# Supersymmetry: Preparation for Early LHC Running

# **R. Cavanaugh**

**University of Florida** 

- Restaurant
- Entrée
- Main Course
- Dessert



23 June, Institute for Physics and Mathematics of the Universe, Tokyo, Japan

# **Brief History of Supersymmetry**

Vith the Arts



- Introduced in Early 70's
  - as a part of an extension to special relativity
    - Golfand, Likhtman, Volkov, Akulov, Wess, Zumino
  - in context of String Theory
    - Ramond, Schwarz, Neveu
- Early 80's
  - First Realistic version of Supersymmetry: MSSM
    - Georgi, Dimopoulos
- Many breaking variations:
  - CMSSM, GMSB, AMSB, ...
- Intensely sought since then to present day
  - LEP (CERN)
  - Tevatron (Fermilab)
- Result:
  - No irrefutable evidence!

23 June, 2008

R. Cavanaug

315 Physicists Report Failure In Search for Supersymmetry

The negative result illustrates the risks of Big Science, and its often sparse pickings.

By MALCOLM W. BROWNE

HREE HUNDRED AND FIFTEEN physicists worked on the experiment. Their apparatus included the Tevatron, the

Their apparatus included the Tevatron, the world's most powerful particle accelerator, as well as a \$65 million detector weighing as much as a warship, an advanced new computing system and a host of other innovative gadgets.

But despite this arsenal of brains and technological braw assembled at the Fermilab accelerator laboratory, the participants have failed to find their quarry, a disagreeable reminder that as science gets harder, even Herculean efforts do not guarantee success.

In trying to ferret out ever deeper layers of nature's secrets, scientists are being forced to accept a markedly slower pace of discovery in many fields of research, and the consequent rising cost of experiments has prompted public and political criticism.

To some, the elaborate trappings and null result of the latest Fermiab experiment seem to typify both the lofty goals and the staggering difficulties of "Big Science," a term coinced in 1961 by Dr. Alvin M. Weinberg of Cala Dides National Laboratory. Some resert grach fail.

# **Science Times**

The New York Times



# Why Should there be Anything Shouldn't Beyond the SM? Phys. Lett. B, 657/87-94 (200CMSSM



10meas-0fit 1/meas

After many years, 

- No unambiguous evidence of new physics!
- SM is remarkably robust! ٠
- Deep my
  - Elect
  - Stan
  - Miss

reaking? h? Hierarchy

rk? nmetries?

### t is it?

- **There is nothing new to be discovered in physics** now, All that remains is more and more precise M not only model which describes the measurement." data well...
  - Lord Kelvin (1824 1907)
  - CMSSM also accommodates all

ting data! en came Quantum Mechanics, Relativity, Dark:Matterincluded.(byt.not-patteries)! and a rei

Other Models can do this too!



R. Cavanaugh, Florida, IPMU Seminar

# Physics Menu at the LHC



# *Restaurant* : The Large Hadron Collider







- Solution is simple: Must re-train magnets during winter shut-down
- Fall back to 5.7 T in 2008 : 10 TeV Center of Mass Energy
- Goto 8 T 2009 and beyond: 14 TeV Center of Mass Energy
- Still studying the impact -- cross-sections drop by O(50%), etc
  - The rest of this talk will assume 14 TeV
- LHC Beam scheduled for August! 23 June, 2008 R. Cavanaugh, Florida, IPMU Seminar



### Hadronic Calorimeter: Swords to Ploughshares





### CMS Assembled & Tested on Surface...





### ...then Lowered Underground Started end 2006; Finished beginning 2008





# ...then Lowered Underground

Started end 2006; Finished beginning 2008





### Largest Superconducting Magnet in the World

- 4 Tesla Field
- 6 Meter diameter Bore
- 2.66 Giga-Joules of Stored Energy
  - half-a-tonne of TNT!!





### **Installed Services on Solenoid**



November 2007



# **Electromagnetic Calorimeter**



# <image>

Electromagnetic Calorimeter Barrel installed July 2007

> Designed for e/γ Energy Resolution of 1-2%

75 800 Lead Tungstate Crystals More (by number & volume) than all other previous HEP experiments combined!

# **All Silicon Tracker**





### Tracker Inserted December 2007

Muon Barrel / Iron Yoke

Electromagnetic Crystal Calorimeter

11 1

4T Solenoid

Silicon Tracker

Hadronic Brass/Scintillator Calorimeter

# Beam Pipe Installation on "-" Side ("+" Side now installed too)





### **Getting Ready: Scale of Global Operations**





# **CMS Commissioning Plans**



| Apr | Construction started<br>in 1998!                                                                        |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------|--|--|--|
| May | Cosmic Run with 0T Magnetic Field<br>Computing Readiness Challenge<br>Pixels installed                  |  |  |  |
| Jun | Cosmic Run with 0T Magnetic Field<br>Beam-pipe Closed and Baked-out<br>1st ECAL Endcap (Dees) Installed |  |  |  |
| Jul | 2nd ECAL Endcap (Dees) Ready for Installation end July CMS Closed end July                              |  |  |  |
| Aug | First LHC Collisions?                                                                                   |  |  |  |
| Sep | CMS Expects to be Ready for<br>Physics at 10 TeV!                                                       |  |  |  |





