discrepan-
cy can be explained by the fact that sound waves with short
wavelengths dissipate. Because sound is carried by the collisions
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TIMELINE OF THE UNIVERSE
AS INFLATION EXPANDED the universe, the plasma of photons
and charged particles grew far beyond the horizon (the edge of
the region that a hypothetical viewer after inflation would see
as the universe expands). During the recombination period

about 380,000 years later, the first atoms formed and the
cosmic microwave background (CMB) radiation was emitted.
After another 300 million years, radiation from the first stars
reionized most of the hydrogen and helium. 
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Fig. 17.— Constraint on the total mass of neutrinos,
P

mν (§ 6.1.3). In all panels we show the WMAP-only results in blue and
WMAP+BAO+SN in red. (Left) Joint two-dimensional marginalized distribution of H0 and

P

mν (68% and 95% CL). The additional
distance information from BAO helps reduce the degeneracy between H0 and

P

mν . (Middle) The WMAP data, combined with the
distances from BAO and SN, predict the present-day amplitude of matter fluctuations, σ8, as a function of

P

mν . An independent
determination of σ8 will help determine

P

mν tremendously. (Right) Joint two-dimensional marginalized distribution of w and
P

mν . No
significant degeneracy is observed. Note that we have a prior on w, w > −2.5, and thus the WMAP-only lower limit on w in this panel
cannot be trusted.

the shape of the galaxy power spectra. See § 2.2 in this
paper or Dunkley et al. (2008) for more detail on this
choice.

In summary, we do not use the amplitude or shape of
the matter power spectrum, but rely exclusively on the
CMB data and the distance measurements. As a result
our limits are weaker than the strongest limits in the
literature.

Next, let us discuss (2), the choice of parameters.
A few degeneracies between the neutrino mass and
other cosmological parameters have been identified.
Hannestad (2005) has found that the limit on the neu-
trino mass degrades significantly when the dark energy
equation of state, w, is allowed to vary (see also Fig. 18
of Spergel et al. 2007). This degeneracy would arise only
when the amplitude of the galaxy or Lyα forest power
spectrum was included, as the dark energy equation of
state influences the growth rate of the structure forma-
tion. Since we do not include them, our limit on the
neutrino mass is not degenerate with w. We shall come
back to this point later in the Results section. Inciden-
tally, our limit is not degenerate with the running index,
dns/d ln k, or the tensor-to-scalar ratio, r.

6.1.3. Results

Figure 17 summarizes our limits on the sum of neutrino
masses,

∑

mν .
With the WMAP data alone we find

∑

mν <
1.3 eV (95% CL) for the ΛCDM model in which w = −1,
and

∑

mν < 1.5 eV (95% CL) for w "= −1. (We assume
a flat universe in both cases.) These constraints are very
similar, which means that w and

∑

mν are not degener-
ate. We show this more explicitly on the right panel of
Fig. 17.

When the BAO and SN data are added, our lim-
its improve significantly, by a factor 2, to

∑

mν <
0.61 eV (95% CL) for w = −1, and

∑

mν <
0.66 eV (95% CL) for w "= −1. Again, we do not ob-
serve much degeneracy between w and

∑

mν . While the
distances out to either BAO or SN cannot break degen-
eracy between Ωm (or H0) and w, a combination of the
two can break this degeneracy effectively, leaving little
degeneracy left on the right panel of Fig. 17.

What information do BAO and SN add to improve the
limit on

∑

mν? It’s the Hubble constant, H0, as shown
in the left panel of Fig. 17. This effect has been explained
by Ichikawa et al. (2005) as follows.

