Effects of Jet Matching in BSM Signals

Johan Alwall, SLAC

With Simon de Visscher and Fabio Maltoni (Université de Louvain) arXiv:0810.xxxx (very soon!)

IPMU Seminar, Tokyo, Japan, 14 Oct 2008

SLAC

Introduction – The Big Picture

I. High- Q^2 Scattering

2. Parton Shower

where new physics lies

process dependent

first principles description

it can be systematically improved

3. Hadronization

SI A

4. Underlying Event

3. Hadronization

SLA

4. Underlying Event

How to describe QCD emissions

Matrix Element Generators

Parton Showers

Matrix Element Generators

Diagrams for $u\bar{d} \rightarrow e^+ \nu_e u\bar{u}g$ by MadGraph

- Use full Matrix Element information
- Different methods in different generators
 - MadGraph, Grace, Sherpa: Feynman diags + Helicity ampls
 - AlpGen, Helac: Recursion relations
 - Whizard: 1POW/DAG optimization

Parton Showers

- Based on soft-collinear approximation
- Markov process to perform subsequent QCD emissions (due to factorization)
- Strict ordering of emissions in ordering variable

 $- Q^2$ (Pythia < 6.3), p_T (Pythia > 6.3, Ariadne)

– θE (Herwig)

Jet matching/merging

Matrix elements

- Fixed order calculation
- Computationally expensive
- 3 Limited number of particles
- Valid when partons are hard and well separated
- Quantum interference correct
- Needed for multi-jet description

Parton showers

- Resums logs to all orders
- 2 Computationally cheap
- No limit on particle multiplicity
- Valid when partons are collinear and/or soft
- Partial quantum
 interference through
 angular ordering
- Needed for hadronization/ detector simulation

Complementary approximations Need to combine without double counting

Matching schemes

The simple idea behind matching

- Use matrix element description for well separated jets, and parton showers for collinear jets
- Phase-space cutoff to separate regions
- \implies No double-counting between jet multiplicities

Difficulties

- Get smooth transition between regions
- No/small dependence from precise cutoff
- No/small dependence from largest multiplicity sample

How to accomplish this

- CKKW scheme (Catani, Krauss, Kuhn, Webber)
- Lönnblad scheme
- MLM scheme

MLM matching

J.A. et al. [arXiv:0706.2569],

cf. M.L. Mangano [2002, Alpgen home page]

Use shower hardness to separate ME/PS

- Generate multiparton event with cut on jet k_T
- 2 Cluster event and use k_T^2 for α_s scale
- Shower event (using Pythia) starting from hard scale
- Collect showered partons in k_T jets with $k_{Tcut} > k_{Tmin}$
- Seep event only if each jet matched to one parton
- For highest multiplicity sample, allow extra jets softer than $k_{T\min}$

Keep

Discard unless highest multiplicity

Impact of matching on Z+jets

Matching vital to get multijet backgrounds right!

Johan Alwall - Effects of Jet Matching in BSM Signals

SLA

Matching in MG/ME+Pythia

[MG/ME = MadGraph/MadEvent, an automatized Matrix Element generator and event generator, see arXiv:0706.2334]

- ${\scriptstyle \bullet} k_{{\scriptscriptstyle T}}$ and cone jet MLM schemes
- New "shower k_{τ} " scheme

SI A

- \bullet Both Q^2 and $p_{\!_{\rm T}}\text{-}ordered$ Pythia showers
- Extensively validated in V+jets [arXiv:0706.2569], VV+jets, t pair+jets, H+jets and inclusive jets
- Only generator that allows matching in BSM processes (e.g. gluino/squark production)

Smoothness of matching

Matching in gluino/squark production

- We know that matching is vital for jet production in SM backgrounds
- But is it relevant for heavy QCD particle production?
 - Very hard jets from decays
 - Parton showers more accurate for larger masses
- Turns out there are many cases where matching has a large impact!
- Most important at hadron colliders: ISR matching

Double counting

• Special difficulty in SUSY matching – double counting between squark and gluino production

SLAC

Double counting

 Special difficulty in SUSY matching – double counting between squark and gluino production

SLAC

Double counting

Solved by keeping track of on-shell resonances in the production event files

<event< th=""><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></event<>	>											
6 0	5 0 0.7992762E-04		2E-04	4 0.9118800E+02 0.7816531E-02 0.1300000E+00								
	21	-1	0	0	502	503	0.0000000000E+00	0.0000000000E+00	0.38916243784E+03	0.38916243784E+03	0.0000000000E+00 0.	1.
	1	-1	0	0	501	0	0.0000000000E+00	0.0000000000E+00	-0.16355197391E+04	0.16355197391E+04	0.0000000000E+00 0.	1.
1000	021	2	1	2	501	503	-0.22162854802E+03	-0.24366260777E+03	-0.12022753376E+04	0.13861620323E+04	0.60620830799E+03 0.	0.
	-1	1	3	3	0	503	0.18372150189E+02	0.27121177112E+02	-0.34707630298E+02	0.47725399437E+02	0.0000000000E+00 0.	-1.
2000	001	1	3	3	501	0	-0.24000069821E+03	-0.27078378488E+03	-0.11675677073E+04	0.13384366329E+04	0.54522846200E+03 0.	-1.
2000	001	1	1	2	502	0	0.22162854802E+03	0.24366260777E+03	-0.44081963594E+02	0.63852014456E+03	0.54522846200E+03 0.	-1.
<td>t></td> <td></td>	t>											