# $\sqrt{S} = 10 \text{ TeV}$ $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ We've never been there before!

# Main Course : LHC Different from Tevatron

**Explores the Frontier of a Whole New World!** 

- Precision vs discovery physics
  - Only need to understand Detector and Backgrounds <u>well enough</u>, not more!
    - TeV dijets  $\rightarrow$  10% jet energy scale OK  $\frac{2}{2}$
    - TeV dileptons → 10% PT resolution
       OK
    - 0.5 TeV MET  $\rightarrow$  10% HT resolution OK
  - Improve systematic understanding as we need it
    - Discovery interpretation, Model parameter estimation, Subtle Signatures, etc



- Must not blind ourselves to gross features of new world!
  - (well motivated) obsession to understand Detector & Backgrounds
  - Be ready to <u>robustly</u> explore with <u>imperfect</u> knowledge!
    - ....very quickly!
    - Calibrate to Data...use ratios & shapes, where possible!





### 23 June, 2008

### R. Cavanaugh, Florida, IPMU Seminar

### 24



# **Example CMSSM Parameters**



- Sparticles → complex decays chains
  - Jets (q, g),
    - Several with some high pT
  - Leptons (χ, I, W, Z)
    - Possibly many, but isolated and low pT
  - MET (LSP)
    - Can be large



# **Example CMSSM Parameters**



- Sparticles → complex decays chains
  - Jets (q, g),
    - Several with some high pT
  - Leptons (χ, I, W, Z)
    - Possibly many, but isolated and low pT
  - MET (LSP)
    - Can be large







# Early New Physics at High pT

- Counting Experiments
  - Absolute Cross-sections
  - Challenging  $\rightarrow$  Just a number!
- Continuum Modification
  - New Interactions, etc
  - less difficult → Use Ratios
- Multi-object Mass Resonances/Endpoints
  - New Particles
  - "Easier" → Use Shapes/Ratios



Log Invariant Mass

# **Different Jets + MET Signatures**



| 0 leptons      | -  | -  | -  |
|----------------|----|----|----|
| 1 lepton       | μ  | е  | τ  |
| 2 OSSF leptons | μμ | ee | ττ |
| 2 OSOF leptons | eμ | μτ | τe |
| 2 SSSF leptons | μμ | ee | ττ |
| 2 SSOF leptons | eμ | μτ | τe |
| 3 leptons      |    |    |    |

- Each Signature can shed light on the underlying model
  - Dilepton mass edges, rate of positive same sign to negative same sign, etc
- Note that increased lepton multiplicity improves background rejection, but
  - Decreases production cross-section
  - Decreases efficiency for finding isolated leptons (overlap with jet)

# Inclusive MET + Jets + 0 Leptons



- Example Selection Criteria
  - Very Large MET
    - Typically > 200 GeV (+ Cleanup)
  - ≥ 3 jets:
    - Hard leading and next-to-leading jets
  - lepton veto
  - Cuts on  $\Delta \phi$  between jets and MET
  - Very Large M<sub>eff</sub>
    - Typically > 500 GeV
- Example Expected Results:
  - LM1 efficiency is 13%, S/B ~ 26 : Expected number of events for 1 fb<sup>-1</sup>

| Signal | $t\bar{t}$ | single $t$ | $Z(\rightarrow \nu \bar{\nu}) + \text{jets}$ | (W/Z,WW/ZZ/ZW) + jets | QCD |
|--------|------------|------------|----------------------------------------------|-----------------------|-----|
| 6319   | 53.9       | 2.6        | 48                                           | 33                    | 107 |

- ~6 pb<sup>-1</sup> for 5o discovery
- Lower jet multiplicity requirement reduces
   sensitivity to higher-order QCD corrections
- New studies on-going to estimate QCD Background using ratios from control regions
  - Similar techniques successfully used at Tevatron





MET

# Inclusive MET + Jets + 1 lepton



- Add lepton  $\Rightarrow$  clean trigger
  - Important during early running!
- Typical Characteristics:
  - Single Isolated lepton
    - Low pT ~ 20-30 GeV
  - ≥ 3 or ≥ 4 jets:
    - Hard leading (& NL) Jets
  - Large MET
    - Typically > 100 GeV
  - Cuts on ∆φ(jets, MET)
  - Large M<sub>eff</sub>



# Lepton provides powerful handle to control QCD backgrounds

- Still depends on Jets + MET cuts, though
- Still basically just a counting experiment

- Main remaining backgrounds
  - ttbar : high jet mult. helps, but still hard to fully estimate from data
  - W/Z+n-Jets : SM Standard Candles





# **Inclusive MET + Jets + 2 leptons**

- Add another Same Flavour Lepton
  - Even cleaner; little to no QCD
  - 2 OSSF : benefits from shape analysis
  - 2 SSSF : benefits from even less Bkgs
- Typical Selection Strategy
  - Several, high pT Jets
  - Large MET
  - Strong lepton isolation cuts
- Main remaining backgrounds

U

- ttbar : subtract using OSOF leptons
- Double boson

р

p

- 2 OS SF : W<sup>+</sup>W<sup>-</sup>, WZ, ZZ
- 2 SS SF : W<sup>+</sup>W<sup>+</sup>, W<sup>-</sup>W<sup>-</sup> (~unique to LHC)



Can use MADGraph or CompHEP to simulate...but how to estimate 2 SSSF Bkg using Data Driven Methods during early running?

