Testing the Littlest Higgs Model with T-parity at the LHC

Takeo Moroi (Tohoku)

Reference:

Matsumoto, Moroi & Tobe, arXiv:0806.3837 [hep-ph]

1. Introduction

A recent idea to solve the little-hierarchy problem:

Little Higgs scenario [Arkani-Hamed, Cohen & Georgi]

Can we find a signal of the Little Higgs scenario?

 \Rightarrow Yes

[Azuelos et al.; Matsumoto, Nojiri & Nomura; Nojiri & Takeuchi]

Subject of my talk:

- \Rightarrow How we can test the model at the LHC
- \Rightarrow An implication to cosmology

We consider the Littlest Higgs model with *T*-parity (LHT) [Cheng & Low; Low; Hubisz & Meade; Csaki, Heinonen, Perelstein & Spethmann]

- Higgs: pseudo NG boson for SU(5)/SO(5)
- $SU(5) \supset [SU(2) \times U(1)]^2_{\text{Gauged}} \supset [SU(2) \times U(1)]_{\text{SM}}$

Outline:

- 1. Introduction
- 2. Model
- 3. LHC Signals
- 4. Testing the LHT model
- 5. Summary

2. Model

The Littlest Higgs model with *T*-parity

- Parameters in the Higgs sector: f and m_h
- $\Sigma = \exp(2i\Pi/f) \times \langle \Sigma \rangle$

$$\Pi = \begin{pmatrix} 0 & H/\sqrt{2} & \Phi \\ H^{\dagger}/\sqrt{2} & 0 & H^{T}/\sqrt{2} \\ \Phi^{\dagger} & H^{*}/\sqrt{2} & 0 \end{pmatrix}, \quad \langle \Sigma \rangle = \begin{pmatrix} 0 & 0 & \mathbf{1} \\ 0 & 1 & 0 \\ \mathbf{1} & 0 & 0 \end{pmatrix}$$

All the electro-weak gauge bosons have "T-odd partners"

• A_H , which is (approximately) the partner of $U(1)_Y$ gauge boson, becomes the lightest T-odd particle

$$m_{A_H}^2 \simeq \frac{1}{5}g_1^2 f^2$$

Top-related fermions:

$$Q_{1} = \begin{pmatrix} u_{L,1} \\ d_{L,1} \\ U_{L,1} \end{pmatrix}, \quad Q_{2} = \begin{pmatrix} u_{L,2} \\ d_{L,2} \\ U_{L,2} \end{pmatrix}, \quad U_{R,1}, \quad U_{R,2}, \quad u_{R+1} = Q_{1} = \frac{1}{\sqrt{2}} (Q_{1} \mp Q_{2}), \quad U_{R,\pm} \equiv \frac{1}{\sqrt{2}} (U_{R,1} \mp U_{R,2})$$

Mass terms:

$$\mathcal{L}_{\text{mass}} = -\lambda_1 \left[f \bar{U}_L^{(+)} + v \bar{u}_L^{(+)} \right] u_{R,+} - \lambda_2 f \left[\bar{U}_L^{(+)} U_R^{(+)} + \bar{U}_L^{(-)} U_R^{(-)} \right]$$

Mass eigenstates:

- $(u_{L,+}, U_{L,+}) \oplus (u_{R,+}, U_{R,+}) \rightarrow (t, T_+)$
- $U_{L,-} \oplus U_{R,-} \to T_-$

Important new particles for my study:

- T_- : colored, T_- odd
- T_+ : colored, T-even
- A_H : neutral, lightest *T*-odd (and hence stable)

Parameters

- f and λ_2
- λ_1 is determined once the top mass and λ_2 are given

I study the production processes of T_+ and T_- at the LHC

- \Rightarrow Non-trivial test is possible with three observables
- \Rightarrow Determination of f and λ_2 is also possible

3. LHC Signals

Sample points for our MC analysis

	Point 1	Point 2
f	570 GeV	600 GeV
λ_2	1.0	1.1
$\sin eta$	0.20	0.16
m_{A_H}	80.1 GeV	85.4 GeV
$m_{T_{-}}$	570 GeV	660 GeV
m_{T_+}	772 GeV	840 GeV
m_h	145 GeV	131 GeV

 $\beta: \text{ mixing angle (which is determined by } f \text{ and } \lambda_2)$ $\begin{pmatrix} t_L \\ T_{+L} \end{pmatrix} = \begin{pmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} u_{L,+} \\ U_{L,+} \end{pmatrix}$

Event generation:

- Parton-level events: MadGraph / MadEvent
- Fragmentation and hadronization: PYTHIA
- Detector Simulation: PGS4

Signal processes:

- $pp \to T_+ \bar{T}_+$
- $pp \rightarrow T_- \bar{T}_-$
- $pp \rightarrow jT_+/j\bar{T}_+$

Only the top-related backgrounds are considered

- $pp \to t\bar{t}$
- $pp \rightarrow jt/j\bar{t}$

Pair production of T_+ : $pp \to T_+\bar{T}_+$

We use $pp \to T_+ \bar{T}_+ \to bW^+ \bar{b}W^- \to bq\bar{q}'\bar{b}l\nu$

Neutrino momentum can be reconstructed using $\mathbf{p}_T^{(\text{miss})} = \mathbf{p}_T^{(
u)}$

 \Rightarrow T_+ and \overline{T}_+ systems can be reconstructed to obtain m_{T_+}

Event shape:

- Several energetic jets
- One isolated lepton

Cuts:

- 1. Three or more jets with $p_T > 30 \text{ GeV}$
- 2. Only one isolated lepton with $p_T > 50 \text{ GeV}$

