Quantum Crystals and Topological Strings

Domenico Orlando

IPMU

October 16th, 2008 IPMU

Based on: [arXiv:0803:1927] and work in progress

Collaboration with: *R.Dijkgraaf* (UvA), *S.Reffert*.

Why 00	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Outline	2				

- 1 Why are we here?
- 2 Classical Crystal melting and Quantization
- **3** Two dimensions and XXZ
- Three dimensions
- **5** Stochastic quantization
- **6** Conclusions

Why 00	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Outlin	е				

1 Why are we here?

- 2 Classical Crystal melting and Quantization
- 3 Two dimensions and XXZ
- Three dimensions
- 5 Stochastic quantization
 - Conclusions

Why	Classical	XXZ	3 <i>d</i>	Stochastic Quantization	Conclusions
••	00000000	0000	000	000000	00

Welcome

Random partitions

- Integer and plane partitions.
- Mapping to crystal melting.
- The partition function is the same as for the A-model in topological strings.
- We quantize the statistical system.
- Read the corresponding quantum gravity.

$O \bullet$	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Results	;				

Quantum crystal melting

- Quantize the crystal melting system.
- The two dimensional problem is equivalent to XXZ. Integrable.
- The three dimensional problem can be written in terms of interacting spin chains.
- Numerical analysis.
- Stochastic quantization.
- Effective model for quantum gravity.
- Much to be understood.

Why 00	Classical	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Outlin	е				

Why are we here?

2 Classical Crystal melting and Quantization

- 3 Two dimensions and XXZ
- Three dimensions
- 5 Stochastic quantization
 - Conclusions

00 Why	<i>Classical</i> ●00000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions 00
Cl	assical crysta	ls			
	S				1-20
-	Crystal growth				
655	• The crystal is	s represer	nted by <mark>cu</mark>	bes on an integer lat	tice in
5	the positive	octant		Ŭ	

- A cube can be added if it is attached on three faces to the wall or other cubes
- Partition function [MacMahon]

$$Z = \sum_{\text{configurations}} q^{\text{number of boxes}} = \sum_{n} \frac{1}{(1 - q^n)^n}$$

A DURING STORE OF UNIVERS

Melt ₁	ing Crustal	and O	uantum	Calabi-Yau	
Why	Classical	XXZ	3d	Stochastic Quantization	Conclusio
00	00000000	0000	000		00

Quantum foam

- The same partition function is found to be the one of topological A-model on C³ [Iqbal, Nekrasov, Okounkov, Reshetikhin, Vafa]
- A-model path integrals localize on "quantum Kähler structures" on ℂ³.
- In terms of toric geometry think of quantized multiple blow-ups of the origin

There is a correspondence with three dimensional partitions

Why	Classical	XXZ	3d	Stochastic Quantization	Conclusions	
	00000000					
0						
Quantization						

Classical probabilities

- Classical system. Configurations $\{C_i\}$ with energy $\overline{\mathcal{H}}$.
- For the canonical ensemble, the probability of C_i is

$$p(C_i) = rac{e^{-eta ar{\mathcal{H}}(C_i)}}{Z}$$
, $Z = \sum_i e^{-eta ar{\mathcal{H}}(C_i)}$

Quantum probabilities

- Quantum system. $|C_i\rangle$ are orthonormal generators of \mathcal{H} .
- A vector $|\Psi\rangle$ in \mathcal{H} defines a probability measure on the $|C_i\rangle$

$$m_{\psi}(C_i) = rac{|\langle \psi | C_i
angle|^2}{\langle \psi | \psi
angle}$$
, $\langle \psi | \psi
angle = \sum_i |\langle \psi | C_i
angle|^2$

Ouar	itum Hami	ltonian			
Why 00	Classical 0000€0000	XXZ 0000	3d 000	Stochastic Quantization	00

Ground state

• Introduce $|\Psi_0\rangle$ as

$$\left|\Psi_{0}
ight
angle = \sum_{i} e^{-eta ec{\mathcal{H}}(C_{i})/2} \left|C_{i}
ight
angle$$
 ,

• The probability measure coincides with the one of the canonical ensemble.

Quantum Hamiltonian

• \mathcal{H} be a Hamiltonian operator in the Hilbert space \mathcal{H} s.t.

$$\mathcal{H} \ket{\Psi_0} = 0$$
 .