The massive neutrinos modify the CMB power spec-
trum by their changing the matter-to-radiation ratio at
the decoupling epoch. If the sum of degenerate neutrino
masses is below 1.8 eV, the neutrinos were still relativis-
tic at the decoupling epoch. However, they are definitely
non-relativistic at the present epoch, as the neutrino os-
cillation experiments have shown that at least one neu-
trino species is heavier than 0.05 eV. This means that the
Ωm that we measure must be the sum of Ωb, Ωc, and Ων ;
however, at the decoupling epoch, neutrinos were still rel-
ativistic, and thus the matter density at the decoupling
epoch was actually smaller than a naive extrapolation
from the present value.

As the matter-to-radiation ratio was smaller than one
would naively expect, it would accelerate the decay
of gravitational potential around the decoupling epoch.
This leads to an enhancement in the so-called early in-
tegrated Sachs–Wolfe (ISW) effect. The larger

∑

mν
is, the larger early ISW becomes, as long as the neutri-
nos were still relativistic at the decoupling epoch, i.e.,
∑

mν ! 1.8 eV.
The large ISW causes the first peak position to shift to

lower multipoles by adding power at l ∼ 200; however,
this shift can be absorbed by a reduction in the value
of H0.50 This is why

∑

mν and H0 are anti-correlated
(see Ichikawa et al. 2005, for a further discussion on this
subject).

It is the BAO distance that provides a better limit on
H0, as BAO is an absolute distance indicator. The SN
is totally insensitive to H0, as their absolute magnitudes
have been marginalized over (SN is a relative distance
indicator); however, the SN data do help break the de-

50 This is similar to what happens to the curvature constraint
from the CMB data alone. A positive curvature model, Ωk < 0,
shifts the acoustic peaks to lower multipoles; however, this shift
can be absorbed by a reduction in the value of H0. As a result, a
closed universe with Ωk ∼ −0.3 and ΩΛ ∼ 0 is still a good fit, if
Hubble’s constant is as low as H0 ∼ 30 km/s/Mpc (Spergel et al.
2007).

Komatsu et al., 2008



mν −H0 degeneracy

Use this to push down the mnu limit.
If H0 is bounded from below externally (e.g. by distance 
ladder, BAO, SN etc), more stringent limit could be obtained.

1.

2. We thought H0 is determined very precisely (71.9 +/- 2.6)
by WMAP but this assumes massless neutrinos.

Uncertainty of          is one of the largest 
systematic errors for estimating cosmological 
parameters from CMB.

mν

If neutrino mass is detected to be           > 0.3 eV, 
it would be more consistent with the people claiming 
a small Hubble constant < 65.

mν

or
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galaxies and the linear matter distribution (Seo & Eisenstein 2003;

Springel et al. 2005; Angulo et al. 2007; Seo & Eisenstein 2007).

Claims of >1 per cent changes in the BAO position have used non-

robust statistical measures of the BAO scale, such as the position

of the bump in the correlation function, or peak locations in the

power spectrum (Crocce & Scoccimarro 2007; Smith, Scoccimarro

& Sheth 2007a,b). These are easily affected by smooth changes in

the galaxy clustering amplitude as a function of scale. In this paper,

we use a more robust approach: the BAO scale is defined via the

locations where the BAOs cross a smooth fit to the power spectrum.

Ideally, we would use the BAOs within two galaxy redshift sur-

veys covering different narrow redshift slices to test a cosmological

model using the following procedure.

(i) Convert from the galaxy redshift to distance assuming the

cosmological model to be tested.

(ii) Calculate the galaxy power spectra for the two samples.

(iii) Measure the oscillations in each power spectrum around the

known smooth underlying power spectrum shape.

(iv) Test whether the change in scale between the two observed

BAO positions agrees with that expected for this cosmological

model.