3. $M_{\rm eff} > 1800~{\rm GeV}$

$$M_{\rm eff} \equiv \sum_{\rm jets} p_T + \sum_{\rm leptons} p_T + \sum_{\rm photons} p_T + p_T^{\rm (miss}$$

For jets, $p_T > 30$ GeV is required

4.
$$|M_{T_{+}^{(\text{lep})}} - M_{T_{+}^{(\text{had})}}| < 100 \text{ GeV}$$

Invariant-mass distribution

We can determine m_{T_+} from the position of the peak

$$\Rightarrow \delta M_{T2}^{(\max)} \sim 10 \text{ GeV}$$

Pair production of T_- : $pp \to T_-\bar{T}_-$

[Matsumoto, Nojiri & Nomura; Nojiri & Takeuchi]

We have used: $pp \to T_-\bar{T}_- \to tA_H\bar{t}A_H \to \text{jets} + p_T^{(\text{miss})}$ Notice: $Br(T_- \to tA_H) = 100 \%$

 \Rightarrow Missing p_T is due to the emission of A_H

Useful techniques:

- Hemisphere analysis (to separate t and \overline{t} systems)
- M_{T2} analysis (to constrain $m_{T_{-}}$ and $m_{A_{H}}$)

 M_{T2} variable: a function of the postulated mass of A_H

$$M_{T2}^{2}(\tilde{m}_{A_{H}}) = \min_{\mathbf{p}_{T}^{A_{H}} + \mathbf{q}_{T}^{A_{H}} = \mathbf{p}_{T}^{(\text{miss})}} \left[\max\left\{ M_{T}^{2}(\mathbf{p}_{T}^{t}, \mathbf{p}_{T}^{A_{H}}), M_{T}^{2}(\mathbf{q}_{T}^{\bar{t}}, \mathbf{q}_{T}^{A_{H}}) \right\} \right]$$

$$M_T(\mathbf{p}_T^t, \mathbf{p}_T^{A_H}; \tilde{m}_{A_H}) = \sqrt{(|\mathbf{p}_T^t|^2 + m_t^2)(|\mathbf{p}_T^{A_H}|^2 + \tilde{m}_{A_H}^2) - \mathbf{p}_T^t \mathbf{p}_T^{A_H}}$$

Upper end-point of M_{T2} becomes $m_{T_{-}}$ if $\tilde{m}_{A_{H}} = m_{A_{H}}$

- \Rightarrow A constraint on m_{A_H} vs. m_{T_-} plane
- \Rightarrow A constraint on f vs. λ_2 plane

Distribution of the M_{T2} variable for several values of \tilde{m}_{A_H}

We use kinematical cuts proposed by Nojiri & Takeuchi

 $\Rightarrow \delta M_{T2}^{(\text{max})} \sim 10 \text{ GeV (with quadratic fit)}$ $\Rightarrow \text{Some relation between } m_{A_H} \text{ and } m_{T_-}$ Single production of T_+ : $pp \to jT_+/j\bar{T}_+$

[See also Azuelos et al.]

We use:
$$pp \to jT_+ \text{ (or } \bar{T}_+) \to jbW^+ \to jbl\nu$$

Cross section is sensitive to the mixing angle β

 $\sigma_{pp \to jT_+} \propto \sin^2 \beta$

 \Rightarrow Determination of the mixing angle in the top sector

Event shape:

- Two jets, one of which is very energetic
- One isolated lepton
- Sizable missing p_T

Cuts:

- 0. The number of isolated lepton is 1, the number of jets (with $p_T > 30$ GeV) is 2.
- 1. $p_{T,l} > 100 \text{ GeV}$, $p_T^{(\text{miss})} > 100 \text{ GeV}$,
- 2. $p_{T,j1} > 300$ GeV, and $M_{j1+j2} > 500$ GeV,
- 3. $M_{j1} < 50$ GeV (M_{j1} : the jet mass of the first jet)
- 4. $|M_{bW}^{(1)} M_{bW}^{(2)}| < 50 \text{ GeV}.$

Invariant mass distribution

Assumption: $\sigma_{pp \to jT_+}$ is determined from the number of events:

- \Rightarrow Number of events in the signal bin ~ 100 (for Point 2)
- $\Rightarrow \delta \sin \beta / \sin \beta \sim 5 \%$ (statistical only)

4. Test of the LHT Model

Observables at the LHC:

 m_{T_+} , $M_{T2}^{(\max)}$, $\sin \beta$

Expected constraints on the f vs. λ_2 plane

An implication to cosmology:

Reconstruction of the dark matter density

The lightest T-odd particle becomes stable

 $\Rightarrow A_H$ is a candidate of the dark matter

Dominant pair-annihilation process of A_H :

 $A_H A_H \rightarrow h^* \rightarrow W^+ W^- / ZZ$ (if kinematically allowed)

Thermal relic density of A_H depends on f and m_h

- $\bullet~f$ can be determined with the study of top partners
- m_h will be measured precisely at the LHC ($\delta m_h \sim 200 \text{ MeV}$)

Reconstruction of $\Omega_{A_H}h^2$ (for Point 2)

 $\Rightarrow 0.118 < \Omega_{A_H} h^2 < 0.126$

(underlying parameters: $m_h = 130 \text{ GeV} \Rightarrow \Omega_{A_H} h^2 = 0.120$)

5. Summary

I have discussed a possibility to test the LHT at the LHC

- $pp \to T_+ \bar{T}_+$
- $pp \rightarrow T_- \bar{T}_-$
- $pp \rightarrow jT_+/j\bar{T}_+$

We can expect:

- Determinations of mass and mixing parameters
- Reconstruction of $\Omega_{A_H} h^2$

Future works:

- Other processes
- More accurate background estimation