• We call \mathcal{H} the quantum Hamiltonian corresponding to $\overline{\mathcal{H}}$.

Why 00	Classical 00000€000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Qu	antum Hami	ltonian	ļ		
	5555				SA
555	Classical limit				
55	 Classical qu 	antity $Q(0)$	C_i)		
	• Quantum e>	pectation	value for	an operator \hat{Q}	
		$\langle \hat{Q} angle$	$=rac{1}{\mathscr{Z}}\operatorname{Tr}_{\mathscr{H}}$	$e^{(\hat{Q}e^{-\mathcal{H}/\hbar})}.$	
	• in the $\hbar \rightarrow 0$ average values	limit use ue	saddle po	pint to obtain the class	sical

$$\langle \hat{Q} \rangle = \operatorname{Tr}_{\mathscr{H}}(\hat{Q} e^{-\mathcal{H}/\hbar}) \xrightarrow[\hbar \to 0]{} \frac{\langle \Psi_0 | \hat{Q} | \Psi_0 \rangle}{\langle \Psi_0 | \Psi_0 \rangle} = \frac{1}{Z} \sum_i e^{-\beta \bar{\mathcal{H}}(C_i)} Q(C_i)$$

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Why 00	Classical 000000●00	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Qui	antum Hami	iltonian	!		
-	<i>Dynamics</i>				P
5555	• Consider the	e state gra	ph		
Se la compañía de la comp					
		×			
	<		\times		
	le contra				
	• The quantum	m Hamilto	onian ${\cal H}$ is	the <mark>Laplacian</mark> on the	
	graph, plus	a potentia	ll term cou	unting the boxes	
		${\cal H}$	$= -I(\triangle$	$+ V_a(u)$	

SICS AND

Ouan	tum Hami	ltonian			
Why	Classical	XXZ	3d	Stochastic Quantization	Conclusions
00	000000000	0000	000		00

Block Notation

$$\mathcal{H} = -J\sum\left(|\Box\rangle\langle \blacksquare| + |\blacksquare\rangle\langle \Box|\right) + V\left(\sqrt{q}\,|\Box\rangle\langle \Box| + \frac{1}{\sqrt{q}}\,|\blacksquare\rangle\langle \blacksquare|\right)\,,$$

- |□⟩ is a place where a cube can be added, |■⟩ is a cube that can be removed
- |□⟩⟨■| + |■⟩⟨□| is the kinetic term (changes the configuration).
- $|\Box\rangle\langle\Box|$ and $|\blacksquare\rangle\langle\blacksquare|$ are potential terms (count)
- This is local information: not the total number of boxes but border effects.

IPM

nclusions
77

$$\mathcal{H} = -J \sum \left(|\Box \rangle \langle \blacksquare | + |\blacksquare \rangle \langle \Box | \right) + V \left(\sqrt{q} |\Box \rangle \langle \Box | + \frac{1}{\sqrt{q}} |\blacksquare \rangle \langle \blacksquare | \right) \,,$$

• Using detailed balance

$$\mathcal{H}\left[\sum_{\alpha}q^{N(\alpha)/2}\left|lpha
ight
angle
ight]=0$$

Why 00	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Outlin	е				

Why are we here?

- 2 Classical Crystal melting and Quantization
- **3** Two dimensions and XXZ
- 4 Three dimensions
- 5 Stochastic quantization
 - Conclusions

Vhy 00	Classical 000000000	XXZ ●000	3d 000	Stochastic Quantization	Conclusions

Two dimensional problem

Partitions and fermions

- Start with a lower dimensional analogue: integer partitions
- Represented by Young diagrams
- Mapping to fermionic operators

Why 00	Classical 000000000	XXZ ⊙●○○	3d 000	Stochastic Quantization	Conclusions
2d an	d XXZ				

Hamiltonian for fermions

- Write the Hamiltonian
- Adding a cube is the same as moving a fermion to the right
- Removing a cube is the same as moving a fermion to the left
- The diagonal term counts the possible hops
- The Hamiltonian becomes

$$\mathcal{H} = -J \sum_{n} \psi_{n+1}^{*} \psi_{n} + \psi_{n}^{*} \psi_{n+1} + -q^{1/2} n_{n} \left(1 - n_{n+1}\right) - q^{-1/2} n_{n+1} \left(1 - n_{n}\right)$$