Unfortunately, a number of complications prevent such a sim-

ple procedure from being used. In particular, this method requires

a distance–redshift relation to be specified prior to measuring the

BAO positions; but the errors and the effect of the survey selection

function depend on this assumption, and these are computationally

expensive to measure for many different models. In recent analy-

ses (Percival et al. 2001; Cole et al. 2005; Tegmark et al. 2006), a

fiducial cosmological model has been used to estimate the power

spectrum, and the effect of this on the recovered shape of the power

has been tested. However, when providing BAO distance scale mea-

surements we need to allow for the change in the distance–redshift

relation. In this paper, we calculate the power spectrum for a fiducial

cosmology, and interpret these data as if the model cosmology had

been analysed (incorrectly) assuming the fiducial model, therefore

allowing for this effect. This procedure gives better noise proper-

ties for the derived parameters than recalculating the BAO for each

model.

We test models against the data for general smooth forms of

the distance–redshift relation, parametrized by a small number of

nodes. This allows for surveys covering a range of redshifts, and has

the advantage of allowing derived constraints to be applied to any

model, provided it has such a smooth relation. Our ‘ideal’ method

also required us to know the power spectrum shape, so we could

extract the BAO. In this paper, we do not model this shape using

linear cold dark matter (CDM)models. To immunize against effects

such as scale-dependent bias, non-linear evolution, or extra physics

such as massive neutrinos, we instead model the power spectrum

shape by fitting with a cubic spline.

The method is demonstrated by analysing galaxy samples drawn

from the combined SDSS and 2dFGRS (Section 5). Results are

presented in Sections 5.3 and 7, and discussed in Section 8. This

application is novel, as we combine the 2dFGRS and SDSS galaxy

samples before calculating power spectra (the two data sets are in-

troduced in Section 2). The blue selection in the 2dFGRS and the

red selection in the SDSS galaxies emphasize different classes of

galaxies with different large-scale biases – but these can be matched

using a relative bias model leading to the same large-scale power

spectrum amplitudes (Cole et al. 2005; Tegmark et al. 2006; Percival

et al. 2007b). If there is scale-dependent bias, then the shape of the

power spectrum calculated from the combined sample will be an av-

erage of the two individual power spectra, because we are selecting

a mix of galaxy pairs. The exact mix will change with scales, but

this is not expected to be a significant concern for the BAO positions

in the power spectra; these should be the same across all data sets,

although there will be an effect on the damping of BAOs on small

scales (this is discussed in Section 3).

2 THE DATA

2.1 The SDSS data

The public SDSS samples used in this analysis are the same as

described in Percival et al. (2007b). The SDSS (York et al. 2000;

Fukugita et al. 1996;Gunn et al. 1998, 2006;Hogg et al. 2001; Smith

et al. 2002; Stoughton et al. 2002; Blanton et al. 2003; Pier et al.

2003; Ivezic et al. 2004; Adelman-McCarthy et al. 2006; Tucker

et al. 2007) Data Release 5 (DR5) galaxy sample is split into two

subsamples: there are 465 789 main galaxies (Strauss et al. 2002)

selected to a limiting extinction-corrected magnitude r < 17.77, or

r < 17.5 in a small subset of the early data from the survey. In ad-

dition, we have a sample of 56 491 luminous red galaxies (LRGs;

Eisenstein et al. 2001), which form an extension to the survey to

higher redshifts 0.3< z< 0.5. Of the main galaxies, 21 310 are also

classified as LRGs, so our sample includes 77 801 LRGs in total. Al-

though the main galaxy sample contains significantly more galaxies

than the LRG sample, the LRG sample covers more volume. The

redshift distributions of these two samples are fitted as described in

Percival et al. (2007b), and the angular mask is determined using a

routine based on a HEALPIX (Górski et al. 2005) equal-area pixeliza-

tion of the sphere (Percival et al. 2007b). In order to increase the

volume covered at a low redshift, we include the 2dFGRS sample,

which for simplicity has been cut to exclude angular regions covered

by the SDSS samples.

