Experimental Determination of Neutrino Mass

- Beta Decay
 - Tritium
 - ¹⁸⁷Re

- The mass is needed for
 - Particle physics
 - Interpretation of supernova $\boldsymbol{\nu}$ signal
 - Cosmology
- Other ideas?
- Neutrino Oscillations
- Supernova timing
- · Double beta decay
- Cosmology
- Z-bursts

Even small $m_{\!_{\rm V}}$ influences structure

Supernova Neutrino Time-of-flight

For a supernova at distance D (in 10 kpc) the time delay for a neutrino of mass m (eV) and energy E (MeV) is:

$$\Delta t(E) = 0.515 \left(\frac{m}{E}\right)^2 D$$
Beacom & Vogel
hep-ph/9802424

The delay must be ~ the duration of the neutrino signal to avoid model dependence at short times and not to be drowned in background at long times. For a **1 eV** result with 30-MeV neutrinos, **need D = 175 Mpc**. Scaling Kamiokande for the same rate as SN1987a, **detector mass must be 12 Gt**.

IceCube will be "only" 1 Gt, and not very sensitive at these low energies.

Hypothesis: the extreme-energy CR spectrum is produced by neutrinos from distant sources. The neutrinos can annihilate at the Z pole on relic neutrinos to produce the observable EE CR. (A GZK-style cutoff for neutrinos).

$$E_{\rm res} = \frac{M_Z^2}{2 m_\nu} = 4 \times 10^{21} \text{eV} \left(\frac{\text{eV}}{m_\nu}\right)$$

If cutoff is at 2 x 10^{20} eV, then $m_v > 20$ eV, in disagreement with expt. EE CR thus likely not neutrino Z-burst debris.

FIG. 4. Combined HiRes monocular spectrum. The squares and circles represent the HiRes-I and II differential flux J(E), multiplied by E^3 . The error bars are statistical only, and the systematic uncertainties are indicated by the shaded region. The line is a fit to the data of a model, described in the text, of galactic and extragalactic cosmic ray sources. The AGASA spectrum [15] is shown by triangles for comparison.

Abbasi et al., PRL 92, 151101

Minimum Neutrino Masses and Flavor Content

Masses linked by oscillations

Ways to determine the neutrino mass scale

Methods	Present sensitivity	Future Sensitivity (5-15 years)
Cosmology (CMB + LSS)	0.7 eV (Σ _i m _i)	0.05 eV
0νββ Decay	0.5 eV	0.05 eV
Weak Decay Kinematics	et measurement	0.2 eV

Neutrinoless Double Beta Decay

Vogel hep-ph/0611243

Red: inverted Blue: normal

Banding: unknown Majorana phases

Lines: Osc. uncert.

Nuclear matrix element uncertainty not shown

Left: vs. minimum mass eigenstate Middle: vs. sum of masses M Right: vs. kinematic electron-flavor mass

Beta decay and neutrino mass

Requirements:

- Strong source
- Excellent energy resolution
- Small endpoint energy E₀
- Long term stability
- Low background rate

Task:

Investigate ³H or ¹⁸⁷Re endpoint with sub-eV precision

KATRIN Aim:

Improve m_v sensitivity tenfold (2eV $\rightarrow 0.2eV$)

imeters pitsk What are we measuring in a Tritium experiment?

Decay rate = $|\langle f|T|i\rangle|^2$ = $|\langle^3 He|\langle e|\langle \overline{\nu_e}|T|^3 H\rangle|^2$ = $|\sum_k U_{ek}^* \langle^3 He|\langle e|\langle \overline{\nu_k}|T|^3 H\rangle|^2$ $\sim pE(E - E_0)^2 \sum_k |U_{ek}|^2 \left(1 - \frac{m_k^2}{(E - E_0)^2}\right)^{1/2}$

We see a sum of beta spectra weighted by $|U_{ek}|^2$.

When $m_1 \simeq m_2 \simeq m_3 = m_\nu$, reduces to m_ν^2 formula, as in the old days:

$$\sim pE(E-E_0)^2 \left(1-\frac{m_{\nu}^2}{(E-E_0)^2}\right)^{1/2}$$

Kraus et al. hep-ex/0412056 Final Mainz Result

Improved S/N tenfold over 1994 data

20 weeks of data in 1998, 1999, 2001

Stable background: pulsed RF clearing field applied at 20-s intervals

(95% C.L.)

