Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC Andrew Akeroyd

National Cheng Kung University, Tainan, Taiwan

- TeV scale mechanisms ("testable") for neutrino mass generation
- Higgs Triplet Model
- Production of $H^{\pm\pm}$ at hadron colliders
- Precise measurements of $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$ at the LHC
- Testing HTM at the LHC

A.A, Mayumi Aoki (ICRR, Kashiwa), Hiroaki Sugiyama (SISSA, Trieste), arXiv:0712.4019[ho IPMU Workshop on "Neutrino Mass", Kashiwa, 19 March 2008 Many models for neutrino mass generation!

Models with a specific signature at High Energy Colliders

(Tevatron/LHC) are phenomenologically appealing

One such model is:

Higgs Triplet Model (HTM) Schechter/Valle 80, Cheng/Li 80

Distinctive signature:

 $H^{\pm\pm}$ with coupling to W, Z and leptons

Higgs Triplet Model (HTM)

SM Lagrangian with one $SU(2)_L$ I = 1, Y = 2 Higgs triplet

$$\Delta = \begin{pmatrix} \delta^+ / \sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+ / \sqrt{2} \end{pmatrix}$$

Higgs potential:

$$V = m^{2}(\Phi^{\dagger}\Phi) + \lambda_{1}(\Phi^{\dagger}\Phi)^{2} + M^{2}\text{Tr}(\Delta^{\dagger}\Delta)$$
$$+\lambda_{i} \text{ (quartic terms)} + \frac{1}{\sqrt{2}}\mu(\Phi^{T}i\tau_{2}\Delta^{\dagger}\Phi) + h.c$$
Triplet vacuum expectation value:

$$<\delta^{0}> = v_{L} \sim \mu v^{2}/M^{2}$$
 (1 $eV < v_{L} < 8 ~GeV$)

The HTM has 7 Higgs bosons: $H^{\pm\pm}, H^{\pm}, H^{0}, A^{0}, h^{0}$

- $H^{\pm}, H^{0}, A^{0}, h^{0}$ are mixtures of doublet and triplet fields
- \bullet Mixing $\sim v_L/v$ and $v_L << v$
- h^0 plays role of *SM Higgs boson* (essentially I = 1/2 doublet)
- $H^{\pm\pm}$ purely triplet and H^{\pm}, H^0, A^0 essentially triplet
- $H^{\pm\pm}, H^{\pm}, H^{0}, A^{0}$ close to degenerate $\sim M$
- For $H^{\pm\pm}$ in range at LHC require M < 1 TeV.

Neutrino mass in Higgs Triplet Model (HTM)

No right-handed neutrino:

Neutrino mass from triplet-lepton-lepton coupling (h_{ij}) :

$$h_{ij}\left[\sqrt{2}\,\overline{l}_i^c P_L l_j H^{++} + (\overline{l}_i^c P_L \nu_j + \overline{l}_j^c P_L \nu_i) H^{+} - \sqrt{2}\,\overline{\nu}_i^c P_L \nu_j H^{0}\right] + h.c$$

Light neutrinos receive a Majorana mass: $\mathcal{M}_{\nu} \sim v_L h_{ij}$

$$h_{ij} = \frac{1}{\sqrt{2}v_L} V_{\text{MNS}} diag(m_1, m_2, m_3) V_{\text{MNS}}^T$$

$$(V_{MNS} = V_l^{\dagger} V_{\nu}; \text{ take } V_l = I \text{ and } V_{\nu} = V_{MNS})$$

Limits on h_{ij}

Presence of $H^{\pm\pm}$ would lead to lepton flavour violating decays Many limits exist for h_{ij} (assuming $m_{H^{\pm\pm}} < 1$ TeV):

Cuypers/Davidson 98

•
$$\mathsf{BR}(\mu o eee) < 10^{-12} o h_{\mu e}h_{ee} < 10^{-7}$$
: 1988; no forthcoming experiment

•
$${\sf BR}(au o l_i l_j l_k) < 10^{-8} o h_{ au i} h_{jk} < 10^{-4}$$
 Limits from ongoing B

•
$$\mathsf{BR}(\mu o e\gamma) < 10^{-11} o \sum_i h_{\mu i} h_{ei} < 10^{-6}$$
 sensitivity to BR> 10⁻¹³ from 200

factories

All constraints can be respected with suitably chosen h_{ij}

Absolute values not so important for $H^{\pm\pm}$ direct searches

Production of $H^{\pm\pm}$ at Hadron Colliders (Tevatron and LHC)