(SM cross section simply too low)

Double parton (not yet considered)
W "+" W. W "+" Z. Z "+" Z

# **Environmental Challenges**



### MET is very powerful discriminator for New Physics

- Difficult part is to convince yourself that there is a real excess!
- Tevatron teaches us
  - MET is not easily understood!
- Collisional backgrounds
  - Pile-up
  - Underlying Event

### Non-collisional backgrounds

- Beam halo
- Cosmic muons
- Detector Effects
  - Instrumental Noise
  - Hot/dead channels (DQM)
  - Inter-module calibration

23 June, 2008



R. Cavanaugh, Florida, IPMU Seminar

# Early Study of MET Cleaning in CMS

(of course, Real Data will be different!)



# Use Track and Muon System to Calibrate Calorimeter (MET)





### Expected CMSSM Discovery Reach at 14 TeV







# Indirect Sensitivity to Higher Scales via Loop Calculations



| Observable                                        | Constraint                       |
|---------------------------------------------------|----------------------------------|
| $\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z})$        | $0.02758 \pm 0.00035$            |
| $m_{\rm Z} \; [{\rm GeV}/c^2]$                    | $91.1875 \pm 0.0021$             |
| $\Gamma_{\rm Z} \ [{\rm GeV}/c^2]$                | $2.4952 \pm 0.0023$              |
| $\sigma_{\rm had}^0$ [nb]                         | $41.540 \pm 0.037$               |
| $R_l$                                             | $20.767 \pm 0.025$               |
| $A_{\rm fb}(\ell)$                                | $0.01714 \pm 0.00095$            |
| $A_\ell(P_\tau)$                                  | $0.1465 \pm 0.0032$              |
| R <sub>b</sub>                                    | $0.21629 \pm 0.00066$            |
| $R_{c}$                                           | $0.1721 \pm 0.003$               |
| $A_{\rm fb}(b)$                                   | $0.0992 \pm 0.0016$              |
| $A_{\rm fb}({\rm c})$                             | $0.0707 \pm 0.0035$              |
| $A_{ m b}$                                        | $0.923\pm0.020$                  |
| $A_{\rm c}$                                       | $0.670 \pm 0.027$                |
| $A_{\ell}(\text{SLD})$                            | $0.1513 \pm 0.0021$              |
| $\sin^2 \theta_{\rm w}^{\ell}(Q_{\rm fb})$        | $0.2324 \pm 0.0012$              |
| $m_{\rm W} \; [{\rm GeV}/c^2]$                    | $80.398 \pm 0.025$               |
| $m_{\rm t} \; [{\rm GeV}/c^2]$                    | $170.9 \pm 1.8$                  |
| $BR_{b\to s\gamma}^{SUSY}/BR_{b\to s\gamma}^{SM}$ | $1.13\pm0.12$                    |
| $BR_{\mathrm{B_s} \to \mu^+ \mu^-}$               | $< 8.0 \times 10^{-8}$           |
| $a_{\mu}^{\mathrm{SUSY}} - a_{\mu}^{\mathrm{SM}}$ | $(29.5 \pm 8.7) \times 10^{-10}$ |
| $\Omega h^2$                                      | $0.113 \pm 0.009$                |

Flavour changing neutral current processes like  $b \rightarrow s\gamma$  or  $b \rightarrow sl^+l^-$ 

directly probe the SM at the one-loop level



Indirect search for new degrees of freedom beyond the SM



High sensitivity for 'New Physics'

- Electroweak precision data at 0.1% level
- New Physics loop effects can contribute at 10% level

Slide adapted from Tobias Hurth

# Progress in Calculating Flavour, Higgs, Cosmology, and EWK Observables



| Low energy                                                                                                                             | observables              |                                                                                                                                                                                                    | High er                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| BR(b→sγ)<br>BR(b→sll)<br>BR(B <sub>s</sub> →μμ)<br>BR(B→τν)<br>BR(D→τν)<br>BR(K→τν)<br>BR(K→πνν)<br>Δm <sub>s</sub><br>Δm <sub>d</sub> | MicrOMEGAs<br>MicrOMEGAs | Isidori & Paradisi<br>Isidori & Paradisi | $R_{l}$ $R_{b}$ $R_{c}$ $A_{fb}(b)$ $A_{fb}(c)$ $A_{b}$ $A_{c}$ $A_{l}(SLD)$ sin <sup>2</sup> $\theta$ |
| <i>g</i> -2                                                                                                                            | FeynHiggs                |                                                                                                                                                                                                    | SIN <sup>2</sup> O <sub>eff</sub>                                                                      |
| Higgs sector                                                                                                                           | r observables            |                                                                                                                                                                                                    | m <sub>w</sub>                                                                                         |
| m <sub>h</sub> <sup>light</sup>                                                                                                        | FeynHiggs                |                                                                                                                                                                                                    | $\Gamma_{Z}$                                                                                           |
| Cosmology                                                                                                                              | observable               |                                                                                                                                                                                                    |                                                                                                        |
| $\Omega h^2$                                                                                                                           | MicrOMEGAs               | DarkSUSY                                                                                                                                                                                           |                                                                                                        |