2.2 The 2dFGRS data

The full 2dFGRS catalogue contains reliable redshifts for 221 414

galaxies selected to an extinction-corrected magnitude limit of ap-

proximately bJ = 19.45 (Colless et al. 2001, 2003). For our analysis,
we only select regions not covered by the SDSS, and we do not in-

clude the random fields, a set of 99 random 2dFs spread over the full

southern galactic cap. This leaves 143 368 galaxies in total. The red-

shift distribution of the sample is analysed as in Cole et al. (2005),

and we use the same synthetic catalogues to model the unclustered

expected galaxy distribution within the reduced sample.

The average weighted galaxy densities in the SDSS and 2dFGRS

catalogues were calculated separately, and the overall normalization

of the synthetic catalogueswasmatched to each catalogue separately

using these numbers (see e.g. Cole et al. 2005, for details). The rela-

tive biasmodel described in Percival et al. (2007b)was applied to the

SDSSgalaxies and the biasmodel ofCole et al. (2005)was applied to

the 2dFGRS galaxies. These normalize the large-scale fluctuations

to the amplitude of L∗ galaxies, where L∗ is calculated separately

for each survey. We therefore include an extra normalization factor

to the 2dFGRS galaxy bias model to correct the relative bias of L∗
galaxies in the different surveys. This was calculated by matching

the normalization of the 2dFGRS and SDSS bias-corrected power

spectra for k < 0.1 hMpc−1. 2dFGRS galaxies at a single location

were all given the same expected bias, rather than having biases

matched to their individual luminosities. This matches the method

used for the SDSS, and makes the calculation of mock catalogues

easier.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 1053–1066

BAO
Percival et al.,2007

seems to be more robust than the BAO peak measured 
from correlation function (Eisenstein et al. 2005)
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amplitude of the peak, surveys of very large volumes are necessary in order to detect the
effect.

A power spectrum analysis of the final 2dFGRS data shows deviations from a smooth
curve at the scales expected for the acoustic oscillations. The signature is much smaller
than the corresponding acoustic oscillations in the CMB but it can be used to reject the
case of no baryons at 99% C.L. [30].

The SDSS luminous red galaxy (LRG) sample contains 46 748 galaxies with
spectroscopic redshifts 0.16 < z < 0.47 over 3816 square degrees. Even though the
number of galaxies is less than the 2dFGRS or the main SDSS samples, the large survey
volume (0.72h−3 Gpc3) makes the LRG sample better suited for the study of structure
on the largest scales. The LRG correlation function shows a significant bump at the
expected scale of ∼150 Mpc which, combined with the detection of acoustic oscillations in
the 2dFGRS power spectrum, confirms our picture of LSS formation between the epoch
of CMB decoupling and the present.

For a given cosmology, we can predict the correlation function (up to an amplitude
factor which is marginalized over) and compare with the observed LRG data. The observed
position of the peak will depend on the physical scale of the clustering and the distance
relation used in converting the observed angular positions and redshifts to positions in
physical space. The characteristic physical scale of the acoustic oscillations is given by
the sound horizon at the time of CMB decoupling and depends most strongly on the
combination Ωmh2. The conversion between positions in angular and redshift space to
positions in physical space will cause the observed correlation scale to depend on the
distance combination

DV(z) =

[
DM(z)2 cz

H(z)

]1/3

, (2)

where H(z) is the Hubble parameter and DM(z) is the comoving angular diameter
distance.

Our approach to fit the data has been to calculate the matter power spectrum for a
given model, then Fourier transform it to obtain the two-point correlation function, ξ(r).
This correlation function has been fitted to the SDSS data using the full covariance matrix
given by [31].

In terms of the simple parameterization provided by [31] in terms of the parameter

A ≡ DV(z)

√
ΩmH2

0

zc
, (3)

we find that the SDSS constraint can approximately be written as

A = 0.469
( n

0.98

)−0.35
(1 + 0.94fν) ± 0.017, (4)

where fν = Ων/Ωm.
We note that a non-zero neutrino mass can be a significant source of bias when the

A parameter is used, unless it is properly included. At 0.5 eV the effect of a non-zero
neutrino mass shifts the best-fit value of A by 1σ. The conclusion is that although the
effect is small, it should be included in parameter analyses of BAO data.

