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Welcome

Random partitions

Integer and plane partitions.
Mapping to crystal melting.
The partition function is the same as for the A-model in
topological strings.
We quantize the statistical system.
Read the corresponding quantum gravity.
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Results

Quantum crystal melting

Quantize the crystal melting system.
The two dimensional problem is equivalent to XXZ.
Integrable.
The three dimensional problem can be written in terms of
interacting spin chains.
Numerical analysis.
Stochastic quantization.
Effective model for quantum gravity.
Much to be understood.
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Classical crystals

Crystal growth

The crystal is represented by cubes on an integer lattice in
the positive octant

A cube can be added if it is attached on
three faces to the wall or other cubes

Partition function [MacMahon]

Z = ∑
configurations

qnumber of boxes = ∑
n

1
(1− qn)n .
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Classical crystals

Mapping to plane partitions and dimer model

MacMahon found the result by studying random plane
partitions

4 2 1 1
3 2 1 0
2 0 0 0
1 0 0 0

Mapping to dimers on hexagonal lattice (height function)
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Melting Crystal and Quantum Calabi-Yau

Quantum foam

The same partition function is found to be the one of
topological A-model on C3 [Iqbal, Nekrasov, Okounkov,
Reshetikhin, Vafa]
A-model path integrals localize on “quantum Kähler
structures” on C3.
In terms of toric geometry think of quantized multiple
blow-ups of the origin

There is a correspondence
with three dimensional
partitions
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Quantization

Classical probabilities

Classical system. Configurations {Ci } with energy H̄.
For the canonical ensemble, the probability of Ci is

p(Ci) =
e−βH̄(Ci)

Z
, Z = ∑

i
e−βH̄(Ci) .

Quantum probabilities

Quantum system. |Ci〉 are orthonormal generators of H .
A vector |Ψ〉 inH defines a probability measure on the |Ci〉

mψ(Ci) =
|〈ψ|Ci〉|2

〈ψ|ψ〉 , 〈ψ|ψ〉 = ∑
i
|〈ψ|Ci〉|2
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Quantum Hamiltonian

Ground state
Introduce |Ψ0〉 as

|Ψ0〉 = ∑
i

e−βH̄(Ci)/2 |Ci〉 ,

The probability measure coincides with the one of the
canonical ensemble.

Quantum Hamiltonian
H be a Hamiltonian operator in the Hilbert space H s.t.

H |Ψ0〉 = 0 .

We callH the quantum Hamiltonian corresponding to H̄.
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Quantum Hamiltonian

Classical limit
Classical quantity Q(Ci)
Quantum expectation value for an operator Q̂

〈Q̂〉 =
1
Z

TrH (Q̂ e−H/h̄) .

in the h̄→ 0 limit use saddle point to obtain the classical
average value

〈Q̂〉 = TrH (Q̂ e−H/h̄) −−→
h̄→0

〈Ψ0|Q̂|Ψ0〉
〈Ψ0|Ψ0〉

=
1
Z ∑

i
e−βH̄(Ci)Q(Ci)
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Quantum Hamiltonian

Dynamics

Consider the state graph

The quantum HamiltonianH is the Laplacian on the
graph, plus a potential term counting the boxes

H = −J
(
4+ Vq(u)

)
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Quantum Hamiltonian

Block Notation

H = −J ∑ (|�〉〈�|+ |�〉〈�|) + V
(
√

q |�〉〈�|+ 1
√

q
|�〉〈�|

)
,

|�〉 is a place where a cube can be added, |�〉 is a cube that
can be removed
|�〉〈�|+ |�〉〈�| is the kinetic term (changes the
configuration).
|�〉〈�| and |�〉〈�| are potential terms (count)
This is local information: not the total number of boxes but
border effects.
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Quantum Hamiltonian

Block Notation

H = −J ∑ (|�〉〈�|+ |�〉〈�|) + V
(
√

q |�〉〈�|+ 1
√

q
|�〉〈�|

)
,

H = −J
(

+ + +
)

+V
(

3
√

q + 1√
q

)
Using detailed balance

H
[
∑
α

qN(α)/2 |α〉
]

= 0
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Two dimensional problem

Partitions and fermions

Start with a lower dimensional analogue: integer partitions
Represented by Young diagrams
Mapping to fermionic operators

ψ∗
1
2

ψ∗
9
2

ψ− 5
2

ψ− 9
2

ψ− 15
2

ψ∗
19
2
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2d and XXZ

Hamiltonian for fermions

Write the Hamiltonian
Adding a cube is the same as moving a fermion to the right
Removing a cube is the same as moving a fermion to the
left
The diagonal term counts the possible hops
The Hamiltonian becomes

H = −J ∑
n

ψ∗n+1ψn + ψ∗nψn+1+

− q1/2nn (1− nn+1)− q−1/2nn+1 (1− nn)

This is the XXZ model
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Kink ground state

XXZ in the kink sector
Adding the appropriate boundary conditions we are in the
half-full sector with kink b.c.
The ground state can be expressed in the grand-canonical
formalism as