### High energy EW observables

| A. Weber <i>et al.</i> |
|------------------------|
| A. Weber <i>et al.</i> |
|                        |

A Meher et al

Many calculations (MSSM Higgs, etc) now available at the two-loop level. Care required to consistently use different observables across different codes!

# **Discovery Guide: "Global Fits"**





### **Constraining Model Parameters using Observed Data**



 $x^{2}$ /ndof = 17.0/13 (20% probability)

Phys. Lett. B.

657/87-94 (2007)

Variable

 $\Delta \alpha^{(5)}_{had}(m_{\chi}^{})$ 

m<sub>z</sub> [GeV]

 $\Gamma_{z}$  [GeV]

 $\sigma_{had}^0$  [nb]

R,

 $A_{fb}^{0,l}$ 

R

R<sub>e</sub>

0,b

 $A_{fb}$ 

A<sup>0,c</sup><sub>fb</sub>

A

 $\mathbf{A}_{\mathbf{c}}$ 

 $A_1(SLD)$ 

 $sin^2 \theta_{eff}^{lept}(Q_{fb})$ 

m<sub>w</sub> [GeV]

m<sub>t</sub> [GeV]

 $\mathbf{R}(\mathbf{b} \rightarrow \mathbf{s} \mathbf{y})$ 

 $\Delta a_{\mu} [\times 10^{-9}]$ 

 $\Omega h^2$ 

 $B_s \rightarrow \mu\mu [\times 10^{-8}]$ 

 $A_1(P_r)$ 

R. Cavanaugh, Florida, IPMU Seminar

### **Constraining Model Parameters using Observed Data** Phys. Lett. B, **CMSSM** 10meas-0fit/omeas 657/1-3 (2007) 0 Variable Measurement Fit $\Delta \alpha_{had}^{(5)}(\mathbf{m}_{z})$ $(f_{\mathrm{SM}_i}^{\mathrm{obs}} - f_{\mathrm{SM}_i}^{\mathrm{fit}})^2$ $\chi^{2} = \sum_{i=1}^{N} \frac{(C_{i} - P_{i})^{2}}{\sigma(C_{i})^{2} + \sigma(P_{i})^{2}} +$ 0.02774 $0.02758 \pm 0.00035$ m<sub>z</sub> [GeV] $91.1875 \pm 0.0021$ 91.1873 $\sigma(f_{\rm SM_i})^2$ $\Gamma_{z}$ [GeV] 2.4952 $2.4952 \pm 0.0023$ $\sigma_{had}^0$ [nb] $41.540 \pm 0.037$ 41.486 $A_0 \, \left[ { m GeV}/{c^2} ight]$ Phys. Lett. B, 657/87-94 (2007) R, 20.744 $20.767 \pm 0.025$ 1000 $A_{fb}^{0,l}$ $0.01714 \pm 0.00095$ 0.01641 $A_{I}(P_{\tau})$ 0.1479 $0.1465 \pm 0.0032$ 95% C.L. R 0.21613 $0.21629 \pm 0.00066$ 500 R<sub>c</sub> 0.1722 $0.1721 \pm 0.0030$ 0,b 0.1037 $0.0992 \pm 0.0016$ $A_{fb}^{on}$ A<sup>0,c</sup><sub>fb</sub> 0.0741 $0.0707 \pm 0.0035$ A $0.923 \pm 0.020$ 0.935 $\mathbf{A}_{\mathbf{c}}$ $0.670 \pm 0.027$ 0.668 $A_{I}(SLD)$ 0.1479 $0.1513 \pm 0.0021$ $sin^2\theta_{eff}^{lept}(\boldsymbol{Q}_{fb})$ 0.2314 $0.2324 \pm 0.0012$ -500 m<sub>w</sub> [GeV] $80.398 \pm 0.025$ 80.382 68% C.L. m<sub>t</sub> [GeV] $170.9 \pm 1.8$ 170.8 $\mathbf{R}(\mathbf{b} \rightarrow \mathbf{s}\gamma)$ $1.13 \pm 0.12$ 1.12 -1000 $B_s \rightarrow \mu\mu [\times 10^{-8}]$ N/A (upper limit) < 8.00 0.33 $\Delta a_{\mu} [\times 10^{-9}]$ $2.95 \pm 0.87$ 2.95 700 800 100 200 300 500 400 600 0 $\Omega h^2$ $0.113 \pm 0.009$ 0.113 $M_{1/2} \, [{\rm GeV}/c^2]$