Journal of Cosmology and Astroparticle Physics 06 (2006) 019 (stacks.iop.org/JCAP/2006/i=06/a=019) 5
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galaxy clustering. However, while the z = 0.2 measures agree to within 1σ, the z = 0.35 measurements have
mean values almost 2σ apart. The BAO constraints are tighter then the WMAP predictions, which shows
that they can improve upon the WMAP parameter determinations, in particular on ΩΛ and Ωmh2.

We use the combined bounds from both surveys to constrain models as described in Percival et al.
(2007a), adding a likelihood term given by −2 lnL = XT C−1X , with

XT = [rs/DV (0.2) − 0.1980, rs/DV (0.35)− 0.1094] (17)

and C11 = 35059, C12 = −24031, C22 = 108300, including the correlation between the two measurements.
We also consider constraints using the SDSS LRG limits derived by Eisenstein et al. (2005), using the
combination

A(z) = DV (z)
√

ΩmH2
0/cz (18)

for z = 0.35 and computing a Gaussian likelihood −2 lnL = (A − 0.469(ns/0.98)−0.35)2/0.0172. See
Komatsu et al. (2008) for further discussion of the BAO data.

4.2.3. Galaxy power spectra

We can compare the predicted fluctuations from the CMB to the shape of galaxy power spectra, in
addition to the scale of acoustic oscillations. The SDSS galaxy power spectum from DR3 (Tegmark et al.
2004) and the 2dFGRS spectrum (Cole et al. 2005) were shown to be in good agreement with the WMAP

three-year data, and used to place tighter constraints on cosmological models (Spergel et al. 2007), but there
was some tension between the preferred values of the matter density (Ωm = 0.236± 0.020 with 2dFGRS and
0.265 ± 0.030 with SDSS).

More recently two studies used photometric redshifts to estimate the galaxy power spectrum from
the photometric-redshift catalogue of LRGs from the SDSS fourth data release (DR4, Padmanabhan et al.
(2007); Blake et al. (2007)). Padmanabhan et al. (2007) compute the 3D real-space clustering power spec-
trum of the SDSS LRGs, probing galaxies in redshift range 0.2 < z < 0.6. Their estimates of Ωm = 0.30±0.03,
and Ωb/Ωm = 0.18± 0.04, for a fixed Hubble constant of h = 70, are consistent with our data, and with the
Blake et al. (2007) analysis which finds Ωmh = 0.195 ± 0.023 and Ωb/Ωm = 0.16 ± 0.036, for h = 0.75.

More precise measurements of the LRG power spectrum were then obtained from redshift measurements:
Tegmark et al. (2006) used LRGs from SDSS DR4 in the range 0.01h/Mpc < k < 0.2h/Mpc combined
with the three-year WMAP data to place strong constraints on cosmological models. However, there is a
disagreement between the matter density predicted using different minimum scales, if the non-linear modeling
used in Tegmark et al. (2006) is adopted. Using the three-year WMAP data combined with the LRG
spectrum we find Ωm = 0.228 ± 0.019, using scales with k < 0.1h Mpc−1, and Ωm = 0.248 ± 0.018 for
k < 0.2h Mpc−1. These constraints are obtained for the 6 parameter ΛCDM model, following the non-linear
prescription in Tegmark et al. (2006). This agrees with results obtained from the DR5 main galaxy and LRG
sample (Percival et al. 2007c), who argue that this shows evidence for scale-dependent bias on large-scales,
which could explain the observed differences in the early SDSS and 2dFGRS results. While the WMAP

five year ΛCDM model, with Ωm = 0.258± 0.030, is not inconsistent with the measured spectra, we choose
not to use the galaxy power spectra to place joint constraints on the majority of models in Komatsu et al.
(2008). For ΛCDM we test joint constraints using the SDSS DR3 and 2dFGRS data separately, using the
method described in Spergel et al. (2007), and using the SDSS DR4 LRG spectrum following the method in
Tegmark et al. (2006).