- Allows to remove double-counted events after production
- Double-check perform generation without resonant diagrams (gauge-inv. only in NWA!)
 - Excellent agreement

- Shower "tweakable"
 - Strength for fitting data (after-the-fact)
 - Weakness for predictivity
- Most important parameters used here:
 - Type of shower (Q² or p_T -ordered)
 - Shower starting scale
 - Factorization scale "wimpy"
 - Total energy of collider "power"
- Matching quite insensitive to shower parameters

ISR jets for different Pythia shower params

600 GeV gluino pair production at the LHC

SI A

ISR jets after matching with MG/ME

600 GeV gluino pair production at the LHC

ISR jets after matching with MG/ME

Dependence on the initial state: gg, qq, qq

Johan Alwall - Effects of Jet Matching in BSM Signals

SLAC

Dependence on the produced particle mass

Johan Alwall - Effects of Jet Matching in BSM Signals

SLA

Impact of matching with decay

Matching obviously important for radiated jets, but what about including decay jets from the squarks/gluinos?

Still important in many scenarios!

SI A

Example: Small mass splitting between gluino and squark – gives gluino decay with 2 hard + 2 soft jets

Impact of matching with decay 600 GeV gluino pair production

Risk for misinterpretation

Scenario: sqsq production only (gluinos heavy)

Looks like we're missing gluino component!

Risk for misinterpretation

Scenario: ~q~q production only (gluinos heavy)

Light gluinos at the Tevatron

JA, Le, Lisanti, Wacker [arXiv:0803.0019, arXiv:0809.3264]

- Searches at the Tevatron have always been done in the mSUGRA framework
- mSUGRA (and mGMSB) "special" scenarios: fixed mass ratio m_g:m_w:m_B ~ 6:2:1
- Not representative for general MSSM (or other BSM models!)
- Study of projected exclusion region at Tevatron with free ratio m_g:m_B (arXiv:0803.0019)

SI A

Light gluinos at the Tevatron

JA, Le, Lisanti, Wacker [arXiv:0803.0019, arXiv:0809.3264]

Special difficulty when decay products are soft (nearly degenerate masses):

- No (small) missing transverse energy in decay
- Need recoil agains jets to get $\not{\mathsf{E}}_{\tau}$ signature

Light gluinos at the Tevatron

Impact on collective exp. searches

"SPS1a" SUSY production at the LHC - unmatched

Johan Alwall - Effects of Jet Matching in BSM Signals

SI A

Impact on collective exp. searches

"SPS1a" SUSY production at the LHC - matched

Johan Alwall - Effects of Jet Matching in BSM Signals

SI A

Conclusions

- The LHC is a hadronic collider busy and complicated QCD environment
- Any search for new physics must take QCD radiation effects into account
 - Extra jet production from ISR QCD emissions
 - Boost of the central production system
- Many scenarios where jet matching between matrix elements and parton showers is crucial to get a good description of the signal as well as SM backgrounds

Backup slides

Johan Alwall - Effects of Jet Matching in BSM Signals

SLAC

CKKW matching

Imitate parton shower procedure for matrix elements

- Choose a cutoff (jet resolution) scale d_{ini}
- ② Generate multiparton event with $d_{\min} = d_{\min}$ and factorization scale d_{\min}
- 3 Cluster event with k_T algorithm to find "parton shower history"
- Use $d_i \simeq k_T^2$ in each vertex as scale for α_s

SI A

- Weight event with NLL Sudakov factor Δ(d_j, d_{ini})/Δ(d_i, d_{ini}) for each parton line between vertices i and j (d_j can be d_{ini})
- Shower event, allowing only emissions with k_T < d_{ini} ("vetoed showers")
- For highest multiplicity sample, use $min(d_i)$ of event as d_{ini}

Boost-invariant k_{τ} measure:

$$\begin{cases} d_{iB} = p_{T,i}^2 \\ d_{ij} = \min(p_{T,i}^2, p_{T,j}^2) F_{ij} \\ F_{ij} = 2 \left\{ \cosh(\eta_i - \eta_j) - \cos(\phi_i - \phi_j) \right\} \end{cases}$$

- For final-state showers: Combination of NLL Sudakov factors and vetoed NLL showers guarantees independenc of d_{ini} to NLL order
- For initial-state showers: No proof but works ok
- Problem in practice: No NLL shower implementation! (Sherpa uses Pythia-like showers)

More about matching in MG

Shower kT scheme

- Keep/reject event based on k_T of hardest shower emission (as reported by Pythia)
- Highest multiplicity treatment as in CKKW, use min dparton as cutoff
- No jet clustering

SI A

- No need of "fiducial region", can use $k_T^{\text{match}} = d_{\text{cut}}^{\text{ME}}$
- Need similar kT definitions in ME and PS (only "new", $p_{\!_{T}}\!^-$ ordered showers at present)

Comparisons between old and new Pythia showers

Differential jet rates in W production at the Tevatron

 $p_T(W)$ in W production at the Tevatron

