Echoes of supersymmetry: BAU, relic Q-balls, and gravity waves

- Introduction: SUSY Q-balls
- Inflation+SUSY \Rightarrow Q-balls
- stable Q-balls as dark matter
- constrains
- gravitational waves

Echoes of supersymmetry: BAU, relic Q-balls, and gravity waves

Alexander Kusenko (UCLA) **IPMU** '08 SUSY and Q-balls nucleus SUSY Why would one suspect that ¥ SUSY \Rightarrow Q-balls? SUSY SUSY **Bose–Einstein Q**-ball

Let us consider a complex scalar field $\phi(x, t)$ in a potential that respects a U(1) symmetry: $\phi \rightarrow e^{i\theta}\phi$.

vacuum: $\phi = 0$

conserved charge: $oldsymbol{Q}=rac{1}{2i}\int\left(\phi^{\dagger}\stackrel{\leftrightarrow}{\partial_{0}}\phi
ight)oldsymbol{d}^{3}oldsymbol{x}$

 $Q \neq 0 \Rightarrow \phi \neq 0$ in some finite domain \Rightarrow Q-ball [Rosen; Friedberg, Lee, Sirlin; Coleman]

IPMU '08

Minimize energy $E = \int d^3x \left[\frac{1}{2} |\dot{\phi}|^2 + \frac{1}{2} |\nabla \phi|^2 + U(\phi) \right]$ under the constraint Q = const. Introduce Lagrange multiplier:

$$egin{aligned} \mathcal{E} &= E + \omega \left[Q - rac{1}{2i} \int \phi^* \stackrel{\leftrightarrow}{\partial}_t \phi \, d^3 x
ight] \ &= \int d^3 x \, rac{1}{2} \left| rac{\partial}{\partial} \phi - i \omega \phi
ight|^2 \, + \, \int d^3 x \, \left[rac{1}{2} |
abla \phi|^2 + \hat{U}_\omega(\phi)
ight] + \omega Q, \ & ext{where} \ \hat{U}_\omega(\phi) = U(\phi) \, - \, rac{1}{2} \, \omega^2 \, \phi^2. \end{aligned}$$

ullet Minimize blue by setting $\phi = e^{i \omega t} ar{\phi}(x)$

- Minimize red by choosing $\overline{\phi}(x)$ to be the **bounce for tunneling in** $\hat{U}_{\omega}(\phi) = U(\phi) - \frac{1}{2}\omega^2\phi^2$.
- Finally, minimize \mathcal{E} with respect to ω .

Q-balls exist whenever $\hat{U}_{\omega}(\phi) = U(\phi) - \frac{1}{2}\omega^2\phi^2$ is not positive definite for some value of ω .

Q-balls exist if

$$U(\phi)\left/\phi^2=\min,
ight. ext{ for } \phi=\phi_0>0$$

[Coleman]

Finite ϕ_0 : $M(Q) \propto Q$ Flat potential $(U(\phi) \sim \phi^p, p < 2); \phi_0 = \infty$: $M(Q) \propto Q^{\alpha}, \alpha < 1$

7

IPMU '08

IPMU '08

Q-balls exist in (softly broken) SUSY because

- the theory has scalar fields
- the scalar fields carry conserved global charge (baryon and lepton numbers)
- attractive scalar interactions (tri-linear terms, flat directions) force $(U(\phi)/\phi^2) = \min$ for non-vacuum values.

MSSM, gauge mediated SUSY breaking

Baryonic Q-balls (B-balls) are entirely stable if their mass per unit baryon charge is less than the proton mass.

 $egin{aligned} M(Q) &= M_S Q^{3/4} \Rightarrow \ rac{M(Q_B)}{Q_B} &\sim M_S Q^{-1/4} \ < 1 {
m GeV} \end{aligned}$ for $Q_B \gg \left(rac{M_S}{1 {
m GeV}}
ight)^4 \stackrel{>}{_\sim} 10^{12}$

Such B-balls are entirely stable.

Baryon asymmetry

$$\eta \equiv \frac{n_B}{n_{\gamma}} = (6.1^{+0.3}_{-0.2}) \times 10^{-10} (\text{WMAP})$$

COSMOLOGY MARCHES ON

IPMU '08

What happened right after the Big Bang?

- Inflation probably took place
- Baryogenesis definitely *after* inflation

Standard Model is not consistent with the observed baryon asymmetry (assuming inflation)

Affleck–Dine baryogenesis

- Natural if SUSY+Inflation
- Can explain matter
- Can explain **dark** matter
- Predictions can be tested soon

IPMU '08

IPMU '08

All matter is produced during reheating after inflation.