Dunkley et al., 2008
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Fig. 16.— Evidence for a non-zero effective number of neutrino species, Neff . Left: The marginalized
probability distribution gives Neff > 2.3 (95% CL) from WMAP alone. The best-fit ΛCDM model with
Neff = 0 is a poorer fit to the data than Neff = 3, with ∆χ2 = 8.2. Inferred 95% limits from big bang
nucleosynthesis (BBN) observations are highlighted. Right: Joint two-dimensional distribution for Neff and
the CDM density, Ωch2, with five-year limits in blue, compared to three-year limits in grey. The degeneracy
valley of constant zeq is shown dashed, indicating that the CMB is now sensitive to the effect of neutrino
anisotropic stress, which breaks the degeneracy.

streaming are distinct. Changes in the baryon/matter ratio and the baryon/photon ratio also have their
own imprints on the Silk damping scale and on the acoustic scale. With five years of data, we are now able
to see evidence of the effects of the neutrinos on the CMB power spectrum.

Figure 16 shows the limits on the number density of neutrinos and the density in dark matter. The
degeneracy valley, shown in the right panel, corresponds to a constant ratio of matter density to radiation
density, or equivalently a measurement of the expansion factor at matter radiation equality:

1 + zeq = a−1
eq =

ρc + ρb

ργ + ρν

! 40500
Ωch2 + Ωbh2

1 + 0.23Neff

. (27)

With only 3 years of data and a lack of precision on the third peak position and height, WMAP was not able
to make a clear detection of neutrinos (or relativistic species); however, the data did provide a ∼ 2σ hint
of the effects of neutrino anisotropic stresses (Melchiorri & Serra 2006). Figure 16 shows that the five year
data alone, we now constrain the number density of relativistic species: Neff > 2.3 (95% CL). By bounding
Neff < 10, and choosing a uniform prior on Neff , this level of significance depends somewhat on the prior.
We therefore test the significance of the constraint by comparing two ΛCDM models: one with Neff = 0,
and one with the standard Neff = 3.04. We find that the data prefer Neff = 3.04. The best-fit model has
∆(−2 lnL) = 8.2 less than the Neff = 0 best-fit model, corresponding to evidence for relativistic species
at > 99.5% confidence. The CMB power spectra corresponding to these two models, and their fractional

Dunkley et al., 2008
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Fig. 16.— Evidence for a non-zero effective number of neutrino species, Neff . Left: The marginalized
probability distribution gives Neff > 2.3 (95% CL) from WMAP alone. The best-fit ΛCDM model with
Neff = 0 is a poorer fit to the data than Neff = 3, with ∆χ2 = 8.2. Inferred 95% limits from big bang
nucleosynthesis (BBN) observations are highlighted. Right: Joint two-dimensional distribution for Neff and
the CDM density, Ωch2, with five-year limits in blue, compared to three-year limits in grey. The degeneracy
valley of constant zeq is shown dashed, indicating that the CMB is now sensitive to the effect of neutrino
anisotropic stress, which breaks the degeneracy.

streaming are distinct. Changes in the baryon/matter ratio and the baryon/photon ratio also have their
own imprints on the Silk damping scale and on the acoustic scale. With five years of data, we are now able
to see evidence of the effects of the neutrinos on the CMB power spectrum.