Microcalorimeters for ¹⁸⁷Re ß-decay

MIBETA: Kurie plot of 6.2 \times 10⁶ ¹⁸⁷Re ß-decay events (E > 700 eV)

β-decay - experimental techniques

Advantages:

- Only examines region of interest
- Excellent energy resolution (~1eV)
- Very intense source (statistics)

Disadvantages:

- External source
 - -measure excited states
 - -Scattering, absorption

Choice of β -emitter: ³H

$$^{3}H \rightarrow ^{3}He^{+} + e^{-} + v_{e}$$

 $E_0 = 18.6$ keV, $T_{1/2} = 12.3$ years

Mainz & Troitsk→KATRIN

Very low heat capacity at <100mK

Advantages:

 Detection of all released energy (including excited final states) except v

Disadvantages:

- Pulse pile-up. Thermal integration time
- ~10⁻⁴ s→low count rate
- Records full spectrum interesting region is small $\propto (m_{v}/E_{0})^{3}$
- Many small detectors

Choice of β-emitter: ¹⁸⁷Re

 $^{187}\text{Re} \rightarrow ^{187}Os + e^- + v_e$

 $E_0 = 2.46 \text{ keV}$ (lowest β Q-value). $T_{1/2} \approx 5 \times 10^{10} \text{ years}$

Manu & Mibeta→MARE

Complementary techniques - Different systematics

¹⁸⁷Re β -decay - cryogenic μ -calorimeters

-

•10 detectors 250 \rightarrow 350 µg \cong 2.5 mg •AgReO₄ single crystals absorber Sensor - Si thermistors

MANU experiment (F.Gatti et al. Genoa)

- One detector, 1.5 mg
- Metallic Rhenium absorber
- Sensor neutron transmutation doped (NTD) Ge therm. • $\Delta E_{FWHM} = 96 \text{ eV}$

 $\langle M_{B} \rangle < 15 \text{ eV} (90 \% \text{ c.l.})$

Current limit $\langle M_{\rm R} \rangle < 2.2 \, eV$

 $\langle M_{B} \rangle < 19 \text{ eV} (90 \% \text{ c.l.})$

BEFS predicted by Koonin (Nature 354, 468 [1991])

¹⁸⁷Re β-decay - future prospects

MARE - Microcalorimeter Arrays for a Rhenium Experiment

(10 institutes, Italy, Germany, USA)

Direct Determination of Neutrino Mass with KATRIN

Los Alamos type Windowless Source

Principle of MAC-E Filter

adiabatic transformation $E_{\perp} \rightarrow E_{\parallel}$

KATRIN experiment

Karlsruhe Tritium Neutrino Experiment

at Forschungszentrum Karlsruhe unique facility for closed T₂ cycle: Tritium Laboratory Karlsruhe

> main spectrometer

detector

Experimental Setup

<u>Rear System:</u> Monitor source parameters	Source: Provide the required tritium column density	Transp. & Pump system: Transport the electrons, adiabatically and reduce the tritium density significantly	Pre-spectrometer: Rejection of low-energy electrons and adiabatic guiding of electrons	Main-spectrometer: Rejection of electrons below endpoint and adiabatic guiding of electrons	Detector: Count electrons and measure their energy
---	--	--	---	---	---

Pre-spectrometer

Parameters:

- •Length: 3.4 m (flange to flange)
- •Diameter:1.7 m
- •Vacuum: < 10⁻¹¹ mbar
- Material: Stainless steel
- •Magnets: 4.5 T

Status:

- •Vacuum 7•10⁻¹¹ mbar (without getter)
- •Outgassing 7•10⁻¹⁴ mbar I/ s cm^2
- •Measurements in progress

Status of KATRIN Hardware Activities

Tandem design: -- Pre-filter, Energy analysis

Pre-spectrometer

 $P_{r_{\Theta}}$ Spectrom E<18.4 keV Moderate energy resolution ΔE≈80 eV Test bed for vacuum, electrode design, detector.