*x*<sup>2</sup>/ndof = 17.0/13 (20% probability)

R. Cavanaugh, Florida, IPMU Seminar

### Constraining Model Parameters using Observed Data



meas

| Phys. Lett. B,<br>657/87-94 (2007)                   | CMS                                   | SM      | lO <sup>meas</sup> -O <sup>fit</sup> l/σ <sup>meas</sup> |                                     |                       | dal     | meas | e – fit.     |
|------------------------------------------------------|---------------------------------------|---------|----------------------------------------------------------|-------------------------------------|-----------------------|---------|------|--------------|
| Variable                                             | Measurement                           | Fit     | 0 1 2                                                    | <b>3 3</b>                          |                       | dei     | 0 1  | '–O''' <br>I |
| $\Delta \alpha_{had}^{(5)}(\mathbf{m}_{\mathbf{Z}})$ | $0.02758 \pm 0.00035$                 | 0.02774 |                                                          | $\Delta \alpha_{had}^{(5)}(m_Z)$    | $0.02758 \pm 0.00035$ | 0.02768 |      |              |
| m <sub>z</sub> [GeV]                                 | $91.1875 \pm 0.0021$                  | 91.1873 |                                                          | m <sub>z</sub> [GeV]                | $91.1875 \pm 0.0021$  | 91.1875 |      |              |
| Γ <sub>Z</sub> [GeV]                                 | $\bf 2.4952 \pm 0.0023$               | 2.4952  |                                                          | Г <sub>Z</sub> [GeV]                | $2.4952 \pm 0.0023$   | 2.4957  |      |              |
| <b>്<sub>had</sub> [nb]</b>                          | $41.540 \pm 0.037$                    | 41.486  |                                                          | $\sigma_{\sf had}^{\sf 0}$ [nb]     | $41.540 \pm 0.037$    | 41.477  |      |              |
| R <sub>1</sub>                                       | $\textbf{20.767} \pm \textbf{0.025}$  | 20.744  |                                                          | R <sub>I</sub>                      | $20.767 \pm 0.025$    | 20.744  |      |              |
| A <sup>0,1</sup><br>fb                               | $0.01714 \pm 0.00095$                 | 0.01641 |                                                          | A <sup>0,1</sup> <sub>fb</sub>      | $0.01714 \pm 0.00095$ | 0.01645 |      |              |
| $A_l(P_{\tau})$                                      | $0.1465 \pm 0.0032$                   | 0.1479  |                                                          | $A_{ }(P_{\tau})$                   | $0.1465 \pm 0.0032$   | 0.1481  |      |              |
| R <sub>b</sub>                                       | $0.21629 \pm 0.00066$                 | 0.21613 |                                                          | R <sub>b</sub>                      | $0.21629 \pm 0.00066$ | 0.21586 |      |              |
| R <sub>c</sub>                                       | $0.1721 \pm 0.0030$                   | 0.1722  |                                                          | R <sub>c</sub>                      | $0.1721 \pm 0.0030$   | 0.1722  |      |              |
| A <sup>0,b</sup> <sub>fb</sub>                       | $\textbf{0.0992} \pm \textbf{0.0016}$ | 0.1037  |                                                          | ■ A <sup>0,b</sup> <sub>fb</sub>    | $0.0992 \pm 0.0016$   | 0.1038  |      |              |
| $\mathbf{A_{fb}^{0,c}}$                              | $0.0707 \pm 0.0035$                   | 0.0741  |                                                          | A <sup>0,c</sup> <sub>fb</sub>      | $0.0707 \pm 0.0035$   | 0.0742  |      |              |
| A <sub>b</sub>                                       | $0.923 \pm 0.020$                     | 0.935   |                                                          | A <sub>b</sub>                      | $0.923\pm0.020$       | 0.935   |      |              |
| A <sub>c</sub>                                       | $\textbf{0.670} \pm \textbf{0.027}$   | 0.668   |                                                          | A <sub>c</sub>                      | $0.670\pm0.027$       | 0.668   |      |              |
| $A_{l}(SLD)$                                         | $0.1513 \pm 0.0021$                   | 0.1479  |                                                          | A <sub>l</sub> (SLD)                | $0.1513 \pm 0.0021$   | 0.1481  |      |              |
| $sin^2 \theta_{eff}^{lept}(Q_{fb})$                  | $0.2324 \pm 0.0012$                   | 0.2314  |                                                          | $sin^2 \theta_{eff}^{lept}(Q_{fb})$ | $0.2324 \pm 0.0012$   | 0.2314  |      |              |
| m <sub>w</sub> [GeV]                                 | $80.398 \pm 0.025$                    | 80.382  |                                                          | m <sub>w</sub> [GeV]                | $80.398 \pm 0.025$    | 80.374  |      |              |
| m <sub>t</sub> [GeV]                                 | $170.9 \pm 1.8$                       | 170.8   |                                                          | Г <sub>W</sub> [GeV]                | $2.140\pm0.060$       | 2.091   |      |              |
| <b>R</b> ( <b>b</b> → <b>s</b> γ)                    | $1.13\pm0.12$                         | 1.12    |                                                          | m <sub>t</sub> [GeV]                | $170.9\pm1.8$         | 171.3   | •    |              |
| <b>B</b> <sub>s</sub> →μμ [×10 <sup>-8</sup> ]       | < 8.00                                | 0.33    | N/A (upper limit)                                        |                                     |                       |         |      |              |
| $\Delta a_{\mu} [\times 10^{-9}]$                    | $\textbf{2.95} \pm \textbf{0.87}$     | 2.95    |                                                          |                                     | trowoak Wc            | rkina   | Gro  | , in         |
| $\Omega \mathbf{h}^2$                                | $0.113 \pm 0.009$                     | 0.113   |                                                          | (courtesv N                         | I. Gruenewald)        | , ning  |      | μh           |

