Jet angular correlation in vector-boson fusion processes at hadron colliders

2008.10.15 at IPMU

Kaoru Hagiwara

(KEK Theory Division and Sokendai)

based on the work with Qiang Li (Karlsruhe) and Kentarou Mawatari (KIAS \rightarrow Heidelberg)

KH, Qiang Li, Kentarou Mawatari, arXiv:0810.xxxx [hep-ph] Two recent works on massive graviton productions at hadron colliders:

- Graviton production with 2 jets at the LHC in large extra dimensions
 by KH, P.Konar, Q.Li, K.Mawatari, D.Zeppenfeld, JHEP 0804:019(2008)[arXiv:0801.1794[hep-ph]]
- HELAS and MadGraph/MadEvent with spin-2 particles by KH, J.Kanzaki, Q.Li, K.Mawatari, EPJC 56:435-447(2008)[arXiv:0805.2554[hep-ph]]

There were two motivations for the above works:

- jet physics as a probe of new physics
- tools for simulating new physics models

We found (confirmed the naive expectation) that

 $\sigma(2jets)/\sigma(1jet)$ grows with the missing mass

when the missing p_T is common. This type of studies will be helpful in estimating the mass of a singly produced missing particle.

However, we failed to identify interesting angular correlations among two high p_T jets and the missing p_T direction, from which we hoped to obtain information about the spin of the produced particle.

This is in contrast to the observation made for H + 2 jets production, where the jet angular correlation can reveal its CP parity:

- H + 2 jets via gluon fusion by V.Del Duca, W.Kilgore, C.Oleari, C.Schmidt, D.Zeppenfeld, PRL 87:122001(2001)[arXiv:hep-ph/0105129]
- Determining the structure of Higgs couplings at the LHC by T.Plehn, D.L.Rainwater, D.Zeppenfeld, PRL 88:051801(2002)[arXiv:hep-ph/0105325]
- Gluon fusion contributions to H + 2 jet production by V.Del Duca, W.Kilgore, C.Oleari, C.Schmidt, D.Zeppenfeld, NPB 616:367(2001)[arXiv:hep-ph/0108030]

We try to understand the jet angular correlations associated with vector-boson (gluon, $W/Z/\gamma$) fusion production of a massive particle (X) with spin 0 and 2 ($J_X = 0$ or 2):

The results are then compared to the correlations in X decays into 4 jets (or 4 leptons):

X	\rightarrow	$W^*W^*, Z^*Z^*, Z^*\gamma^*, \gamma^*\gamma^* \to f\bar{f}f\bar{f}$
X	\rightarrow	$g^*g^* o q ar q q ar q$
X	\rightarrow	$g^*g^* o q \bar q g g$
X	\rightarrow	$g^*g^* o gggg$

where $f\bar{f}$ can either be a quark-pair or a lepton-pair.

The helicity amplitudes for the VBF processes

$$\mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda_{X}} = \sum_{V_{1},V_{2}} J_{V_{1}a_{1}a_{3}}^{\mu_{1}'}(k_{1},k_{3};\sigma_{1},\sigma_{3}) J_{V_{2}a_{2}a_{4}}^{\mu_{2}'}(k_{2},k_{4};\sigma_{2},\sigma_{4}) \\ \times D_{\mu_{1}'\mu_{1}}^{V_{1}}(q_{1}) D_{\mu_{2}'\mu_{2}}^{V_{2}}(q_{2}) \Gamma_{XV_{1}V_{2}}^{\mu_{1}\mu_{2}}(q_{1},q_{2};\lambda_{X})^{*}$$

can be expressed by using

$$-g_{\mu'\mu} + \frac{q_{i\mu'}q_{i\mu}}{q_i^2} = \sum_{\lambda_i=\pm,0} (-1)^{\lambda_i+1} \epsilon_{\mu'}(q_i,\lambda_i)^* \epsilon_{\mu}(q_i,\lambda_i)$$

$$q_{i\mu}J^{\mu}_{V_ia_ia_{i+2}}(k_i,k_{i+2};\sigma_i,\sigma_{i+2})=0$$

as follows:

