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Motivations and background



Motivation

RHIC: Relativistic Heavy Ion Collider 

(@ Brookhaven National Laboratory)

http://www.bnl.gov/RHIC/inside_1.htm

Heavy ion:

e.g. 197Au

~200GeV.NNS

Quark-gluon

Plasma (QGP)

is observed.



Also at LHC

Similar exp. at

• FAIR@ GSI

• NICA@ JINR

http://aliceinfo.cern.ch/Public/en/Chapter4/Chapter4Gallery-en.html

ALICE

ATLAS

CMS

ALICE



Quark-gluon plasma (QGP) is created 

as a time-dependent system

http://www.bnl.gov/RHIC/heavy_ion.htm



QGP is a strongly interacting system

RHIC Scientists Serve Up "Perfect" Liquid
New state of matter more remarkable than predicted 

-- raising many new questions

April 18, 2005

BNL press release:

Small viscosity: strong coupling

Perturbative QCD says:
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Shear viscosity

L
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v=0

fluid

Viscosity: 粘性度

Shear: 剪断

If the interaction is strong:

• the cross section is large,

• the mean free path is short,

• the momentum transfer is suppressed.



Frameworks for strongly interacting 

YM-theory plasma

• Lattice QCD: a first-principle computation

However, it is technically difficult to analyze

time-dependent systems.

• (Relativistic) Hydrodynamics

• It works well. However, this is an effective theory

for macroscopic physics. 
(entropy, temperature, pressure, energy density,….)

• Information on microscopic physics is lost.
(correlation functions of operators, equation of state,

transport coefficients such as viscosity,…)

Inputs of hydrodynamics has to be given by other theories.



Alternative framework: AdS/CFT

AdS/CFT

Both macroscopic and microscopic physics

of (some) strongly interacting gauge-theory 

plasma can be described within a single 

framework of AdS/CFT.

AdS/CFT may be useful in the research of 

YM-theory plasma. 



However,

Time-dependent AdS/CFT has not yet been

established completely.

We construct a time-dependent AdS/CFT that describes 

the Bjorken flow of plasma of large-Nc, strongly coupled 

N=4 super Yang-Mills theory.

Our work

A standard model for the expanding QGP

We deal with N=4 SYM

instead of QCD.



Bjorken flow:

a simple standard model of the

expansion of QGP



Bjorken flow (Bjorken 1983)

• (Almost) one-dimensional expansion.

• We have boost symmetry in the CRR.

Relativistically accelerated heavy nuclei

After collision

Velocity of light

Central Rapidity Region (CRR)

Time dependence of the physical quantities are written by the proper time. 

Velocity of light

“A standard model”

of QGP expansion



Quark-gluon plasma (QGP) as a 

one-dimensional expansion

http://www.bnl.gov/RHIC/heavy_ion.htm



Local rest frame(LRF)

τ=const.

22222

 dxdydds 
yxyt sinh,cosh 1  

Minkowski spacetime

x1

t

Rapidity

Proper-time

The fluid looks static 

on this frame

Boost invariance：
y-independence



Relativistic Hydrodynamics

• We take the local rest frame.

Our case:

Then, the stress tensor becomes diagonal:
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3 independent components: xxyy TTT ,,

2 independent constraints:

0

T “Conformal invariance”

(equation of state)

Energy-momentum conservation

(hydrodynamic equation)

Only 1 independent component:

    3/p

0 
T

 





















TTT

TTT

xx

yy

2

1

2

)()(  T



To obtain a diff. equation
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Solution
important

T~τ-1/3

Once the parameters (transport coefficients) are 

given, Tμν(τ) is completely determined.

expansion w.r.t

τ-2/3

But, hydro cannot determine them.



Towards time-dependent AdS/CFT



AdS/CFT
(Weak version)

Classical Supergravity on

4dim. Large-Nc SU(Nc) 

N=4 Super Yang-Mills 

at the large „t Hooft coupling

5

5 SAdS 

conjecture

=

Maldacena (1997) 

Strongly interacting quantum YM !!