 $x^2$ /ndof = 17.0/13 (20% probability)  $x^2$ /ndof = 18.2/13 (15% probability)

R. Cavanaugh, Florida, IPMU Seminar

3

### **Constraining Model Parameters using Observed Data**





 $x^{2}$ /ndof = 17.0/13 (20% probability)

higher Higgs ; this is remarkable...

R. Cavanaugh, Florida, IPMU Seminar

# Expected Reach for 1 fb<sup>-1</sup>





# Expected Reach for 1 fb<sup>-1</sup>





# **Discovery Scenario**



460

60.51

29.35

62.44

32.64

13

Entries

RMS

Underflow

Overflow

Entries

Mear

RMS

Underflow

Overflow

**CMSSM TODAY:** number of electron pairs 25 LM1 Use of indirect constraints only 20 -Ideal alignment **CMSSM 2009:** -FirstData Use of indirect & direct constraints 15  $= 1 \text{ fb}^{-1}$  assume kinematic edge measurements from LHC: CMS Prel.  $\widetilde{\mathfrak{g}}_{\underline{\phantom{a}}} \widetilde{\chi}^{0}_{2}$ 20 40 60 80 100 120 140 160 180 200 0  $M(e^+e^-)$  (GeV/c<sup>2</sup>)  $\left( m_{ll}^2 \right)^{\text{edge}} = \frac{ \left( m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2 \right) \left( m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2 \right) }{m_{\tilde{l}_R}^2}$ Assume 5% measurement of the edge with leptons only  $(m_{qll}^2)^{\text{edge}} = \frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{z^0}^2}$ Assume 10% measurements of the kinematic  $(m_{ql}^2)_{\min}^{\text{edge}} = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right) \left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)}{m_{\tilde{\chi}_2^0}^2}$ Quantities involving jets  $(m_{ql}^2)_{\text{max}}^{\text{edge}} = \frac{(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2)(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2)}{m_{\tilde{l}_-}^2}$ [Conservative uncertainty estimates]

# CMSSM Higgs 95% CL



- CMSSM Today (95% CL)
  - No LHC Data
- CMSSM 2009 (95% CL)
  - Assume Discovery
  - Assume measurement of mass edges
- Relatively small positive signal
  - dramatically reduces allowed p-space



### Demanding consistency with all experimental data : Interpretation within CMSSM context vastly improved

# Summary



- Restaurant: LHC & CMS
- Entree: Turn on
  - Detector Calibration
  - Monte Carlo Simulation tuning
  - Standard Model rediscovery
- Main Course: Emphasize Quick Discovery Mode
  - SM Candles (+NSM Candles?):  $Z \rightarrow \mu\mu$  to get  $Z \rightarrow vv$  and MET
  - Searches with bold signatures: High pT
    - isolated jets, MET, isolated leptons
  - Low mass Supersymmetry could be visible quickly
- Dessert: Tools for Fast Interpretation
  - Global Fits,
  - Hypothesis testing
  - Existing data accomodates Low mass Supersymmetry well

# Later this Year...



# Theoretical & Experimental Speculation may finally give way to Observation (yea or nea)



At a resolution of 10<sup>-24</sup> metres, isolated clumps of Strange Matter pop briefly out of the quantum foam to debate the possible existence of Particle Physicists.



R. Cavanaugh, Florida, IPMU Seminar



# **Backup Sides**

# SUSY (CMSSM) Reach: 14TeV vs. 10TeV

Comparison of SUSY production XS for 14TeV and 10TeV.

For 10TeV the reach is reduced but: 10 to 100pb<sup>-1</sup> start to cover our low mass SUSY points (i.e. interesting phase space) [assumes reasonably well understood data - of course]





For illustration only!

R. Cavanaugh, Florida, IPMU Seminar

# **Supersymmetry Phenomenology**



- Supersymmetric particles not observed experimentally
  - SUSY must be broken (softly)!