Ψ(z) =
∞

∏
n=0

(
1 + z

√
qn+1/2ψ∗n

)
|0〉 =

∞⊗
n=0

(
1

z
√

qn+1/2

)
,

This expression is particularly nice because the points are
essentially decoupled
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Kink ground state

Correlation functions

One can easily compute the correlation functions
From the one point function one obtains the limit shape
(Wulff crystal)

-10 -5 5 10

-0.4

-0.2

0.2

0.4

-6 -4 -2 2 4 6

1

2

3

4

5

6

7

The n-point functions factorize

〈σ3
x1

σ3
x2

. . . σ3
xn
〉 = 〈σ3

x1
〉 〈σ3

x2
〉 . . . 〈σ3

xn
〉

Domenico Orlando Quantum Crystals and Topological Strings



Why Classical XXZ 3d Stochastic Quantization Conclusions

Outline

1 Why are we here?

2 Classical Crystal melting and Quantization

3 Two dimensions and XXZ

4 Three dimensions

5 Stochastic quantization

6 Conclusions

Domenico Orlando Quantum Crystals and Topological Strings



Why Classical XXZ 3d Stochastic Quantization Conclusions

Three dimensions and fermions

Diagonal slicing

Let us move to the actual three dimensional problem
Diagonal slicing

(a) Cubes (b) Diagonal slicing

e1

e3

e2

(c) Lattice fermions
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Three-dimensional Hamiltonian

The fermionic Hamiltonian

The Hamiltonian describes the vertical hopping of the
fermions
Interlacing conditions: always a plane partition
Introducing 3 vectors in the plane e1 = (− cos π

6 ,− sin π
6 ),

e2 = (cos π
6 ,− sin π

6 ) and e3 = (0, 1) .
The Hamiltonian takes a nice form

H3d = −J ∑
x
Hx→x+e3

2d (1− nx−e1) (1− nx−e2) .

Each particle can hop up or down after checking if on the
neighboring lines there is a hole.
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Three dimensions

Excited levels
The 3d system is definitely harder than the 2d
The ground state can be written explicitly, but the
correlation functions are not trivial
The excited levels can be studied numerically
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A continuum limit

A (slightly) different story

Consider a classical system described by an action Scl[φ]
where φ = φ(x).
A possible way of quantizing it consists in using the
so-called stochastic quantization

Add an extra (fictitious) euclidean time t
Write a Langevin equation that for t→ ∞ relaxes to the
critical points action

d
dt

φ(x, t) = − δScl
δφ

+ η(x, t)

where η is a white Gaussian noise

〈η(x, t)〉 = 0 〈η(x, t)η(y, t′)〉 = 2δ(x− y)δ(t− t′)
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A continuum limit

Correlation functions

Every correlation functions can be written as an average
on the noise:

〈F[φ(x)]〉 =
∫

d[η] F[φ(x)] e
∫

dx dt η(x,t)2

From the partition function one can extract a (quantum)
action in d + 1 dimension that takes the form

Squantum = φ̇2 +
1
2

(
δS
δφ

)2

− ψ̄

(
∂

∂t
+

δ2S
δφ2

)
ψ

where ψ is the supersymmetric partner of φ.
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A continuum limit

Stochastic quantization and dimers

Why is this relevant?
The quantum crystal model I presented describes a
Brownian motion among the minima of a classical action
(number of boxes)
The Langevin equation provides a continuum version of
the Brownian motion
For the quantum crystal we just need to identify a classical
action and the stochastic quantization will automatically
give us the quantum version
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A continuum limit: quantum dimers

The quantum dimer in the continuum limit

Consider our problem for q = 1: the quantum dimer
A natural conjecture is that the classical system is
described by a free boson in two dimensions:

Scl[φ] =
∫

dx (∇φ(x))2

Using the procedure outlined we obtain the action for the
three-dimensional quantum system:

Squantum[φ] =
∫

dxdt
[

φ̇2 +
κ2

2

(
∇2φ

)2
− ψ̄

(
∂

∂t
+ κ∇2

)
ψ

]
The bosonic part has already appeared in literature
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Kähler Gravity

Quantum dimers and A-model
The partition function for the classical dimer is the same as
for the A-model
In a “semiclassical” limit the A-model is described by
Kähler gravity: this is our classical theory
The stochastic quantization of Kähler gravity naturally
leads to a theory in seven dimensions, that in a x7 → ∞
limit reproduces the topological string
One can conjecture that in this way we describe an
effective action for topological M-theory.
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Kähler Gravity

An action for M-theory

In the gs → 0 limit the action reads

S7d = ‖γ̇‖2 + ‖dcdγ‖2 − 〈ψ̄,
(

∂

∂t
+ dc ∗ d

)
ψ〉

where
γ is a 3-form
dc is the twisted differential ∂− ∂̄
ψ and ψ̄ are fermionic superpartners.
the scalar product and the norm are intended in terms of
the Hodge product in 6 dimensions 〈f , g〉 =

∫
f ∧ ∗6 g
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