(Anti de Sitter) (Conformal 

Field Theory)



AdS/CFT at finite temperature

Classical Supergravity on 

AdS black hole×S5  

4dim. Large-Nc strongly coupled

SU(Nc) N=4 SYM at finite temperature

(in the deconfinement phase).

conjecture

=

Witten (1998) 



AdS/CFT dictionary

On-shell action of 

the 5d gravity theory

Effective action of 

the 4d gauge theory

Expectation value of an 

operator by differentiating

w.r.t. the source.
A function of the 

boundary conditions

5d AdS

A function of sources

For example, the boundary metric
g~

The stress tensor of the plasma is given by

the geometry.

T

4d stress tensor



Hydrodynamics

Hydrodynamics describes dynamics of 

conserved currents such as stress tensor.

We know that the 4d stress tensor can be

read from the dual geometry.

Hydrodynamics may be given by

the dynamics of the dual geometry.



Towards time-dependent AdS/CFT



How to obtain the geometry?

The bulk geometry is obtained by solving

the equations of motion of super-gravity

with appropriate boundary data.

5d Einstein gravity

with Λ<0

• The boundary metric is that of the

comoving frame: 22222

 dxdydds 

• The 4d stress tensor is diagonal on this frame.

Bjorken‟s case:

We set (the 4d part of) the bulk metric diagonal.

(ansatz)

This tells our fluid undergoes the Bjorken flow.



Time-dependent AdS/CFT

Earlier works



A time-dependent AdS/CFT

A time-dependent geometry that describes Bjorken flow

of N=4 SYM fluid was first obtained within a late-time

approximation by Janik-Peschanski.

Janik-Peschanski, hep-th/0512162

They have used Fefferman-Graham coordinates:
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stress tensor of YM4d geometry (LRF)

boundary condition to 5d Einstein‟s equation with Λ<0

geometry as a solution



Unfortunately, we cannot solve exactly

They emploed the late-time approximation:

fixed  with ,
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We discard the higher-order terms.
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Janik-Peschanski‟s result
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If we start with unphysical assumption like

the obtained geometry is singular:


RR at the point gττ=0. (horizon?)

Regularity of the spacetime determines 

the correct parameters.

5th coordinate



Many success

• 1st order: Introduction of the shear viscosity:

• 2nd order: Determination of              from the 

regularity:

• 3rd order: Determination of the relaxation 

time from the absence of the power 

singularity:
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S.N. and S-J.Sin, hep-th/0607123

Janik, hep-th/0610144

Heller and Janik, hep-th/0703243

For example:

same as KSS



But, a serious problems came out.

• An un-removable logarithmic singularity

appears at the third order. 
(Benincasa-Buchel-heller-Janik, arXiv:0712.2025)

This suggests that the late-time expansion they are 

using is not consistent.



We have many questions, too.

• Is the time-dependent geometry really 

a black hole?

No a priori reason to forbid the physics

because of the singularity.

We will try to answer these questions and 

resolve the problem of the logarithmic divergence.

From the viewpoint of the original string theory,

the singularity merely means a breakdown of

the super-gravity approximation.

• Why do we need the regularity?
String correction:

e.g. 
RRls

4



Our work



What is black hole?

Definition: presence of an event horizon.

It is not easy to examine the presence of event horizon 

especially in time-dependent systems, in general.

(Future) Event horizon:

No signals from inside the (future) event horizon

can reach the observer at the future infinity.

We need to examine the global structure of the 

spacetime to determine the location of the horizon.



Another horizon

Apparent horizon:

The boundary surface of a region in which the 

light ray directed outward is moving inward. 

• This is defined locally.

• But, this is a coordinate-dependent concept.

• This can be different from the event horizon in

time-dependent systems.

trapped region



Some comments

• Usually, if we have an apparent horizon, an 

event horizon is located outside, or on top of it. 

(Ref. Hawking-Ellis)

Let us examine the apparent horizon of the dual 

geometry. 

The presence of an apparent horizon is a

sufficient condition for the presence of 

an event horizon.



Location of the apparent horizon
The location of the apparent horizon is given by

,0Fe
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“expansion”

derivative along the null direction

volume element of the 3d surface

0

0 : un-trapped region

: trapped region

Normalization:

we may omit this factor 

in this talk.



However, for Janik-Peschanski‟s 

Geometry
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What is going on?