- Mechanism is unknown ⇒ many new free parameters
  - MSSM: > 100 additional parameters
  - Pheno. Viable: < 20 additional parameters
    - 3 gaugino masses, 5 squark and slepton masses, 3 tri-linear couplings, 4 higgs masses
    - Defined at the Soft Scale!!
  - CMSSM: 4 additional parameters (gravity inspired)
    - m<sub>0</sub>, m<sub>1/2</sub>, A<sub>0</sub>, tan β, Sign(μ)
    - Defined at the GUT Scale!!
  - Others!
- Generally assume Lightest SUSY particle is stable (R-parity)
- 23 June, 2008

# The Constrained MSSM: Gravity inspired, GUT scale unification

50

40

30

20

10



- Universal trilinear couplings
  - $A_0 \delta_{ij} = a^u_{ij}(M_{GUT}) = a^d_{ij}(M_{GUT})$ =  $a^l_{ij}(M_{GUT})$
- Ratio of Higgs vacuum expectation values

• 
$$\tan \beta$$
 =  $\langle H_u \rangle / \langle H_d \rangle$ 

- Higgs mixing parameter
  - sign(µ) (typical to fix positive)
- Unification of the gaugino (bino, wino, gluino) masses

• 
$$m_{1/2} = M_1(M_{GUT})$$
  
=  $M_2(M_{GUT})$   
=  $M_3(M_{GUT})$ 

 Universal scalar (squark, slepton and Higgs boson) masses

• 
$$m_0 = m_{Qi}(M_{GUT}) = m_{uRi}(M_{GUT}) = m_{dRi}(M_{GUT})$$
  
=  $m_{Li}(M_{GUT}) = m_{lRi}(M_{GUT})$   
=  $m_{Hu}(M_{GUT}) = m_{Hd}(M_{GUT})$ 

23 June, 2008

# **The Current Situation**





# Constraining Model Parameters using Observed Data



Multi Parameter Fit to Electro-weak and Low-Energy Observables



- Others (Allanach et al, Baer et al, Trotta et al, etc) are applying similar strategies
  - Partial  $\chi^2$ s, Bayesian Priors, Monte Carlo Markov Chains, etc

# **MSSM Higgs and Loop Corrections**



- Unlike SM Higgs, MSSM lightest higgs boson is determined at tree level  $\rightarrow$  sharper dependence  $m_{h^0,H^0}^2 = \frac{1}{2} \left( m_{A^0}^2 + m_Z^2 \mp \sqrt{(m_{A^0}^2 - m_Z^2)^2 + 4m_Z^2 m_{A^0}^2 \sin^2(2\beta)} \right)$
- Naively the MSSM demands a very light Higgs:  $m_{h^0} < m_Z |\cos(2\beta)| < 91 \text{ GeV}$
- However, the MSSM higgs "feels" all other (s)particles and thus gets large radiative loop corrections



• It is only through these loop corrections, that the MSSM higgs can gain a higher mass, above the  $Z^0$ 

# But, Lightest MSSM Higgs Must Stay "Light"



At one loop order, MSSM Lightest Higgs boson has an upper bound



R. Cavanaugh, Florida, IPMU Seminar

# **Preferred CMSSM Parameters**





R. Cavanaugh, Florida, IPMU Seminar

58

# **Traditional Regions of Interest**

DM relic density can not be too large!





# **Future Directions...**





- Already provide interesting glimpse!
- Suggests interesting follow-up work
  - Study effect of Relic Density constraint!
    - Entire relic density need not solely be due to the LSP!
  - Study effect of g-2 constraint (artificially increase errors)
    - Focus Point Region currently disfavoured
- Errors are large, but, can be significantly reduced with LHC discoveries!

# Making Dark Matter in the Lab!





- Measure it's mass, production rate, etc
- Likely will depend on theoretical models
- **Compare properties with** 
  - direct observation experiments (scattering off nuclei)
  - indirect observation experiments • (satellites)
- If we all agree,
- Cross-section [cm<sup>2</sup>] (normalised to nucleon) Good chance we made Dark Matter in the lab!
  - **Requires strong cross disciplinary** • collaboration!

Warning: Ellis, Olive  $\rightarrow$  Elastic SI cross section uncertain to factor 10!!



