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Introduction

We would like to know what drove inflation. Whatis £ ?

Requires pations, P(k)

anisotropies in the
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Progress

These results are consistent with the simplest models of single field,
slow roll inflation.

There is an assumption: spectrum is a power law,
P(k) = Ak™ 1

Slow roll inflation generically gives rise to a power law spectrum.
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Progress

These results are consistent with the simplest models of single field,
slow roll inflation.

There is an assumption: spectrum is a power law,
P(k) = Ak™ 1

Slow roll inflation generically gives rise to a power law spectrum.

What else might the data be consistent with??
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The Expanding Universe
* The inflationary universe is homogeneous and isotropic.
ds* =dt*=u*(t)dT*
* Equations of motion:
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* Cosmic Inventory:
Matter: o x a”>(t)

Radiation: p o< a” *(t)
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The Expanding Universe
* The inflationary universe is homogeneous and isotropic.
ds® = dt* — a®(t)dz?
* Equations of motion:
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The Expanding Universe
* The inflationary universe is homogeneous and isotropic.
ds* =dt*=ua*(t)dT*
* Equations of motion:

e =
p BT a _ 4m 3

* Cosmic Inventory:
Cosmological Constant: p = const = —p ——> 4 > 0

Any fluid with p/p=w < —1/3
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Inflation from Scalar Fields

* Considered a homogeneous, minimally coupled scalar field:

L= S g"0,00,6 + V()

V(p) —2V(9) 1

w = - — —

V() +2V(¢) 3

* Inflation must yield enough expansion: a/a; = e’ with N ~ 60.
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eI o i 1
i S ( +V) 2 Mo\
= 2
s Slow Roll




quantum fluctuations

Inflation

Primordial Perturbations

temperature anisotropies

large-scale structure



Quantum Fluctuations

* All quantum fields fluctuate, 2 have cosmological importance:

inflaton > density perturbations (scalar)
gravity > gravitational waves (tensorial)
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Quantum Fluctuations

* All quantum fields fluctuate, 2 have cosmological importance:

inflaton > density perturbations (scalar)
gravity > gravitational waves (tensorial)
* Classical Perturbation: ~ %phys = Aphys

Fourier mode, 5¢k

kphys < H
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* Typical parameterization, Pr (k) = Ak "
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Power Spectrum

* Typical parameterization, Pr (k) = Ak "

* Amplitude of scalar (curvature) perturbations:

H2
(RN ———
e |\p—aH
* Scale dependence?
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Power Spectrum

* Typical parameterization of tensor spectrum, Pr(k) = Apk"™7T

* Amplitude of tensors:

2
By e
n k=aH

P
* Define tensor/scalar ratio: r = it 10€
Pr
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What We Learn From the Spectrum

* Observables: During slow roll:
H? mp, (V' :
PR _ — €E =
e | 160 \ V
m2 V//
ne=1—4e+ 2 ~ L1
- e 8 ( V )
r = 16e€

PR(ko), Mg (k’o), T(k())

V(éo), V'(¢o), V(o)
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Slow roll inflation generates nearly scale invariant, power law spectra.

There is a simple analytic relationship between spectrum observables
and derivatives of the inflaton potential.

However, we seek to broaden the scope by investigating more
general inflation models.
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Recap

Slow roll inflation generates nearly scale invariant, power law spectra.

There is a simple analytic relationship between spectrum observables
and derivatives of the inflaton potential.

However, we seek to broaden the scope by investigating more
general inflation models.

How does one systematically test “more general” inflation models?

How does one determine the resulting power spectra?
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* The flow formalism is a model-independent representation of
inflationary dynamics.

* It employs Monte Carlo to generate large numbers of different
inflationary trajectories, H(¢).
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power law inflation
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* The flow formalism is a model-independent representation of
inflationary dynamics.

* It employs Monte Carlo to generate large numbers of different
inflationary trajectories, H(¢).

_1an
S AT

de

N =2

dn



Flow Formalism
The flow formalism is a model-independent representation of
inflationary dynamics.

It employs Monte Carlo to generate large numbers of different
inflationary trajectories, H(¢).
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Flow Formalism
The flow formalism is a model-independent representation of
inflationary dynamics.

It employs Monte Carlo to generate large numbers of different
inflationary trajectories,  (¢) .
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Flow Formalism
The flow formalism is a model-independent representation of
inflationary dynamics.

It employs Monte Carlo to generate large numbers of different
inflationary trajectories, H(¢).
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Flow Formalism
The flow formalism is a model-independent representation of
inflationary dynamics.

It employs Monte Carlo to generate large numbers of different
inflationary trajectories, H(¢).

_ 1dH
&
de
N 2¢(n —¢€)
dn 2
d—N =& —en
¢
d( >\H) == [(6_ 1)7’]—€€] E)\H _|_€—|—1)\H
dN Flow Equations




Flow Formalism
In practice, the flow system is truncated at some order M, so that

bl 3 r—0 V0> M

The resulting function, H(N ) , represents an exact solution of the
inflationary equations of motion.