Janik-Peschanski (and all other related works) are based

on Fefferman-Graham coordinates.
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Static AdS-BH 
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AdS-BH

boundary

singularity

dynamical

apparent horizon

trapped region

un-trapped region



What we have found so far:

• The Fefferman-Graham coordinates are not a 
good coordinate system for analysis of horizons 
(no trapped region included).

• The geometry inside the horizon cannot be 
obtained from the Janik‟s results, anyway.

• We need a better coordinate system.



Better coordinates?

boundary

singularity

dynamical

apparent horizon

Eddington-Finkelstein

coordinates

trapped region

un-trapped region

Cf.

Bhattacharyya-Hubeny-Minwalla-Rangamani (0712.2456)

Bhattacharyya et. al. (0803.2526, 0806.0006)



Eddington-Finkelstein coordinates

Static AdS-BH:
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• There is no coordinate singularity.

• The trapped region and the un-trapped region

are on the same coordinate patch. 

(We can safely analyze the location of the horizon.)

At least for the static case,



Our proposal

Parametrization of the dual geometry:
2222222 ~~2~
 xdgrdygrdrddgrds xxyy




We assume they depend only on τ, because of the symmetry.

We solve them under the following boundary condition:

,1~,~,1~ 2  xxyy ggg 
at the boudary (r= ∞).

boundary metric: 22222

 dxdydds 

The 5d Einstein‟s eq. gives differential equations of .~
g



Asymptotic solution around the 

boundary
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where h and f are functions of τ.

Only two functions f(τ) and h(τ) so far….



The stress tensor

The 4d stress tensor is read from the geometry in terms of 

the boundary extrinsic curvature. 

(Ref. Balasubramanian-Kraus, hep-th/9902121.)

For our case:

How about h?

h(τ) turns out to be a gauge degree of freedom.

)( rr does not modify the structure of
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The hydrodynamic equation and the 

equation of state in the gravity dual

The 5d Einstein‟s equation around the boundary

yields the hydrodynamic equation

(and the equation of state).

See also, Bhattacharyya-Hubeny-Minwalla-Rangamani (0712.2456)

How much does the gravity know the fluid dynamics

of the YM plasma?

Einstein‟s eq. 0 
T



Then, how to obtain the transport 

coefficients?

• We need a global (analytic in r) solution.

  222212222222 )(12 

  xderdyrerdrddards ccb 


• A better parametrization:

,0,0,1  cbaThe boundary condition: at r= ∞.

Can we determine f(τ) as a function of τ?

(Yes.)

Let us solve the Einstein‟s equation.



Late-time approximation

It is very difficult to obtain the solution analytic in τ.

We introduce a late-time approximation by making an analogy 

with what Janik-Peschanski did on the FG coordinates.

Janik-Peschanski:

τ-2/3 expansion with zτ-1/3 = v fixed.

Now, r ~ z-1.

Let us employ τ-2/3 expansion with rτ1/3 = u fixed.

Our late-time approximation



More explicitly,
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We solve the differential equations for  a(τ,u), b(τ,u), c(τ,u) 

order by order:

......)()()(),( 3/4

2

3/2

10    uauauaua

(similar for b and c)
zeroth order first order second order

(u=rτ1/3)



The zeroth-order solution 
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The (event) horizon is necessary
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We have a physical singularity at the origin.

However, this is hidden by the apparent horizon

at u=w hence the event horizon (outside it).

OK, from the viewpoint of the cosmic censorship

hypothesis.

Not a naked singularity.



The first-order solution
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Regularity of c1 is necessary.

We can show 
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What is this value?
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Second-order results:

• We have obtained the solution explicitly, but it is

too much complicated to exhibit here.

• From the regularity of the geometry, 

“relaxation time” is uniquely determined.

consistent with Heller-Janik, Baier et. al., and Bhattacharyya et. al.

2nd-order transport coefficient
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All-order results:

• We can always choose (the combination of) the n-th 
order transport coefficients in such a way that the dual 
geometry is regular at u=w to the n-th order.

• The geometry becomes singular at u=w if we take other 
value of (the combination of) the n-th order transport 
coefficients.

• This means that there is no logarithmic singularity which 
meant the inconsistency of the analysis on the FG 
coordinates. 