Figure 16 shows the limits on the number density of neutrinos and the density in dark matter. The
degeneracy valley, shown in the right panel, corresponds to a constant ratio of matter density to radiation
density, or equivalently a measurement of the expansion factor at matter radiation equality:

1 + zeq = a−1
eq =

ρc + ρb

ργ + ρν

! 40500
Ωch2 + Ωbh2

1 + 0.23Neff

. (27)

With only 3 years of data and a lack of precision on the third peak position and height, WMAP was not able
to make a clear detection of neutrinos (or relativistic species); however, the data did provide a ∼ 2σ hint
of the effects of neutrino anisotropic stresses (Melchiorri & Serra 2006). Figure 16 shows that the five year
data alone, we now constrain the number density of relativistic species: Neff > 2.3 (95% CL). By bounding
Neff < 10, and choosing a uniform prior on Neff , this level of significance depends somewhat on the prior.
We therefore test the significance of the constraint by comparing two ΛCDM models: one with Neff = 0,
and one with the standard Neff = 3.04. We find that the data prefer Neff = 3.04. The best-fit model has
∆(−2 lnL) = 8.2 less than the Neff = 0 best-fit model, corresponding to evidence for relativistic species
at > 99.5% confidence. The CMB power spectra corresponding to these two models, and their fractional
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Figure 3: 1D posterior distributions of Nν . The red solid line uses WMAP3 alone (with
Yp = 0.24 fixed) and the other lines use WMAP3+ACBAR+BOOMERANG+CBI with
different assumptions on Yp. The green dashed line fixes it to be Yp = 0.24, the blue dotted
line uses the BBN relation to fix Yp from ωb and Nν , and the magenta dot-dashed line
treats Yp as a free parameter.

Up to here, we have assumed no prior on Nν . However, if we consider an extra ra-
diation component such as sterile neutrinos and so on, the effective number of neutrino
species just increases. In this case, Nν cannot be less than the standard value of 3.046.
Thus it may be interesting to study adopting the prior Nν > 3.046 to constrain a sce-
nario with such an extra radiation component. In the left panel of Fig. ??, 1D pos-
terior distribution of the likelihood are shown for the analysis from WMAP3 alone and
WMAP3+ACBAR+BOOMERANG+CBI. We also assumed several priors on Yp as shown
in the caption. We obtain an upper bound on an extra radiation component as Nν < 5.48
at 95 % C.L. when the SBBN relation is adopted. If we adopt the usual fixing for the
primordial helium abundance as Yp = 0.24, the bound becomes slightly less severe to give
Nν < 6.03. Once the evidence of the number of light neutrino species being three is es-
tablished, the bound of this kind may be interesting to constrain a scenario with an extra
radiation component.

Even when we limit ourselves the case with three relativistic neutrino species, a devi-
ation from the standard value of Nν = 3.046 is possible. In a scenario with low-reheating
temperature/MeV reheating temperature, the effective number of neutrino species can be
less than 3.046. Furthermore, in some braneworld scenario, dark radiation with negative
energy density may arise [?]. In these cases, Nν should be less than the standard value as-
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Figure 2: An illustration of the degeneracy of Nν with other cosmological parameters.
Here the value of the effective number of neutrino are assumed as Nν = 1 (blue dotted
line) 3 (red solid line) and 5 (green dashed line) and other cosmological parameters are
chosen such that CMB spectra becomes the same as that with the fiducial parameters.

3 Constraint on Nν from observations of CMB

In this section, we present the results of our CMB alone constraint on Nν . First, we give
some details of our analysis. We use the CMB data of WMAP3 [33–35], BOOMERANG
[36–38], CBI [39] and ACBAR [30]. Regarding ACBAR, they released the updated data
very recently [30] but we also show the results with their previous data [40] for comparison.
When we need to distinguish them, we refer to them as ACBAR08 and ACBAR06 respec-
tively. We performed a Markov chain Monte Calro (MCMC) analysis to obtain constraints
on cosmological parameters using cosmomc code [42] with some modifications which are
described in the following. We explore [Need a or the?] 8 dimensional parameter space
which consists of ωb, ωc, τ , θs, ns, As, Yp and Nν where ωc are energy density of dark
matter, τ is the optical depth of reionization, θs is the acoustic peak scale [43] and As is
the amplitude of primordial fluctuations.