$$\mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda_{X}} = \sum_{V_{1},V_{2}} \frac{1}{(q_{1}^{2} - m_{V_{1}}^{2})(q_{2}^{2} - m_{V_{2}}^{2})} \\ \times \sum_{\lambda_{1,2}=\pm,0} \left(J_{a_{1}a_{3}}^{V_{1}}\right)_{\sigma_{1}\sigma_{3}}^{\lambda_{1}} \left(J_{a_{2}a_{4}}^{V_{2}}\right)_{\sigma_{2}\sigma_{4}}^{\lambda_{2}} \left(\mathcal{M}_{V_{1}V_{2}}^{X}\right)_{\lambda_{1}\lambda_{2}}^{\lambda_{X}}$$

where

$$\begin{pmatrix} J_{a_{i}a_{i+2}}^{V_{i}} \end{pmatrix}_{\sigma_{i}\sigma_{i+2}}^{\lambda_{i}} = (-1)^{\lambda_{i}+1} J_{V_{i}a_{i}a_{i+2}}^{\mu}(k_{i}, k_{i+2}; \sigma_{i}, \sigma_{i+2}) \epsilon_{\mu}(q_{i}, \lambda_{i})^{*} \\ \begin{pmatrix} \mathcal{M}_{V_{1}V_{2}}^{X} \end{pmatrix}_{\lambda_{1}\lambda_{2}}^{\lambda_{X}} = \epsilon_{\mu_{1}}(q_{1}, \lambda_{1}) \epsilon_{\mu_{2}}(q_{2}, \lambda_{2}) \Gamma_{XV_{1}V_{2}}^{\mu_{1}\mu_{2}}(q_{1}, q_{2}; \lambda_{X})^{*}$$

I) the
$$q_1$$
 Breit frame $(Q_1 = \sqrt{-q_1^2}, \ 0 < \theta_1 < \pi/2 \text{ and } 0 < \phi_1 < 2\pi)$:
 $q_1^{\mu} = k_1^{\mu} - k_3^{\mu} = (0, \ 0, \ 0, \ Q_1)$
 $k_1^{\mu} = \frac{Q_1}{2\cos\theta_1}(1, \sin\theta_1\cos\phi_1, \sin\theta_1\sin\phi_1, \cos\theta_1)$
 $k_3^{\mu} = \frac{Q_1}{2\cos\theta_1}(1, \sin\theta_1\cos\phi_1, \sin\theta_1\sin\phi_1, -\cos\theta_1)$

II) the
$$q_2$$
 Breit frame $(Q_2 = \sqrt{-q_2^2}, \pi/2 < \theta_2 < \pi \text{ and } 0 < \phi_2 < 2\pi)$.
 $q_2^{\mu} = k_2^{\mu} - k_4^{\mu} = (0, 0, 0, -Q_2)$
 $k_2^{\mu} = -\frac{Q_2}{2\cos\theta_2}(1, \sin\theta_2\cos\phi_2, \sin\theta_2\sin\phi_2, \cos\theta_2)$
 $k_4^{\mu} = -\frac{Q_2}{2\cos\theta_2}(1, \sin\theta_2\cos\phi_2, \sin\theta_2\sin\phi_2, -\cos\theta_2)$

III) the VBF frame

$$\begin{aligned} q_1^{\mu} + q_2^{\mu} &= P^{\mu} = q_1'^{\mu} + q_2'^{\mu} = (M, 0, 0, 0) \\ q_1^{\mu} &= \frac{M}{2} \left(1 - \frac{Q_1^2 - Q_2^2}{M^2}, 0, 0, \beta \right) \\ q_2^{\mu} &= \frac{M}{2} \left(1 - \frac{Q_2^2 - Q_1^2}{M^2}, 0, 0, -\beta \right) \\ q_1'^{\mu} &= \frac{M}{2} \left(1 + \frac{q_1'^2 - q_2'^2}{M^2}, \beta' \sin \Theta, 0, \beta' \cos \Theta \right) \\ q_2'^{\mu} &= \frac{M}{2} \left(1 + \frac{q_2'^2 - q_1'^2}{M^2}, -\beta' \sin \Theta, 0, -\beta' \cos \Theta \right) \end{aligned}$$

where $\beta = \overline{\beta} \left(-\frac{Q_1^2}{M^2}, -\frac{Q_2^2}{M^2} \right)$ and $\beta' = \overline{\beta} \left(\frac{q_1'^2}{M^2}, \frac{q_2'^2}{M^2} \right)$ with $\overline{\beta}(a, b) \equiv (1 + a^2 + b^2 - 2a - 2b - 2ab)^{1/2}$.