Production of $H^{\pm\pm}$ at Tevatron

First searches at a Hadron collider in 2003 CDF,D0

$$\mathcal{L} = i \left[\left(\partial^{\mu} H^{--} \right) H^{++} \right] \left(g W_{3L\mu} + g' B_{\mu} \right) + h.c$$

- $\sigma_{H^{++}H^{--}}$ is a simple function of $m_{H^{\pm\pm}}$
- $\sigma_{H^{++}H^{--}}$ has no dependence on h_{ij}

Search strategy

- $H^{\pm\pm}$ decays via h_{ij} to same charge $ee, \mu\mu, \tau\tau, e\mu, e\tau, \mu\tau$
- 4 leptons from pair produced $H^{++}H^{--}$
- For $e^{\pm}e^{\pm}$, $e^{\pm}\mu^{\pm}$, $\mu^{\pm}\mu^{\pm}$, sufficient to search for two leptons of high momentum and same charge
- Background almost negligible (\approx 1 event)
- Mass limits presented for $BR(H^{\pm\pm} \rightarrow l_i^{\pm} l_j^{\pm}) = 100\%$ in a given channel

Comparison of $H^{\pm\pm}$ searches

Strongest mass limits for any Higgs boson!

Branching ratio for $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$ and testing HTM at LHC

Akeroyd, Aoki, Sugiyama, arXiv:0712.4019[hep-ph]

Light $H^{\pm\pm}$ at LHC

Simulations by Azuelos et al 05, Hebbeker et al 06, Hektor et al 07, Han et al 07

- \bullet Discovery for $m_{H^{\pm\pm}} < 400~{\rm GeV}$ with 1 ${\rm fb}^{-1}$
- Precise measurements of $BR(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$ possible for $l = e, \mu$
- Sensitivity to ${\sf BR}(H^{\pm\pm} \to l^{\pm}l^{\pm}) \sim 1\%$ for $l=e,\mu$

Large Event Numbers for $H^{\pm\pm}$:

$m_{H^{\pm\pm}}$ (GeV)	N_{4l} (30 fb ⁻¹)	N_{4l} (300 fb ⁻¹)
200	1500	15000
300	300	3000
400	90	900

Branching ratios of $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$

 $BR(H^{\pm\pm} \to l_i^{\pm} l_j^{\pm}) \text{ depends on relative values of } h_{ij}$ $\Gamma(H^{\pm\pm} \to l_i^{\pm} l_j^{\pm}) \sim \frac{m_{H^{\pm\pm}}}{8\pi} |h_{ij}|^2$

In HTM h_{ij} is directly related to neutrino mass matrix

$$h_{ij} = \frac{1}{\sqrt{2}v_L} V_{\text{MNS}} diag(m_1, m_2, m_3) V_{\text{MNS}}^T$$

Prediction for BR $(H^{\pm\pm} \rightarrow l_i^{\pm} l_j^{\pm})$ determined by: Chun, Lee, Park 03

- Neutrino mass hierarchy (normal, inverted)
- Neutrino oscillation parameters (masses, mixing angles)

Explicit expressions for h_{ij}

All h_{ij} are functions of nine parameters:

$$h_{ee} = \frac{1}{\sqrt{2}v_{\Delta}} (m_1 c_{12}^2 c_{13}^2 + m_2 s_{12}^2 c_{13}^2 e^{i\varphi_1} + m_3 s_{13}^2 e^{-2i\delta} e^{i\varphi_2})$$

Five parameters are experimentally constrained:

$$\begin{split} \Delta m^2_{21} \equiv m^2_2 - m^2_1 \simeq 7.9 \times 10^{-5} \mathrm{eV}^2 \,, \quad |\Delta m^2_{31}| \equiv |m^2_3 - m^2_1| \simeq 2.7 \times 10^{-3} \mathrm{eV}^2 \,, \\ \sin^2 2\theta_{12} \simeq 0.86 \,, \qquad \sin^2 2\theta_{23} \simeq 1 \,, \qquad \sin^2 2\theta_{13} \lesssim 0.13 \,. \end{split}$$