As far as CMB is concerned, these cosmological parameters can be considered to be
independent. However, when we take into account the BBN theory, Yp is determined once
ωb and Nν are given. In this case, we should relate these parameters to each other and
sample in 7 dimensional parameter space. We shall refer to this relation among Yp, ωb
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We discuss how much we can probe the effective number of neutrino species
Nν with cosmic microwave background (CMB) alone. Using the data of WMAP,
ACBAR, CBI and BOOMERANG experiments, we obtain a constraint on the effec-
tive number of neutrino species as 0.23 < Nν < 5.54 at 95 % C.L. (Nν = 2.74+0.91

−1.66
at 68% C.L.) for a power-law ΛCDM flat universe model. The limit is improved
to be 0.64 < Nν < 5.03 at 95% C.L. (Nν = 2.70+0.91

−1.32 at 68 % C.L.) if we assume
that the baryon density, Nν and the helium abundance are related by the big bang
nucleosynthesis theory. We also provide a forecast for the PLANCK experiment
using the Markov chain Monte Carlo approach. In addition to constraining Nν , we
investigate how the big bang nucleosynthesis relation affects the estimation for these
parameters and the other cosmological parameters.
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Implication of the lower limit on N for
low (MeV-scale) reheating temperature 
scenario

The universe was not very hot.
Neutrinos are not fully thermalized
(do not obey a Fermi distribution)
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Constraint on the effective number of neutrino species

Figure 3. Taken from the calculation in [6]. (a) The relation between the effective
neutrino number Nν and the reheating temperature TR. (b) The solid line shows
the 4He abundance Yp as a function of the reheating temperature TR. The dashed
line is calculated with Fermi-distributed neutrinos with Nν of panel (a) (namely,
only the change in the expansion rate due to the incomplete thermalization is
taken into account). The baryon-to-photon ratio is fixed at η = 5 × 10−10.

be around 3 MeV for the electron neutrinos and 5 MeV for the muon and tau neutrinos,
respectively (the difference comes from the fact that the electron neutrinos have additional
charged current interaction with electrons). Therefore the neutrinos might not be fully
thermalized and lead to Nν < 3 if the reheating temperature is in the MeV range.

In fact, a reheating temperature as low as a few MeV can be found in many
cosmological scenarios. To avoid the overproduction of the unwanted relics such as the
gravitinos, one needs to require the reheating temperature low enough4. In extreme cases
it may be in the MeV range. Further, the thermal history of the universe may not be so
simple that the universe might have undergone several stages of reheating, and the final
reheating temperature may be very low. For instance, late-time entropy production [7]
is one of the plausible ways to solve problems associated with unwanted relics, and the
reheating temperature often falls in the MeV scale.

In [6], we have calculated how much neutrinos are thermalized when TR = O(MeV)
and have derived the relation between TR and Nν , which is shown in figure 3(a).
Specifically, we have solved numerically the momentum-dependent Boltzmann equations
for neutrino density matrix, fully taking account of neutrino oscillations. For later
convenience, we also show the 4He abundance Yp in the MeV reheating scenario in
figure 3(b). It should be noted that Yp increases while Nν decreases in this scenario.
This is in contrast to the conventional non-standard Nν scenario where decreasing Nν

accompanies decreasing Yp. The difference occurs as follows. Since the latter assumes
a thermal (Fermi) distribution for neutrinos as in the standard cosmology, only the
expansion rate is modified, and in particular it has a neutron–proton conversion rate

4 This is the case if the gravitinos are thermally produced [32, 33]. On the other hand, when the gravitinos
are non-thermally produced by inflaton decay, lower reheating temperature leads to more gravitinos, making the
gravitino overproduction more severe [34]–[37].
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The universe needs to be heated at least to 3 MeV.

TR>3 MeV
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