SUSY \Rightarrow flat directions. During inflation, scalar fields are displaced from their minima.

IPMU '08

Affleck – Dine baryogenesis

at the end of inflation a scalar condensate develops a large VEV along a <u>flat direction</u>

CP violation is due to time-dependent background.

Baryon asymmetry: $\phi = |\phi|e^{i\omega t}$

Affleck – Dine baryogenesis: an example

Suppose the flat direction is lifted by a higher dimension operator $W_n = \frac{1}{M^n} \Phi^{n+3}$. The expansion of the universe breaks SUSY and introduces mass terms $m^2 \sim \pm H^2$.

The scalar potential:

$$V=-H^2|\Phi|^2+rac{1}{M^{2n}}|\Phi|^{2n+4}$$

Assume the inflation scale $E \sim 10^{15}$ GeV The Hubble constant $H_I \approx E^2/M_p \approx 10^{12}$ GeV. $T_R \sim 10^9$ GeV

In this example, the final baryon asymmetry is

$$egin{aligned} rac{n_B}{n_\gamma} &\sim & rac{n_B}{(
ho_I/T_R)} \sim rac{n_B}{n_\Phi} rac{T_R}{m_\Phi} rac{
ho_\Phi}{
ho_I} \ &\sim & 10^{-10} \left(rac{T_R}{10^9 {
m GeV}}
ight) \left(rac{M_p}{m_{3/2}}
ight)^{rac{(n-1)}{(n+1)}} \end{aligned}$$

Correct baryon asymmetry for n = 1. (For n > 1, too big.)

IPMU '08

Fragmentation of the Affleck-Dine condensate

 $\begin{bmatrix} \mathsf{AK}, \mathsf{Shaposhnikov} \end{bmatrix} \\ \textbf{small inhomogeneities can grow} \\ \textbf{unstable modes:} \\ \mathbf{0} < \mathbf{k} < \mathbf{k}_{\max} = \sqrt{\omega^2 - U''(\phi)} \\ \Rightarrow \textbf{Lumps of baryon condensate} \\ \Rightarrow \textbf{Q-balls} \\ \end{bmatrix}$

IPMU '08

Fragmentation \approx pattern formation

Familiar example:

Numerical simulations of the fragmentation

[Kasuya, Kawasaki]

Two-dimensional charge density plots [Multamaki].

IPMU '08

Three-dimensional charge density plots [Multamaki].

[AK, Shaposhnikov; Enqvist, McDonald]

Stable Q-balls as dark matter

Q-balls can accommodate baryon number at lower energy than a nucleon \Rightarrow B-Balls catalyze proton decay Signal:

$$rac{dE}{dl} \sim 100 \left(rac{
ho}{1\,{
m g/cm^3}}
ight) rac{{
m GeV}}{{
m cm}}$$

Heavy \Rightarrow low flux

 \Rightarrow experimental limits from Super-Kamiokande and other large detectors

A "candidate event"

C.M.G. Lattes et al., Hadronic interactions of high energy cosmic-ray observed by emulsion chambers

Fig. 47. Illustration of penetrating cores of Pamir experiment. [Lattes, Fujimoto and Hasegawa, Phys.Rept. **65**, 151 (1980)]

IPMU '08

Unstable B-balls

Gravity mediated SUSY breaking typically produces potentials which grow as $\sim \phi^2$ up to the Planck scale.

Hence, *Q-balls are unstable*.

Decay of Q-balls results in *late non-thermal production of LSP*.

Ordinary and dark matter arise from the same process. Hence, one may be able to explain why Ω_{matter} and Ω_{dark} are not very different. [Fijii,Yanagida; Enqvist, McDonald; Laine, Shaposhnikov]

 $\mathbf{\Omega_{dark}}/ \ \mathbf{\Omega_{matter}} \sim 10$

- Dark matter is **stable Q-balls** [Laine, Shaposhnikov]
- Dark matter is **LSP** produced non-thermally from decay of unstable Q-balls [Enqvist, McDonald; Fujii, Hamaguchi; Fujii, Yanagida]
- Dark matter is **gravitino** produced non-thermally from decay of unstable Q-balls [Fujii, Yanagida]

IPMU '08

IPMU '08

$$\Omega_{\mathrm{B-ball}}/ \ \Omega_{\mathrm{matter}} \sim 10$$

[Laine, Shaposhnikov]

- Gauge-mediated SUSY breaking
- $Q_{
 m B} \sim 10^{26\pm2}$ (in agreement with numerical simulations)