Main uncertainty in h_{ij} comes from:

- Absolute mass of lightest neutrino: $0 < m_0 < 1eV$
- Majorana phases $0 < \phi_1, \phi_2 < 2\pi$

These three parameters are unconstrained by neutrino oscillation data

Testing the HTM at LHC via precise measurements

of BR $(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$

There are several models of neutrino mass generation with possibly light $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$:

- Left-Right Symmetric Model : I = 1, Y = 2 triplet Neutrino mass via seesaw mechanism, h_{ij} arbitrary
- Zee-Babu Model I = 0, Y = 4 singlet

Radiative neutrino mass; some correlation of h_{ij}

with neutrino mass matrix

 \rightarrow HTM predicts distinctive regions for BR $(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$ which can be tested at LHC for $m_{H^{\pm\pm}} < 400$ GeV

Dependence of BR($H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$) on m_0, ϕ_1, ϕ_2

- Neglect Majorana phases, $\phi_1 = \phi_2 = 0$:
- $BR(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$ essentially determined by absolute

neutrino mass m_0

- Include Majorana phases, $\phi_1 \neq 0, \phi_2 \neq 0$:
- Allowed regions for $BR(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$ considerably larger
- but still smaller than case of arbitrary h_{ij}
- \rightarrow we quantify the prediction for BR $(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$ in the HTM

(See also Garayoa et al,arXiv:0712.1453[hep-ph] and Kadastik et al, 0712.3912[hep-ph]

$BR(H^{\pm\pm} \rightarrow l_i^{\pm} l_i^{\pm})$ against lightest neutrino mass (m_0) : normal hierarchy

$BR(H^{\pm\pm} \rightarrow l_i^{\pm} l_i^{\pm})$ against lightest neutrino mass (m_0) : inverted hierarchy

$BR(H^{\pm\pm} \rightarrow l_i^{\pm} l_i^{\pm})$ against Majorana phase and $m_0 = 0$: normal hierarchy

$BR(H^{\pm\pm} \rightarrow l_i^{\pm} l_j^{\pm})$ against Majorana phase and $m_0 = 0$: inverted hierarchy

HTM prediction in the plane $[BR(H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}), BR(H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm})]$

HTM prediction in the plane $[BR(H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}), BR(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm})]$

HTM prediction in the plane $[BR(H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm}), BR(H^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm})]$

HTM prediction in the plane $[BR(H^{\pm\pm} \rightarrow e^{\pm}e^{\pm}), BR(H^{\pm\pm} \rightarrow e^{\pm}\mu^{\pm})]$

with/without CP violation from Majorana phases

Conclusions

- Higgs Triplet Model generates neutrino mass $h_{ij}v_T$
- $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$ is a distinctive signal with BRs determined by h_{ij}
- LHC can produce thousands of $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$ events
- if $M_{H^{\pm\pm}} < 400~{\rm GeV}$
- HTM predicts specific regions for $BR(H^{\pm\pm} \rightarrow l^{\pm}l^{\pm})$ which can be tested at LHC
- Majorana phases/neutrino mass determine the allowed regions of ${\sf BR}(H^{\pm\pm}\to l^{\pm}l^{\pm})$
- Collider information on such parameters

Other production mechanisms/decay channels for $H^{\pm\pm}$

Several production mechanisms: Barenboim et al 96, Maalampi et al 02

- $qq \rightarrow W^{\pm *} \rightarrow H^{\pm \pm}W^{\mp}$, $qq \rightarrow q'q'W^{\pm *}W^{\pm *} \rightarrow q'q'H^{\pm \pm}$
- $WWH^{\pm\pm} \sim v_L$; appreciable rates only for $v_L > 1$ GeV

Several decay channels:

- $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$; small for $v_L < 0.1 \text{ MeV}$
- $H^{\pm\pm} \to H^{\pm}W^{\pm*}$; not open for $m_{H^{\pm}} \ge m_{H^{\pm\pm}}$

Hereafter we assume the sole decay channel is $H^{\pm\pm} \rightarrow l^{\pm}l^{\pm}$

Tevatron search for $p\overline{p} \to H^{++}H^{--}$, $H^{\pm\pm} \to e^{\pm}e^{\pm}, e^{\pm}\mu^{\pm}, \mu^{\pm}\mu^{\pm}$