Solutions are polynomials:
H(¢) = A1+ As¢” +--- + Aprg™

Keep only those models for which AN € |46, 60)].
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Flow Formalism

* @Given any solution, the potential can be recovered via the Hamilton-
Jacobi equation:
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* @Given any solution, the potential can be recovered via the Hamilton-
Jacobi equation:

Kinney, Kolb, Melchorri, Riotto
T L G
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Evolution of Perturbations

* Inflaton fluctuations couple to gravity. Therefore, we must perturb
both the gravity side and matter side of Einstein's Equations:
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Evolution of Perturbations

* Inflaton fluctuations couple to gravity. Therefore, we must perturb
both the gravity side and matter side of Einstein's Equations:

C T
s il g
R Jo

* Next introduce the gauge invariant perturbation v = ao¢ + 2R,



* Decompose:
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Evolution of Perturbations

* Decompose:

0 = / (Qf)];/? (W(T)Ww + i (r)al (T)e_“‘“”)

conformal time: AT = dt/a

* Mode equation,

Z//
vy + (kZ—?>vk:O

ooy

Cosmological dynamics



Calculating the Spectrum

* No general analytic solution.

* However, in the short wavelength limit, & > ¢ H, we recover the
qguasi-Minkowski wavefunction,
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Calculating the Spectrum

* No general analytic solution.

* However, in the short wavelength limit, & > ¢ H, we recover the
qguasi-Minkowski wavefunction,

vg-l-k2<1 >Uk0

TWT e .
V X € Initial Conditions

* Example: slow roll inflation,

v X V—kTH,(—kT)
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Calculating the Spectrum

* Having solved the mode equation, we compute the correlation
function,

68()66(w) = 573 [ lonPe Mo D%

* We also define the power spectrum
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function,

68()66(w) = 573 [ lonPe Mo D%

* We also define the power spectrum

(66(2)50(y)) = [ dink P(k)e= ik




Strategy

We will obtain an inflationary solution using the flow method, H(¢).

Given this solution, we numerically evolve the mode equation,
aH Z
vl + k2 (1 — 2 (7) F(e,n,£2)> v =0

We do this for a couple thousand k's, and build the power spectrum,

K |og |2
Pr(¥) = g3 |

272

<

We then want to compare this power spectrum with current data.
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CMB Spectra
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Comparison with Previous Studies

WMAP3+SDSS with running’
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Summary

We have developed a method useful for generating a wide range of
inflation models that are consistent with current cosmological data.

Cosmic variance, existing at large scales, is the dominant source of
error in CMB maps.

This translates to an uncertainty in the form of the primordial power
spectrum on large scales.

Which translates to an uncertainty in the initial dynamics of the
inflaton field.

Our results suggest that fast rolling fields might be considered equally
consistent with current data as the well studied slow roll models.
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DBI Inflation

* Lagrangian:

L=—f @1 F)F + ) - V(e)

speed limit!
1

f(9) = T3h* (@)

* Fluctuations propagate atcs < 1, where ¢s = 1/\/1 — f(¢)?

—®™ These fluctuations are non-Gaussian!
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* Non-gaussianities:

39

Observables

fnL = 108

* Power spectrum:

H2
Cg€
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Observables

* Non-gaussianities:

35 (1
= —1
INL = {05 (cs )

* Power spectrum:

H? H'\"
Proc — ¢ = 2Mpies (F)
2 H//
Ph x H N — QMPQ)ICS?

ng =1 —4e 4+ 2n
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A Reconstruction Forecast

* |n the best of all worlds, we will detect tensors and non-Gaussianties.

* But what if we don't detect non-Gaussianities?

V(6) = Vo + V§(6 — do) + 5 V56— 60)* + -+

Vo(r(kg)) Vo (1l(ko)) Vo' (r(koy ns (ko))

\J
DBl Vo(r(ko),c:)  Vo(r(ko),co) Vo' (r(ko),ms(ko), cs)

* Question: How big of an impact will an unresolved ¢, have on
reconstruction?



A Reconstruction Forecast

We generate simulated Planck-precision data: T, E-, and B-mode
polarization out to ¢ — 2000.

We assume a failure to detect non-Gaussianities: fvr < |5

We wish to perform Bayesian parameter estimation on the system:

Vo, Vo, Vo
This is accomplished via Markov Chain Monte Carlo, where we vary

Vo, Vo, V§' directly in the chains.



Canonical Reconstruction
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A Reconstruction Forecast

* A null detection of non-Gaussianities, fnvr < |5
means ¢s € [0.25,1],

. for DB inflation

* To reconstruct non-canonical inflation, we need to consider the larger
system:

/ !/
V07 V07 V07 Cs

where cs is allowed to vary in the chains within the above prior
range.



Non-canonical Reconstruction
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Marginalized Errors

Vo x 107 M3,

Vo x 1010 M3,

Vo' x 10 Mg,

canonical

3.7550

3.7
43775

+7.2
20018

non-canonical

3.67579

10
16115

80
91744




Marginalized Errors

Vo x 109Mg3, Vi x 101903, V' x 101t M3 —2InL
canonical 3.7:1):2 4.3?;’:; 2.57_?:% 7931.29
non-canonical 3.6:1):3 16f%g 914588 7931.16




Best-fit Potentials
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Conclusions

Cosmic variance obscures the initial dynamics of the inflaton. Both
rapidly rolling and slowlysrollir s fitthe data equally well.

More guidance from theory will be necessary to make further
progress in this case.