We have shown by using induction that:

Our model is totally consistent and healthy!



How the induction works

n-th order Einstein‟s equation:

Diff eq. for n-th order metric

=   source which contains only

k(<n)-th order metric

We can always choose an integration constant

(that corresponds to a transport coeff.) 

to make cn regular.



All-order results:

• We can always choose (the combination of) the n-th 
order transport coefficients in such a way that the dual 
geometry is regular except at the origin.

• The geometry becomes singular at u=w if we take other 
value of (the combination of) the n-th order transport 
coefficients.

• This means that there is no logarithmic singularity which 
meant the inconsistency of the analysis on the FG 
coordinates. 

We have shown by using induction that:

Our model is totally consistent and healthy!



Coordinate transformation cannot 

change physics

• Regular coordinate transformation cannot 

change physics.

• However, the coordinate transformation 

from Janik‟s coordinates (FG coordinates) 

to ours (EF coordinates) is singular at the 

horizon.



Area of the apparent horizon
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• This is consistent with the time evolution of the

entropy density to the first order.

• There is some discrepancy at the second order. 

However, it does not mean inconsistency immediately.
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Non-staticity of the loal geometry

Projected Weyl tensor
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An-isotropy evolves in time.

The dual geometry is not locally static, 

if we include dissipation. 



What we have done:

• We constructed a consistent gravity dual

of the Bjorken flow for the first time.
(cf. Heller-Loganayagam-Spalinski-Surowka-Vazquez, 

arXiv:0805.3774)

• Our model is a concrete well-defined 

example of time-dependent AdS/CFT

based on a well-controled approximation.



Hydrodynamics

Time evolution of the stress tensor

• hydrodynamic equation

(energy-momentum 

conservation)

• equation of state

(conformal invariance)

• transport coefficients

Our model

5d Einstein‟s eq. at

the vicinity of the

boundary

Reguarity around

the horizon

Related to local thermal equilibrium



Discussion

• The definition of the late-time approximation

is a bit artificial.

(τ-2/3 expansion with rτ1/3 = u fixed.)

We are trying to “derive” it purely within

the gravity theory.

Attractor of the differential equation?



Discussion

• At this stage, the connection among our method

and other methods are not clear.

• Kubo formula:
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0
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• Quasi normal modes

In this case, we impose the “ingoing boundary

condition” at the horizon.

regularity?



Einstein + Penrose > Kubo + Landau

久保亮五

My hope

I am glad if string (gravity) theory can say

something nontrivial to

• hydrodynamics

• QGP

• non-equilibrium physics

• plasma instability

• turbulence

• …….



Future directions

• Inclusion of R-charge.

• Can we observe plasma instability? 

• What happens if we take τsmall enough?

• Breakdown of the late-time approximation.

• Breakdown of local thermal equilibrium?

• Appearance of turbulence?

• ……..

• A similar analysis based on the Sakai-Sugimoto

model.



A message

• We have a very good, challenging problem 

which is connected the experiments at RHIC

and LHC.

• The theoretical framework is deeply 

overlapped with nuclear science, string theory, 

general relativity, fluid dynamics, and perhaps

with non-equilibrium statistical physics.

Now it is time to collaborate 

beyond the research fields.



Supplement



Some thought on the regularity

Cosmic censorship hypothesis:

Naked singularity is not created by any

physical process in the gravity theory.

The “plasma” which corresponds to the

geometry with a naked singularity is not

created by any physical process of the

YM theory.

If you find a naked singularity, such a plasma

(with your parameter) cannot be realized by

any physical process.

(Penrose, 1969)

Singularity which is not

covered by the event 

horizon.



Various quantities from the geometry

Stefan-Boltzmann: )(
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Entropy creation:

From hydrodynamics:
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Not only consistent with hydro but also

more information in the holographic dual.

Integration constant is given.

Numerical coefficient is given.



Entropy creation
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The entropy (per unit volume on the LRF) at the 

infinitely far future is not determined in this framework. 

(Integration constant)

AdS/CFT gives more information.

The dissipation creates the entropy.



We need microscopic theory.

Kubo formula:
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We need to compute the two-point function

of the current operator.

Obtainable only from the microscopic theory.