$$\begin{aligned} \hat{J}_{1\sigma_{1}\sigma_{3}}^{\lambda_{1}}(f_{\sigma_{1}} \to f_{\sigma_{3}}V_{\lambda_{1}}^{*}) & [\cos\theta_{1} \to z_{1}/(2-z_{1})] \\ \hat{J}_{1++}^{+} &= -\left(\hat{J}_{1--}^{-}\right)^{*} & \frac{1}{2\cos\theta_{1}}(1+\cos\theta_{1})e^{-i\phi_{1}} & \frac{1}{z_{1}}e^{-i\phi_{1}} \\ \hat{J}_{1++}^{0} &= \hat{J}_{1--}^{0} & -\frac{1}{\sqrt{2}\cos\theta_{1}}\sin\theta_{1} & -\frac{\sqrt{2}(1-z_{1})}{\sqrt{2}(1-z_{1})} \\ \hat{J}_{1++}^{-} &= -\left(\hat{J}_{1--}^{+}\right)^{*} & -\frac{1}{2\cos\theta_{1}}(1-\cos\theta_{1})e^{i\phi_{1}} & -\frac{1-\frac{z_{1}}{z_{1}}}{z_{1}}e^{i\phi_{1}} \\ \hat{J}_{1+-}^{\lambda_{1}} &= \hat{J}_{1-+}^{\lambda_{1}} & 0 & 0 \end{aligned}$$

_

$$\begin{split} \hat{J}_{1\sigma_{1}'\sigma_{3}'}^{\lambda_{1}'}(V_{\lambda_{1}'}^{*} \to f_{\sigma_{1}'}\bar{f}_{\sigma_{3}'}) & [\cos\theta_{1}' \to 2z_{1}' - 1] \\ \hat{J}_{1+-}'^{+} &= -\left(\hat{J}_{1-+}'^{-}\right)^{*} & \frac{1}{2}(1 + \cos\theta_{1}') e^{i\phi_{1}'} & z_{1}' e^{i\phi_{1}'} \\ \hat{J}_{1+-}^{\gamma_{0}} &= \hat{J}_{1-+}'^{0} & \frac{1}{\sqrt{2}}\sin\theta_{1}' & \sqrt{2z_{1}'(1 - z_{1}')} \\ \hat{J}_{1+-}^{\gamma_{-}} &= -\left(\hat{J}_{1-+}'^{+}\right)^{*} & \frac{1}{2}(1 - \cos\theta_{1}') e^{-i\phi_{1}'} & (1 - z_{1}') e^{-i\phi_{1}'} \\ \hat{J}_{1++}^{\gamma_{1}}^{\lambda_{1}'} &= \hat{J}_{1--}'^{\lambda_{1}'} & 0 & 0 \end{split}$$

$$\begin{array}{cccc} \hat{J}_{1\sigma_{1}\sigma_{3}}^{\lambda_{1}}(g_{\sigma_{1}} \rightarrow g_{\sigma_{3}}V_{\lambda_{1}}^{*}) & \left[\cos\theta_{1} \rightarrow z_{1}/(2-z_{1})\right] \\ \hat{J}_{1++}^{+} = -(\hat{J}_{1--}^{-})^{*} & \frac{1}{2\sin\theta_{1}\cos\theta_{1}}(1+\cos\theta_{1})^{2}e^{-i\phi_{1}} & \frac{1}{z_{1}\sqrt{1-z_{1}}}e^{-i\phi_{1}} \\ \hat{J}_{1++}^{0} = \hat{J}_{1--}^{0} & -\frac{1}{\sqrt{2}\cos\theta_{1}} & -\frac{2-z_{1}}{\sqrt{2}z_{1}} \\ \hat{J}_{1++}^{-} = -(\hat{J}_{1--}^{+})^{*} & -\frac{1}{2\sin\theta_{1}\cos\theta_{1}}(1-\cos\theta_{1})^{2}e^{i\phi_{1}} & -\frac{(1-z_{1})^{2}}{z_{1}\sqrt{1-z_{1}}}e^{i\phi_{1}} \\ \hat{J}_{1+-}^{+} = -(\hat{J}_{1-+}^{-})^{*} & -\frac{2}{\tan\theta_{1}}e^{i\phi_{1}} & -\frac{z_{1}}{\sqrt{1-z_{1}}}e^{i\phi_{1}} \\ \hat{J}_{1+-}^{0} = \hat{J}_{1-+}^{0/+} & 0 & 0 \end{array}$$