Main spectrometer

Main spectrometer

7070 ⁰⁷⁵800

> 23 m long, 10 m diameter \rightarrow High luminosity: dN/dt~A_{spect}. \rightarrow high energy resolution: E/ Δ E~A_{spect}

7₀₃ ⁰′%₀₀

Vacuum 10⁻¹¹ mbar (reduce backgrounds) \rightarrow use non-evaporable getter pumps

Inner wire electrode (shape field, reduce backgrounds) External air coil - compensate for Earths magnetic field

Detector

detector

10⁷0⁷8800

145 pixel Si PIN diode ~1keV resolution Image source \rightarrow systematics \rightarrow backgrounds

Detector Section (Univ. of Washington, MIT)

Pixelized Detector Corrects Focal Plane Resolution

KATRIN Statistical Sensitivity

- Improved over original design (7 m diameter main spectrometer, source luminosity)
- Reduction in background
- Only shows statistical uncertainty

Voyage of the main spectrometer

Tritium Beta Decay History

A window to work in

Systematic Uncertainties

source of	achievable/projected	systematic shift
systematic shift	accuracy	$\sigma_{\rm syst}(m_{\nu}^2)[10^{-3} {\rm eV}^2]$
description of final states	f < 1.01	< 6
T^- ion concentration $n(T^-)/n(T_2)$	$< 2 \cdot 10^{-8}$	< 0.1
unfolding of the energy loss		< 2
function (determination of f_{res})		< 6 (including a more
		realistic e-gun model)
monitoring of ρd	$\Delta \epsilon_T / \epsilon_T < 2 \cdot 10^{-3}$	
$[E_0 - 40 \text{ eV}, E_0 + 5 \text{ eV}]$	$\Delta T/T < 2 \cdot 10^{-3}$	
	$\Delta\Gamma/\Gamma < 2\cdot 10^{-3}$	$< \frac{\sqrt{5} \cdot 6.5}{10}$
	$\Delta p_{\rm inj}/p_{\rm inj} < 2 \cdot 10^{-3}$	
	$\Delta p_{\mathrm{ex}}/p_{\mathrm{ex}} < 0.06$	
background slope	$<0.5\mathrm{mHz/keV}$ (Troitsk)	< 1.2
HV variations	$\Delta {\rm HV}/{\rm HV} < 3{\rm ppm}$	< 5
potential variations in the WGTS	$\Delta U < 10{\rm meV}$	< 0.2
magnetic field variations in WGTS	$\Delta B_S/B_S < 2 \cdot 10^{-3}$	< 2
elastic e ⁻ - T_2 scattering		< 5
identified syst. uncertainties	$\sigma_{\rm syst,tot} = \sqrt{\sum \sigma}$	$\overline{v_{\text{syst}}^2} \approx 0.01 \text{eV}^2$

TABLE IV: Summary of sources of systematic errors on m_{ν}^2 , the achievable or projected accuracy of experimental parameters (stabilization) and the individual effect on m_{ν}^2 for an analysis interval of $[E_0 - 30 \text{ eV}, E_0 + 5 \text{ eV}]$ if not stated otherwise.

Improved sensitivity with larger system

Mass Range Accessible

Future tritium measurements?

- Ultimate sensitivity of spectrometers
 - require instrumental resolution of $E_e^{\gamma}/m_{_V}$
 - Linear size X of instrument scales with resolution:
 - · Differential spectrometer $X \propto E_e / m_v$
 - · Integral spectrometers $X \propto \sqrt{E_e} / m_v$
 - spectral fraction per decay in the last $\rm m_n$ of the spectrum is $^\sim$ (m_v/E_o)^3
 - source thickness is set by the inelastic scattering cross-section (3.4 x 10⁻¹⁸ cm²), σn ≤ 1. Can' t make it thicker, only wider.
 - If one wants ~1 event/day in last ${\rm m}_{_{\rm V}}$ of the spectrum
 - · for a 10 m magnetic spectrometer $\rm m_{v} \stackrel{\sim}{} 1.7~eV$
 - for a 3 m dia. solenoid retarding field spectrometer $m_{_{\rm V}}\,^\sim$ 0.3 eV

KATRIN is probably the end of the road for tritium beta decay

KATRIN outlook

- KATRIN can measure neutrino mass directly via kinematics of beta decay -- model independent
- Improvement of order of magnitude over previous best
- Challenging goal of m_v < 0.2 eV (90% C.L.) looks achievable
- German funding (33.5 M€) is in place
- US DOE funding (\$2.5M) is in place
- Schedule for data collection beginning 3Q 2009.