More specifically, $\Omega_{\rm B-ball}/\Omega_{\rm matter}\sim 10$ implies

 $\eta_{
m B} \sim 10^{-10} \left(rac{M_{
m SUSY}}{
m TeV}
ight) \left(rac{oldsymbol{Q}_{
m B}}{
m 10^{26}}
ight)^{-1/2}$

29

IPMU '08

"We've established a clear link"

IPMU '08

"We've established a clear link"

Astrophysical constraints

- Q-balls pass through ordinary stars and planets
- SUSY Q-balls accumulate inside white dwarfs and neutron stars
- SUSY Q-balls can convert nuclear matter into squark condensate
 - old estimates underestimated the rates
 - new rates too high, unless the flat direction is lifted by baryon number violating operators.

Interactions of SUSY Q-balls with matter (old picture)

 $\propto \frac{1}{m_{\chi}^2}$, slow This process was thought to limit the rate at which the Q-balls could process baryonic matter. Lifetimes of neutron stars were though to be greater than the age of the universe

Interactions of SUSY Q-balls with matter (correct picture)

-Dali

There is a Majorana mass term for quarks inside coming from the quark-squark-gluino vertex. **Probability** ~ 1 for a quark to reflect as an antiquark. Very fast!

[AK, Loveridge, Shaposhnikov].

IPMU '08

Interactions of SUSY Q-balls with matter

The MSSM Lagrangian contains terms describing interactions of quarks ψ with squarks ϕ and gluinos λ :

$$\mathcal{L}=-g\sqrt{2}T^a_{ij}(\lambda^a\sigma^2\psi_j\phi^*_i)+C.C.+...$$

and also the Majorana mass terms for gluinos:

 $\mathcal{L}_{\mathcal{M}} = M \lambda_a \lambda_a.$

Of course, the quarks also have dirac mass terms.

In the basis $\{\psi_L, \psi_R, \lambda\}$, the mass matrix has a (simplified) form:

$$\left(egin{array}{cccc} 0 & m & arphi_L \ m & 0 & arphi_R \ arphi_L & arphi_R & M \end{array}
ight)$$

The squark fields ϕ grow large inside the Q-ball. This mass term causes a quark to scatter off a Q-ball as an antiquark, with probability of order 1.

[AK, Loveridge, Shaposhnikov]

Interaction rates are not limited by weak-scale cross section.

Signatures in detectors do not change significantly

Neutron stars: can they survive long enough?

Pulsars ages: oldest pulsars have $(\dot{P}/P) \sim (0.3-3) imes 10^{-10} {
m yr}^{-1}$

Some pulsars are also known to be (at least) as old as **10 Gyr** based on the cooling ages of their white dwarf companions

Inside a neutron star Q-ball VEV grows fast and reaches vealues at which the flat direction is lifted by higher-dimension operators

IPMU '08

IPMU '08

Alexander Kusenko (UCLA)

Generally, the lifting terms can be written in the form

$$V^{n}(\phi)_{ ext{lifting}} pprox \lambda_{n} M^{4} \left(rac{\phi}{M}
ight)^{n-1+m} \left(rac{\phi^{*}}{M}
ight)^{n-1-m}$$

- If m ≠ 0, the baryon number is broken. Q-balls inside a neutron star reach some maximal size and stop growing in size. The rate of conversion of matter into condensate stabilizes at a small value. This is allowed.
- If m = 0, Q-balls change the way they grow after reaching a certain size Q_c .

IPMU '08

Q-balls along "Flat" and "Curved" directions

The change from FD to CD makes the Q-ball grow faster.

As soon as this happens, the neutron star is consumed very quickly:

	FD Q-balls	CD Q-balls
t	10^{10} years	1500 years

Q-balls that go from FD to CD for $Q < 10^{57}$ are ruled out, unless the lifting terms can break the baryon number.

White Dwarfs

White dwarfs can also accumulate SUSY Q-balls. The rate of consumption is lower because of the lower density. Nevertheless, one should consider a possible limit coming from the fact that some very old (10 Gyr) white dwarfs are known to have cooled down to very low temperatures; they emit

 $L_{\rm wd} = 3 \times 10^{-5} L_{\odot} = 7 \times 10^{28} \, {\rm erg/s}.$

Q-balls must not produce more heat than this.

No new limits arise. For m = 0, Q-balls are ruled out by stability of neutron stars. For $m \neq 0$, the rate of heat release is much than L_{wd} .

IPMU '08

Gravitational radiation from the fragmentation process

One can expect gravitational waves if

- large masses move around
- relativistic velocities
- no spherical symmetry

All of these conditions can be satisfied for *some* flat directions.