$$\begin{array}{cccc} \hline \hat{J}_{1\sigma_{1}'\sigma_{3}'}^{1\lambda_{1}'}(V_{\lambda_{1}'}^{*} \to g_{\sigma_{1}'}g_{\sigma_{3}'}) & \left[\cos\theta_{1}' \to 2z_{1}'-1\right] \\ \hline \hat{J}_{1+-}^{\prime+} &= -\left(\hat{J}_{1-+}^{\prime-}\right)^{*} & -\frac{1}{2\sin\theta_{1}'}(1+\cos\theta_{1}')^{2}e^{i\phi_{1}'} & -\frac{z_{1}'^{2}}{\sqrt{z_{1}'(1-z_{1}')}}e^{i\phi_{1}'} \\ \hline \hat{J}_{1+-}^{\prime0} &= \hat{J}_{1-+}^{\prime0} & -\frac{1}{\sqrt{2}}\cos\theta_{1}' & -\frac{2z_{1}'-1}{\sqrt{2}} \\ \hline \hat{J}_{1+-}^{\prime-} &= -\left(\hat{J}_{1-+}^{\prime+}\right)^{*} & \frac{1}{2\sin\theta_{1}'}(1-\cos\theta_{1}')^{2}e^{-i\phi_{1}'} & \frac{(1-z_{1}')^{2}}{\sqrt{z_{1}'(1-z_{1}')}}e^{-i\phi_{1}'} \\ \hline \hat{J}_{1++}^{\prime+} &= -\left(\hat{J}_{1--}^{\prime-}\right)^{*} & \frac{2}{\sin\theta_{1}'}e^{-i\phi_{1}'} & \frac{1}{\sqrt{z_{1}'(1-z_{1}')}}e^{-i\phi_{1}'} \\ \hline \hat{J}_{1++}^{\prime0/-} &= \hat{J}_{1--}^{\prime0/+} & 0 & 0 \end{array}$$

X	(λ_X)	V_i	$\Gamma^{\mu_1\mu_2}_{XV_1V_2}(q_1,q_2;\lambda_X)/g_{XV_1V_2}(q_1,q_2)$
H	(0)	W, Z	$g^{\mu_1\mu_2}$
H	(0)	$\gamma, Z/\gamma, g$	$q_1 \cdot q_2 g^{\mu_1 \mu_2} - q_2^{\mu_1} q_1^{\mu_2}$
A	(0)	$\gamma, Z/\gamma, g$	$\epsilon^{\mu_1\mu_2lphaeta}q_{1lpha}q_{2eta}$
G	$(\pm 2,\pm 1,0)$	$W\!,Z,\gamma,g$	$\epsilon_{lphaeta}(p_X,\lambda_X)\widehat{\Gamma}^{lphaeta,\mu_1\mu_2}_{GVV}(q_1,q_2)$

		CP	-even	$CP ext{-odd}$
λ_X	$(\lambda_1\lambda_2)$	H(WBF)	H(loop-induced)	A
0	(±±)	-1	$-\frac{1}{2}(M^2+Q_1^2+Q_2^2)$	$\mp \frac{i}{2}\sqrt{(M^2 + Q_1^2 + Q_2^2)^2 - 4Q_1^2Q_2^2}$
0	(00)	$\frac{(M^2 + Q_1^2 + Q_2^2)}{2Q_1Q_2}$	$ Q_1Q_2$	0

λ_X	$(\lambda_1\lambda_2)$	G
±2	$(\pm\mp)$	$-(M^2 + Q_1^2 + Q_2^2 + 2m_V^2)$
± 1	(±0)	$\frac{1}{\sqrt{2}MQ_2} \left[Q_2^2 (M^2 - Q_1^2 + Q_2^2) - m_V^2 (M^2 + Q_1^2 - Q_2^2) \right]$
± 1	(0干)	$\frac{1}{\sqrt{2}MQ_1} \left[Q_1^2 (M^2 + Q_1^2 - Q_2^2) - m_V^2 (M^2 - Q_1^2 + Q_2^2) \right]$
0	$(\pm\pm)$	$\frac{1}{\sqrt{6}M^2} \left[(Q_1^2 - Q_2^2)^2 + M^2 (Q_1^2 + Q_2^2 - 2m_V^2) \right]$
0	(00)	$-\frac{1}{\sqrt{6}Q_1Q_2} \Big[4Q_1^2Q_2^2 + 2m_V^2(M^2 + Q_1^2 + Q_2^2) \Big]$
		$-\frac{m_{\overline{V}}}{M^2}\{(M^2+Q_1^2+Q_2^2)^2-4Q_1^2Q_2^2\}\right]$