• This is the XXZ model

Kink	oround sta	ito			
00	000000000	0000	000	000000	00
Whu	Classical	XXZ	3d	Stochastic Quantization	Conclusions

XXZ in the kink sector

- Adding the appropriate boundary conditions we are in the half-full sector with kink b.c.
- The ground state can be expressed in the grand-canonical formalism as

$$\Psi(z) = \prod_{n=0}^{\infty} \left(1 + z\sqrt{q}^{n+1/2}\psi_n^* \right) |0\rangle = \bigotimes_{n=0}^{\infty} \left(\frac{1}{z\sqrt{q}^{n+1/2}} \right),$$

• This expression is particularly nice because the points are essentially decoupled

Kink	ground sta	ite			
Why 00	Classical 000000000	XXZ ○○○●	3d 000	Stochastic Quantization	Conclusions

Correlation functions

- One can easily compute the correlation functions
- From the one point function one obtains the limit shape (Wulff crystal)

• The *n*-point functions factorize

$$\langle \sigma_{x_1}^3 \sigma_{x_2}^3 \dots \sigma_{x_n}^3 \rangle = \langle \sigma_{x_1}^3 \rangle \langle \sigma_{x_2}^3 \rangle \dots \langle \sigma_{x_n}^3 \rangle$$

EMATICS OF TH

00	000000000	0000	000	000000	00
Outline	e				

Why are we here?

- **2** Classical Crystal melting and Quantization
- 3 Two dimensions and XXZ
- Three dimensions
 - 5) Stochastic quantization
 - Conclusions

Domenico Orlando Quantum Crystals and Topological Strings

00	00000000	0000	000	000000	00				
Three-a	Three-dimensional Hamiltonian								

The fermionic Hamiltonian

- The Hamiltonian describes the vertical hopping of the fermions
- Interlacing conditions: always a plane partition
- Introducing 3 vectors in the plane $\mathbf{e}_1 = (-\cos\frac{\pi}{6}, -\sin\frac{\pi}{6}), \mathbf{e}_2 = (\cos\frac{\pi}{6}, -\sin\frac{\pi}{6})$ and $\mathbf{e}_3 = (0, 1)$.
- The Hamiltonian takes a nice form

$$\mathcal{H}_{3d} = -J \sum_{\mathbf{x}} \mathcal{H}_{2d}^{\mathbf{x} \to \mathbf{x} + \mathbf{e}_3} \left(1 - n_{\mathbf{x} - \mathbf{e}_1} \right) \left(1 - n_{\mathbf{x} - \mathbf{e}_2} \right) \,.$$

• Each particle can hop up or down after checking if on the neighboring lines there is a hole.

Thurs	dimension				
			000		
Why	Classical	XXZ	3 <i>d</i>	Stochastic Quantization	Conclusions

Three dimensions

Excited levels

- The 3d system is definitely harder than the 2d
- The ground state can be written explicitly, but the correlation functions are not trivial
- The excited levels can be studied numerically

Why 00	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Outlin	е				

Why are we here?

- 2 Classical Crystal melting and Quantization
- 3 Two dimensions and XXZ
- **4** Three dimensions
- **5** Stochastic quantization
 - Conclusions

Why	Classical	XXZ	3 <i>d</i>	Stochastic Quantization	Conclusions
00	000000000	0000	000	00000	00

A continuum limit

A (slightly) different story

- Consider a classical system described by an action $S_{\rm cl}[\phi]$ where $\phi = \phi(x)$.
- A possible way of quantizing it consists in using the so-called stochastic quantization
 - Add an extra (fictitious) euclidean time t
 - Write a Langevin equation that for *t* → ∞ relaxes to the critical points action

$$\frac{d}{dt}\phi(x,t) = -\frac{\delta S_{\rm cl}}{\delta\phi} + \eta(x,t)$$

where η is a white Gaussian noise

$$\langle \eta(x,t) \rangle = 0$$
 $\langle \eta(x,t)\eta(y,t') \rangle = 2\delta(x-y)\delta(t-t')$

A con	ntinuum lin	nit			
Why 00	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions

Correlation functions

• Every correlation functions can be written as an average on the noise:

$$\langle F[\phi(x)] \rangle = \int \mathbf{d}[\eta] F[\phi(x)] e^{\int dx \, dt \, \eta(x,t)^2}$$

• From the partition function one can extract a (quantum) action in d + 1 dimension that takes the form

$$S_{\text{quantum}} = \dot{\phi}^2 + \frac{1}{2} \left(\frac{\delta S}{\delta \phi}\right)^2 - \bar{\psi} \left(\frac{\partial}{\partial t} + \frac{\delta^2 S}{\delta \phi^2}\right) \psi$$

where ψ is the supersymmetric partner of ϕ .

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE
 Why
 Classical
 XXZ
 3d
 Stochastic Quantization
 Conclusions

 00
 00000000
 0000
 000
 000
 000

A continuum limit

R

Stochastic quantization and dimers

- Why is this relevant?
- The quantum crystal model I presented describes a Brownian motion among the minima of a classical action (number of boxes)
- The Langevin equation provides a continuum version of the Brownian motion
- For the quantum crystal we just need to identify a classical action and the stochastic quantization will automatically give us the quantum version

A continuum limit: quantum dimers

Why

Classical

The quantum dimer in the continuum limit

• Consider our problem for q = 1: the quantum dimer

3d

• A natural conjecture is that the classical system is described by a free boson in two dimensions:

$$S_{\rm cl}[\phi] = \int dx \; (\nabla \phi(x))^2$$

Stochastic Quantization

000000

Conclusions

• Using the procedure outlined we obtain the action for the three-dimensional quantum system:

$$S_{\text{quantum}}[\phi] = \int dx dt \left[\dot{\phi}^2 + \frac{\kappa^2}{2} \left(\nabla^2 \phi \right)^2 - \bar{\psi} \left(\frac{\partial}{\partial t} + \kappa \nabla^2 \right) \psi \right]$$

• The bosonic part has already appeared in literature

Kähler Gravitu							
Why	Classical	XXZ	3d	Stochastic Quantization	Conclusions		
00	00000000	0000	000	000000			

Quantum dimers and A-model

- The partition function for the classical dimer is the same as for the A-model
- In a "semiclassical" limit the A-model is described by Kähler gravity: this is our classical theory
- The stochastic quantization of Kähler gravity naturally leads to a theory in seven dimensions, that in a $x_7 \rightarrow \infty$ limit reproduces the topological string
- One can conjecture that in this way we describe an effective action for topological M-theory.

Kähler	Gravity				
Why	Classical	XXZ	3d	Stochastic Quantization	Conclusions
00	000000000	0000	000	00000●	

An action for M-theory

• In the $g_s \rightarrow 0$ limit the action reads

$$S_{7d} = \|\dot{\gamma}\|^2 + \|d_c d\gamma\|^2 - \langle ar{\psi}, \left(rac{\partial}{\partial t} + d_c * d
ight)\psi
angle$$

where

- *γ* is a 3-form
- d_c is the twisted differential $\partial \bar{\partial}$
- ψ and $\bar{\psi}$ are fermionic superpartners.
- the scalar product and the norm are intended in terms of the Hodge product in 6 dimensions $\langle f, g \rangle = \int f \wedge *_6 g$

Why 00	Classical 000000000	XXZ 0000	3d 000	Stochastic Quantization	Conclusions
Outlin	е				

Why are we here?

- 2 Classical Crystal melting and Quantization
- 3 Two dimensions and XXZ
- 4 Three dimensions
- 5 Stochastic quantization
 - Conclusions

Why	Classical	XXZ	3d	Stochastic Quantization	Conclusions
00	000000000	0000	000		●0
Results	5				

Quantum crystal melting

- Quantize the crystal melting system.
- The two dimensional problem is equivalent to XXZ. Integrable.
- The three dimensional problem can be written in terms of interacting spin chains.
- Numerical analysis.
- Stochastic quantization.
- Effective model for quantum gravity.
- Much to be understood.

Why	Classical	XXZ	3d	Stochastic Quantization	Conclusions
00	000000000	0000	000		○●
Result	s				

Thank you for your attention

Domenico Orlando Quantum Crystals and Topological Strings