 $10^{2}$ 

WIMP Mass  $[GeV/c^2]$ 

 $10^{-46}$ 

 $10^{1}$ 

Assume 2009 measurement of

mass edges at LHC

95% CL

Preliminary

**Prediction** 

 $10^{3}$ 

### **Microscopes vs Telescopes**





### R. Cavanaugh, Florida, IPMU Seminar

# The Fast Physics LHC Discovery Menu



| Model                                               | Mass reach                                 | Luminosity (fb <sup>-1</sup> ) | Early Systematic Challenges   |
|-----------------------------------------------------|--------------------------------------------|--------------------------------|-------------------------------|
| Contact Interaction                                 | Λ < 2.8 TeV                                | 0.01                           | Jet Eff., Energy Scale        |
| Ζ'                                                  |                                            |                                | Alignment                     |
| ALRM                                                | M ~ 1 TeV                                  | 0.01                           |                               |
| SSM                                                 | M ~ 1 TeV                                  | 0.02                           |                               |
| LRM                                                 | M ~ 1 TeV                                  | 0.03                           |                               |
| E6, SO(10)                                          | M ~ 1 TeV                                  | 0.03 – 0.1                     |                               |
| Excited Quark                                       | M ~0.7 – 3.6 TeV                           | 0.1                            | Jet Energy Scale              |
| Axigluon or Colouron                                | M ~0.7 – 3.5 TeV                           | 0.1                            | Jet Energy Scale              |
| E6 diquarks                                         | M ~0.7 – 4.0 TeV                           | 0.1                            | Jet Energy Scale              |
| Technirho                                           | M ~0.7 – 2.4 TeV                           | 0.1                            | Jet Energy Scale              |
| ADD Virtual G <sub>KK</sub>                         | M <sub>D</sub> ∼ 4.3 - 3 TeV, n = 3-6      | 0.1                            | Alignment                     |
|                                                     | M <sub>D</sub> ~ 5 - 4 TeV, n = 3-6        | 1                              |                               |
| ADD Direct G <sub>KK</sub>                          | M <sub>D</sub> ~ 1.5-1.0 TeV, n = 3-6      | 0.1                            | MET, Jet/photon Scale         |
| SUSY                                                | M ~1.5 – 1.8 TeV                           | 1                              | MET, Jet Energy Scale, Multi- |
| Jet+MET+0 lepton                                    | M ~0.5 TeV                                 | 0.01                           | Jet backgrounds, Standard     |
| Jet+MET+1 lepton                                    | M ~0.5 TeV                                 | 0.1                            | Model backgrounds             |
| Jet+MET+2 leptons                                   | M ~0.5 TeV                                 | 0.1                            |                               |
| mUED                                                | M ~0.3 TeV                                 | 0.01                           | ibid                          |
|                                                     | M ~ 0.6 TeV                                | 1                              |                               |
| TeV <sup>-1</sup> (Z <sub>KK</sub> <sup>(1)</sup> ) | M <sub>z1</sub> < 5 TeV                    | 1                              |                               |
| RS1                                                 |                                            |                                |                               |
| di-je Early LHC Ru                                  | Ins: 0.1 to 1 c=0.1                        | 0.1                            | whaustiv                      |
| di-marto-1                                          | wi <sub>G1</sub> ~0.0- 2.3 tev, c=0.01-0.1 | 1                              | Not an entre                  |

23 June, 2008

# LHC: Worlds Largest Cryogenic System



64

- 1,000 8-Tesla superconducting dipole magnets
  - 8,000 total superconducting magnets (dipoles, quadrupoles, etc)
- 40,000 tonnes of cold mass spread over 27 km
- 10,000 tonnes of Liquid Nitrogen (300 K to 4.5 K)
  - 500 Trucks needed to deliver
- 120 tonnes of Liquid Helium (cools ring to final 1.9 K)
  - O(1%) of worlds annual production
  - Higher Helium prices affecting LHC costs



23 June, 2008

# **Magnetic Energy Stored in LHC Ring**



### 8 T Magnetic Field, two 2 cm bores, 27 kilometers $\rightarrow$

**10 Giga-Joules** 



# **Beam Energy Stored in LHC Ring**



### 2808 bunches, 10<sup>11</sup> protons per bunch, 7 TeV per proton $\rightarrow$

### Energy per beam ~360 MJ



# What is Supersymmetry?



- Supersymmetry is a symmetry between fermions and bosons
  - Q(SUSY) | fermion > = | boson >
  - Q(SUSY) | boson > = | fermion >
- Implies (more than) doubling of Standard Model particles

| SM Particles                    | SUSY P                            | Particles                                                                                       |
|---------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|
| quarks: $q$                     | q                                 | squarks: $\tilde{q}$                                                                            |
| leptons: <i>l</i>               | 1                                 | sleptons: $\tilde{l}$                                                                           |
| gluons: g                       | g                                 | gluino: $\tilde{g}$                                                                             |
| charged weak boson: $W^{\pm}$   | $W^{\pm}$                         | Wino: $\widetilde{W}^{\pm}$ $\sim^{\pm}$                                                        |
| $U_{index}$ $U^0$               | $H^{\pm}$                         | charged higgsino: $\widetilde{H}^{\pm}$ $\int \chi_{1,2}$ chargino                              |
| Higgs. H                        | $h^{\circ}, A^{\circ}, H^{\circ}$ | neutral higgsino: $\tilde{h}^{\circ}, \tilde{A}^{\circ}, \qquad \widetilde{H}^{\circ}$ higgsino |
| neutral weak boson: $Z^{\circ}$ | $Z^{0}$                           | Zino: $\widetilde{Z}^{0}$ $\widetilde{\chi}_{1,2,3,4}^{0}$ neutralino                           |
| photon: $\gamma$                | γ                                 | photino: $\tilde{\gamma}$                                                                       |

- Exact Supersymmetry implies
  - Each SUSY particle same mass, quantum #'s, etc as SM partner
    - Except each SUSY partner differs by 1/2 unit of spin from SM partner
  - Almost no new parameters...but many new particles!