With the minimal cuts:

 $p_{T_j} > 20 \text{ GeV}, \quad |\eta_j| < 5, \quad R_{jj} = \sqrt{\Delta \eta_{jj}^2 + \Delta \phi_{jj}^2} > 0.6$

plus the VBF cuts:

$$\eta_{j_1} > 0 > \eta_{j_2}, \quad \Delta \eta_{jj} = \eta_{j_1} - \eta_{j_2} > \Delta \eta_{jj \min}$$

we find

$\sigma_{\sf VBF}/\sigma_{\sf exact}$	$\Delta\eta_{jj}>$ 3	$\Delta\eta_{jj}>$ 4	$\Delta\eta_{jj}>5$
$\begin{array}{c} qq \rightarrow qqH/A/G \\ qg \rightarrow qgH/A/G \\ gg \rightarrow ggH/A/G \end{array}$	1.00/1.00/1.58	1.00/1.00/1.43	1.00/1.00/1.25
	1.07/1.05/1.30	1.04/1.03/1.18	1.02/1.02/1.11
	1.07/1.06/1.16	1.04/1.04/1.11	1.02/1.02/1.07

In addition, if we impose the p_{T_j} slicing cut:

20 GeV
$$< p_{T_j} <$$
 100 GeV

we find

$\sigma_{\rm VBF}/\sigma_{\rm exact}$	$\Delta\eta_{jj}>3$	$\Delta\eta_{jj}>$ 4	$\Delta\eta_{jj}>5$
$\begin{array}{c} qq \rightarrow qqH/A/G \\ qg \rightarrow qgH/A/G \\ gg \rightarrow ggH/A/G \end{array}$	1.00/1.00/1.02	1.00/1.00/1.02	1.00/1.00/1.02
	1.04/1.04/1.07	1.03/1.03/1.06	1.02/1.02/1.04
	1.05/1.05/1.09	1.04/1.04/1.07	1.02/1.02/1.05

$$\mathcal{M}_{\sigma_{1}\sigma_{3},\sigma_{2}\sigma_{4}}^{\lambda_{X}=0} = \sum_{V_{1},V_{2}} \frac{1}{(q_{1}^{2}-m_{V_{1}}^{2})(q_{2}^{2}-m_{V_{2}}^{2})} \sum_{\lambda_{1,2}=\pm,0} (J_{a_{1}a_{3}}^{V_{1}})_{\sigma_{1}\sigma_{3}}^{\lambda_{1}} (J_{a_{2}a_{4}}^{V_{2}})_{\sigma_{2}\sigma_{4}}^{\lambda_{2}} (\mathcal{M}_{V_{1}V_{2}}^{X})_{\lambda_{1}\lambda_{2}}^{0} \\ \sim \widehat{J}_{1\sigma_{1}\sigma_{3}}^{+} \widehat{J}_{2\sigma_{2}\sigma_{4}}^{+} \widehat{\mathcal{M}}_{X}{}_{++}^{0} + \widehat{J}_{1\sigma_{1}\sigma_{3}}^{0} \widehat{J}_{2\sigma_{2}\sigma_{4}}^{0} \widehat{\mathcal{M}}_{X}{}_{00}^{0} + \widehat{J}_{1\sigma_{1}\sigma_{3}}^{-} \widehat{J}_{2\sigma_{2}\sigma_{4}}^{-} \widehat{\mathcal{M}}_{X}{}_{--}^{0}$$

$$\mathcal{M}_{\sigma_{1},\sigma_{2}}^{\lambda_{X}=0} \sim -\hat{J}_{1\sigma_{1}}^{+}(\theta_{1}) \, \hat{J}_{2\sigma_{2}}^{+}(\theta_{2}) \, \hat{\mathcal{M}}_{X}{}_{++}^{0} e^{-i\Delta\phi_{12}} \\ -\hat{J}_{1\sigma_{1}}^{0}(\theta_{1}) \, \hat{J}_{2\sigma_{2}}^{0}(\theta_{2}) \, \hat{\mathcal{M}}_{X}{}_{00}^{0} \\ -\hat{J}_{1\sigma_{1}}^{-}(\theta_{1}) \, \hat{J}_{2\sigma_{2}}^{-}(\theta_{2}) \, \hat{\mathcal{M}}_{X}{}_{--}^{0} e^{i\Delta\phi_{12}}$$