Two-dimensional charge density plots.

IPMU '08

IPMU '08

Three-dimensional charge density plots.

The lack of spherical symmetry in the early steps of fragmentation means gravity waves can be produced.

IPMU '08

Analytical estimates [AK, Mazumdar]

The mass density of the condensate undergoing fragmentation can be written as $ho(x,t)=
ho_0+
ho_1(x,t)$, where

$$ho_1(x,t) = \epsilon
ho_0 \int d^3k \, e^{lpha_k t} \cos(\omega t - ec k \cdot ec x) \, .$$

The quadrupole moment that generates gravity waves:

$$D_{ij} = \int d^3x \; x_i x_j \, T^{00}(x,t) \, ,$$

where the energy-momentum tensor $T^{00}(x,t)\approx\rho(x,t).$

Alexander Kusenko (UCLA) Based on the analytical and numerical calculations of the condensate fragmentation [Kawasaki et al.],

 $k\sim \xi_k imes 10^2 H_*, \ \omega_k\sim vk\sim \xi_k imes 10^2 \, vH_*,$

where H_* is the Hubble constant at the time of the condensate. For $\omega \sim 10^2 v H_*$, the power in gravitational waves in a Hubble volume:

$$P \sim 10^4 \xi_k^{-2} \, G rac{
ho_0^2 v^6}{H_*^4}$$

For mode $\phi(x,t) \approx R(t) \exp\{\alpha_k t\} \cos(\omega_k t - kx)$, where R(t) is a slowly changing function of time,

At the time of production [AK, Mazumdar],

$$\Omega_{GW*} \sim 10^{-3} \xi_k^{-3} \xi_v^6 rac{
ho_0^2}{(H_* M_{
m Pl})^4}$$

The energy density depends on the type of SUSY breaking and the type of flat direction.

Strong gravitational waves:

- gravity mediated SUSY breaking (more mass per scalar)
- not the flat direction of AD baryogenesis: $\eta_B = n_B/n_\gamma \sim 10^{-10}$ too small
- (B + L) flat directions OK: sphalerons destroy (B + L), so there is no constraint on the initial density carried by the (B + L) flat directions.

Predictions:

Peak frequency of the gravitational radiation observed today, $f_* = \omega_k/2\pi$:

$$f=f_*rac{a_*}{a_0}=f_*\left(rac{a_*}{a_{
m rh}}
ight)\left(rac{g_{s,0}}{g_{s,{
m rh}}}
ight)^{1/3}\left(rac{T_0}{T_{
m rh}}
ight)$$

$$pprox 0.6 \mathrm{~mHz}~ \xi_k \xi_v~ \left(rac{g_{s,\mathrm{rh}}}{100}
ight)^{1/6} \left(rac{T_\mathrm{rh}}{1~\mathrm{TeV}}
ight) \left(rac{f_*}{10H_*}
ight)\,,$$

 $T_{\rm rh} \sim 1 {\rm ~TeV} \Rightarrow {\rm mHz}$ frequency, accessible to LISA $T_{\rm rh} \sim 100 {\rm ~TeV} \Rightarrow 10-100$ Hz frequency, accessible to LIGOIII and BBO

Spectral signature: signal is peaked at the longest wavelength, determined by the size of the Q-balls, and it falls off as $1/f^3$ for larger frequencies.

The fraction of the critical energy density ρ_c stored in the gravity waves today is

$$\Omega_{GW} = \Omega_{GW^*} \left(\frac{a_*}{a_0}\right)^4 \left(\frac{H_*}{H_0}\right)^2$$

$$\approx \frac{1.67 \times 10^{-5}}{h^2} \left(\frac{100}{g_{s,*}}\right)^{1/3} \Omega_{GW^*} \approx 10^{-8} \xi_k^{-3} \xi_v^6 h^{-2}$$

LISA sensitivity: $\Omega_{\rm GW} h^2 \sim 10^{-11}$ at mHz frequencies

LIGO III sensitivity: $\Omega_{\rm GW} h^2 \sim (10^{-5}-10^{-11})$ in the $(5-10^3)$ Hz frequency band.

Numerical simulations under way [AK, Mazumdar, Multamäki]

IPMU '08

- SUSY + Inflation \Rightarrow Q-balls, some may be stable, may be dark matter
- Typical size large \Rightarrow typical density small \Rightarrow need large detectors to search for relic Q-balls
- Gravitational waves from the fragmentation of (B + L) flat directions may be observed by LIGO III and LISA, as well as BBO.